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Abstract Users of Web search engines are often forced 
to sift through the long ordered list of document “snippets” 
returned by the engines. The IR community has explored 
document clustering as an alternative method of organizing 
retrieval results, but clustering has yet to be deployed on the 
major search engines. 

The paper articulates the unique requirements of Web 
document clustering and reports on the first evaluation of 
clustering methods in this domain. A key requirement is that 
the methods create their clusters based on the short snippets 
returned by Web search engines. Surprisingly, we find that 
clusters based on snippets are almost as good as clusters 
created using the full text of Web documents. 

To satisfy the stringent requirements of the Web domain, 
we introduce an incremental, linear time (in the document 
collection size) algorithm called Suffix Tree Clustering 
(STC). which creates clusters based on phrases shared 
between documents. We show that STC is faster than 
standard clustering methods in this domain, and argue that 
Web document clustering via STC is both feasible and 
potentially beneficial. 

1 Introduction 

Conventional document retrieval systems return long lists of 
ranked documents that users are forced to sift through to find 
relevant documents. The majority of today’s Web search 
engines (e.g., Excite, AltaVista) follow this paradigm. Web 
search engines are also characterized by extremely low 
precision. 

The low precision of the Web search engines coupled with 
the ranked list presentation make it hard for users to find the 
information they are looking for. Instead of attempting to 
increase precision (e.g., by filtering methods - Shakes et. al., 
97 - or by advanced pruning options - Selberg and Etzioni, 
95) we attempt to make search engine results easy to browse. 
This paper considers whether document clustering is a 
feasible method of presenting the results of Web search 
engines. 

Many document clustering algorithms rely on off-line 
clustering of the entire document collection (e.g., Cutting et. 
al., 93; Silverstein and Pedersen, 97), but the Web search 
engines’ collections are too large and fluid to allow off-line 
clustering. Therefore clustering has to be applied to the 
much smaller set of documents returned in response to a 
query. Because the search engines service millions of queries 
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per day, free of charge, the CPU cycles and memory 
dedicated to each individual query are severely curtailed. 
Thus, clustering has to be performed on a separate machine, 
which receives search engine results as input, creates 
clusters and presents them to the user. 

Based on this model, we have identified several key 
requirements for Web document clustering methods: 
1. Relevance: The method ought to produce clusters that 

group documents relevant to the user’s query separately 
from irrelevant ones. 

2. Browsable Summaries: The user needs to determine at a 
glance whether a cluster’s contents are of interest. We do 
not want to replace sifting through ranked lists with 
sifting through clusters. Therefore the method has to 
provide concise and accurate descriptions of the clusters. 
Overlap: Since documents have multiple topics, it is 
important to avoid confining each document to only one 
cluster (Hearst, 98). 
Snippet-tolerance: The method ought to produce high 
quality clusters even when it only has access to the 
snippets returned by the search engines, as most users 
are unwilling to wait while the system downloads the 
original documents off the Web. 
Speed: A very patient user might sift through 100 
documents in a ranked list presentation. We want 
clustering to allow the user to browse through at least an 
order of magnitude more documents. Therefore the 
clustering method ought to be able to cluster up to one 
thousand snippets in a few seconds. For the impatient 
user, each second counts. 
Incrementality: To save time, the method should start to 
process each snippet as soon as it is received over the 
Web. 

Below, we introduce Suffix Tree Clustering (STC) - a 
novel, incremental, O(n)* time algorithm designed to meet 
these requirements. STC does not treat a document as a set 
of words but rather as a string, making use of proximity 
information between words. STC relies on a suffix free to 
efficiently identify sets of documents that share common 
phrases and uses this information to create clusters and to 
succinctly summarize their contents for users. 

To demonstrate the effectiveness and speed of STC, we 
have created MetaCrawler-STC, a prototype clustering Web 
search engine, which is accessible at the following 
URL: http:Nwww.cs.washington.edu/researcNclustering. 
MetaCrawler-STC takes the output of the MetaCrawler meta 
search engine (Selberg and Etzioni, 95) and clusters it using 
the STC algorithm. Figure 1 shows sample output for 
MetaCrawler-STC. We provide preliminary experimental 
evidence that STC satisfies the speed, snippet tolerance, and 

t Throughout this paper n denotes the number of documents to be 
clustered. The number of words per document is assumed to be 
bounded by a constant. 



relevance requirements, and that it benefits from creating 
overlapping clusters. We believe the shared phrases of a 
cluster provide an informative way of summarizing its 
contents, but a user study to validate this belief is an area for 
future work. 

search results for the query: “salsa” 
documents: 246, clusters: 15 

Cluster 
num. 

1 

Size 

8 

20 

40 

79 

41 

. . . 

Shared phrases and 
sample document titles 

Puerto Rico; Latin Music 
1. Salsa Music in Austin 
2. LatinGate Home Page 
Follow Ups post; York Salsa 
Dancers 
I. Origin and Development of 
Salsa ? 
2. Re: New York Salsa Dancers are 
the best because... 
music; entertainment; latin; 
artists 
1. Latin Midi Files Exchange 
2. Salsa Music On The Web. con 
Sabor! 
hot; food; chiles; sauces; 
condiments; companies 
I. Religious Experience Salsa 
2. Arizona Southwestern Cuisine 
and Gifts 
pepper; onion; tomatoes 
1. Salsa Mixes 
2. Salsa Q & A 

11 

I . . . 

Figure 1: The output of our MetaCrawler-STC 
clustering engine for the query “salsa”. Only the first 5 
clusters are shown here. The words in bold are the 
shared phrases found in the clusters. Note the 
descriptive power of phrases such as “Puerto Rico”, 
“Latin Music” and “York Salsa Dancers”. 

The paper is organized as follows: The next section is an 
assessment of the extent to which previous work on 
document clustering meets the requirements of the Web 
domain. The following section describes STC in detail. 
Subsequently, we report on the experimental evaluation of 
STC and other clustering algorithms in the Web domain. We 
conclude by summarizing our contributions and with 
directions for future work. 

2 Previous Work on Document Clustering 

In this section we review previous work on document 
clustering algorithms and discuss how these algorithms 
measure up to the requirements of the Web domain. 

Document clustering has been traditionally investigated 
mainly as a means of improving the performance of search 
engines by pre-clustering the entire corpus (the cluster 
hypothesis - van Rijsbergen, 79). However, clustering has 
also been investigated as a post-retrieval document browsing 
technique (Croft, 78; Cutting et. al, 92; Allen et. al., 93; 
Leouski and Croft, 96). Our work follows this alternative 
paradigm. 

Numerous documents clustering algorithms appear in the 
literature (see Willet, 88 for review). Agglomerative 
Hierarchical Clustering (AHC) algorithms are probably the 

most commonly used. These algorithms are typically slow 
when applied to large document collections. Single-link and 
group-average methods typically take O(n’) time, while 
complete-link methods typically take O(n3) time (Voorhees, 
86). As our experiments demonstrate, these algorithms are 
too slow to meet the speed requirement for one thousand 
documents. 

Several halting criteria for AHC algorithms have been 
suggested (Milligan and Cooper, 85), but they are typically 
based on predetermined constants (e.g., halt. when 5 clusters 
remain). These algorithms are very sensitive to the halting 
criterion - when the algorithm mistakenly merges multiple 
“good” clusters, the resulting cluster could be meaningless to 
the user. In the Web domain, where the results of queries 
could be extremely varied (in the number, length, type and 
relevance of the documents), this sensitivity to the halting 
criterion often causes poor results. Another characteristic of 
the Web domain is that we often receive many outliers. This 
sort of “noise” reduces even further the effectiveness of 
commonly used halting criteria. 

Linear time clustering algorithms are the best candidates 
to comply with the speed requirement of on-line clustering. 
These include the K-Means algorithm - O(nkT) time 
complexity where k is the number of desired clusters and T 
is the number of iterations (Rocchio, 66), and the Single- 
Pass method - O(nK) were K is the number of clusters 
created (Hill, 68). One advantage of the K-Means algorithm 
is that, unlike AHC algorithms, it can produce overlapping 
clusters. Its chief disadvantage is that it is known to be most 
effective when the desired clusters are approximately 
spherical with respect to the similarity measure used. There 
is no reason to believe that documents (under the standard 
representation as weighted word vectors and some form of 
normalized dot-product similarity measure) should fall into 
approximately spherical clusters. The Single-Pass method 
also suffers from this disadvantage, as well as from being 
order dependant and from having a tendency to produce 
large clusters (Rasmussen, 92). It is, however, the most 
popular incremental clustering algorithm (as can be seen 
from its popularity in the event detection domain - see TDT. 
97). 

Buckshot and Fractionation are fast, linear time clustering 
algorithms introduced in (Cutting et. al., 92). Fractionation 
is an approximation to AHC, where the search for the two 
closest clusters is not performed globally, but in rather 
locally and in a bound region. This algorithm will obviously 
suffer from the same disadvantages of AHC - namely the 
arbitrary halting criteria and the poor performance in 
domains with many outliers. Buckshot is a K-Means 
algorithm where the initial cluster centroids are created by 
applying AHC clustering to a sample of the documents of 
the collection. This sampling is risky when one is possibly 
interested in small clusters, as they may not be represented 
in the sample. Finally, we note that neither of these 
algorithms is incremental. 

In contrast to STC, all the mentioned algorithms treat a 
document as a set of words and not as an ordered sequence 
of words, thus losing valuable information. Phrases have 
long been used to supplement word-based indexing in IR 
systems (e.g., Buckley et. al, 95). The use of lexical atoms 
and of syntactic phrases has been shown to improve 
precision without hurting recall (Zhai et. al., 95). Phrases 
generated by simple statistical approaches (e.g., contiguous 
non-stopped words) have also been successfully used (Salton 
et. al, 75; Fagan, 87; Hull et. al., 97). Yet these methods 
have not been widely applied to document clustering. The 
only example known to the authors is the use of the co- 

47 



appearance of pairs of words as the attributes of the 
documents’ vector representations (Maarek and Wecker, 94). 

On the Web, there are some attempts to handle the large 
number of documents returned by search engines. Many 
search engines provide query refinement features. AltaVista, 
for example, suggests words to be added or to be excluded 
from the query. These words are organized into groups, but 
these groups do not represent clusters of documents. The 
Northern Light search engine (www.nfsearch.com), provides 
“Custom Search Folders”, in which the retrieved documents 
are organized. Each folder is labeled by a single word or a 
two-word phrase, and is comprised of all the documents 
containing the label. Northern Light does not reveal the 
method used to create these folders nor its cost. 

3 Suffix Tree Clustering 

Suffix Tree Clustering (STC) is a linear time clustering 
algorithm that is based on identifying the phrases that are 
common to groups of documents. A phrase in our context is 
an ordered sequence of one or more words. We define a base 
cluster to be a set of documents that share a common phrase. 

STC has three logical steps: (1) document “cleaning”, (2) 
identifying base clusters using a suffix tree, and (3) 
combining these base clusters into clusters. 

3.1 Step 1 - Document “Cleaning” 

In this step, the string of text representing each document is 
transformed using a light stemming algorithm (deleting word 
prefixes and suffixes and reducing plural to singular). 
Sentence boundaries (identified via punctuation and HTML 
tags) are marked and non-word tokens (such as numbers, 
HTML tags and most punctuation) are stripped. The original 
document strings are kept, as well as pointers from the 
beginning of each word in the transformed string to its 
position in the original string. This enables us, once we 
identify key phrases in the transformed string, to display the 
original text for enhanced user readability. 

3.2 Step 2 - Identifying Base Clusters 

The identification of base clusters can be viewed as the 
creation of an inverted index of phrases for our document 
collection. This is done efficiently using a data structure 
called a suffix tree (Weiner, 73; Gusfield, 97). This structure 
can be constructed in time linear with the size of the 
collection, and can be constructed incrementally as the 
documents are being read (Ukkonen, 95). The idea of using a 
suffix tree for document clustering was first introduced in 
(Zamir et. al., 97). Here we present an improved clustering 
algorithm, which introduces the merger of base clusters (step 
three of the STC algorithm), and compare it using standard 
IR methodology to classical clustering methods in the Web 
domain. 

A suffix tree of a string S is a compact trie containing all 
the suffixes of S. We treat documents as strings of words, 
not characters, thus suffixes contain one or more whole 
words. In more precise terms: 
1. A suffix tree is a rooted, directed tree. 
2. Each internal node has at least 2 children. 
3. Each edge is labeled with a non-empty sub-string of S 

(hence it is a trie). The label of a node in defined to be 
the concatenation of the edge-labels on the path from the 
root to that node. 

4. No two edges out of the same node can have edge-labels 
that begin with the same word (hence it is compact). 

5. For each suffix s of S, there exists a n&ix-node whose 
label equals S. 

The suffix tree of a collection of strings is a compact trie 
containing all the suffixes of all the strings in the collection. 
Each suffix-node is marked to designate from which string 
(or strings) it originated from (i.e., the label of that suffix- 
node is a suffix of that string). In our application, we 
construct the suffix tree of all the sentences of all the 
documents in our collection. 

Figure 2 is an example of the suffix tree of a set of strings 
- “cat ate cheese”, “mouse ate cheese too” and “cat ate mouse 
too”. The nodes of the suffix tree are drawn as circles. Each 
suffix-node has one or more boxes attached to it designating 
the string(s) it originated from. The first number in each box 
designates the string of origin (l-3 in our example, by the 
order the strings appear above); the second number 
designates which suffix of that string labels that suffix-node. 
Several of the nodes in the Figure are labeled a through f for 
further reference. 

cat 

1 

1 

Figure 2: The suffix tree of the strings “cat ate cheese”, 
“mouse ate cheese too” and “cat ate mouse too”. 

Each node of the suffix tree represents a group of 
documents and a phrase that is common to all of them. The 
label of the node represents the common phrase; the set of 
documents tagging the suffix-nodes that are descendants of 
the node make up the document group. Therefore, each node 
represents a base cluster. Furthermore, all possible base 
clusters (containing 2 or more documents) appear as nodes in 
our suffix tree. Table 3 lists the six marked nodes from the 
example shown in Figure 2 and their corresponding base 
clusters. 

Node Phrase Documents 

a cat ate 1,3 
b ate 1,273 
C cheese 1,2 
d mouse 273 
e too 2.3 
f ate cheese 192 

Table 3: Six nodes from the example shown in Figure 2 
and their corresponding base clusters. 

Each base cluster is assigned a score that is a function of 
the number of documents it contains, and the words that 
make up its phrase. The score s(B) of base cluster B with 

phrase P is given by: 



where IBI is the number of documents in base cluster B, and 

IPI is the number of words in P that have a non-zero score 

(i.e., the effective length of the phrase). We maintain a 

stoplist that is supplemented with Internet specific words 

(e.g., “previous”, “java”, “frames” and “mail”). Words 

appearing in the stoplist, or that appear in too few (3 or less) 
or too many (more than 40% of the collection) documents 
receive a score of zero. The functionfpenalizes single word 

phrases, is linear for phrase that are two to six words long, 
and becomes constant for longer phrases. 

3.3 Step 3 - Combining Base Clusters 

Documents may share more than one phrase. As a result, the 
document sets of distinct base clusters may overlap and may 
even be identical. To avoid the proliferation of nearly 
identical clusters, the third step of the algorithm merges base 
clusters with a high overlap in their document sets (phrases 
are not considered in this step). In Figure 1, for example, the 
top cluster resulted from merging the two base clusters 
labeled “Puerto Rico” and “Latin Music” based on their 
document sets overlap. 

We define a binary similarity measure between base 
clusters based on the overlap of their document sets. Given 
two base clusters Bm and B”, with sizes lBml and IBJ 
respectively, and IB,$lJ representing the number of 
documents common to both base clusters, we define the 
similarity of BI and B” to be 1 iff: 
l IB,@~l/lBml > 0.5 and 
l IB,~nB~VlB~l > 0.5 
Otherwise, their similarity is defined to be 0. 

Next, we look at the base cluster graph, where nodes are 
base clusters, and two nodes are connected iff the two base 
clusters have a similarity of 1. A cluster is defined as being a 
connected component in the base cluster graph. Each cluster 
contains the union of the documents of all its base clusters. 
Figure 4 illustrates the base cluster graph of the six base 
clusters in Table 3. There is a single cluster in this example. 

Phrase: cat ate 
Documents: 1.3 

Phrase: mouse 
Documents: 2.3 

a Q Phrase: cheese 
Documents: I .2 

Phrase: too Phrase: ate cheese 
Documents: 2,3 Documents: I,2 

Figure 4: The base cluster graph of the example given 
in Figure 2 and in Table 3. In this example there is one 
connected component, therefore one cluster. Notice that 
if the word ate had been in our stoplist, the base cluster 
b would have been discarded as it would have had a 
score of 0, and then we would have had three connected 
components in the graph, representing three clusters. 

In essence, we are clustering the base clusters using the 
equivalent of a single-link clustering algorithm where a 

predetermined minimal similarity between base clusters 
serves as the halting criterion. This clustering algorithm is 
incremental and order independent. We do not encounter the 
undesired chaining effect of single-link clustering because 
we use it in the domain of base clusters where we typically 
find only small connected components. 

The STC algorithm is incremental. As each document 
arrives from the Web, we “clean” it and add it to the suffix 
tree. Each node that is updated (or created) as a result of this 
is tagged. We then update the relevant base clusters and 
recalculate the similarity of these base clusters to the rest of 
the base clusters. Finally, we check if the changes in the base 
cluster graph result in any changes to the final clusters. 

To keep the cost of this last step constant, we don’t check 
the similarity of the modified base clusters with all other 
base clusters, but only with the k highest scoring base 
clusters (we take k to be 500 in our experiments). The cost of 
“cleaning” the documents is obviously linear with the 
collection size. The cost of inserting documents into the 
suffix tree is also linear with the collection size, as is the 
number of nodes that can be affected by these insertions. 
Thus the overall time complexity of STC is linear with 
regard to the collection size. 

The final clusters are scored and sorted based on the 
scores of their base clusters and their overlap. As the final 
number of clusters can vary, we report only the top few 
clusters. Typically, only the top 10 clusters are of interest. 
For each cluster we report the number of documents it 
contains, and the phrases of its base clusters. 

The goal of a clustering algorithm in our domain is to 
group each document with others sharing a common topic, 
but not necessarily to partition the collection. It has been 
claimed that it is artificial to force each document into only 
one cluster, as documents often have several topics (Hearst, 
98). Such a constraint could decrease the usefulness of the 
clusters produced. Allowing a document to appear in more 
than one cluster acknowledges that documents are complex 
objects which may be grouped into multiple potentially 
overlapping, but internally coherent, groups. This is actually 
the reason many IR system use some form of dot-product 
document similarity measure (as opposed to Euclidean 
distance, for example): it allows a document to be similar to 
multiple distinct documents or centroids that could in turn be 
very dissimilar from each other. 

In STC, as documents may share more than one phrase 
with other documents, each document might appear in a 
number of base clusters. Therefore a document can appear in 
more than one cluster. Note that the overlap between clusters 
cannot be too high, otherwise they would have been merged 
into a single cluster. In the example shown in Figure 1 
(results of STC on the query “salsa”), a cluster relating to 
salsa recipes was produces as well as a cluster relating to 
companies selling salsa products. Several documents were 
correctly placed in both clusters as they included both 
recipes and information about the companies marketing 
them. 

The STC algorithm does not require the user to specify 
the required number of clusters. It does, on the other hand, 
require the specification of the threshold used to determine 
the similarity between base clusters (0.5 in our example and 
experiment). However, we found that the performance of 
STC is not very sensitive to this threshold, unlike AHC 
algorithms that showed extreme sensitivity to the number of 
clusters required. 
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4 Experiments 

In order to evaluate STC we compared it both to the original 
ranked list of the search engine and to other clustering 
algorithms. The algorithms used in the comparison were 
group-average agglomerative hierarchical clustering (which 
will be referred to as GAHC), K-Means, Buckshot, 
Fractionation and Single-Pass. The GAHC algorithm was 
chosen as it is commonly used; the rest were chosen as they 
are fast enough to be contenders for on-line clustering. 

For our experiments, we constructed document collections 
by saving the results of different queries to the MetaCrawler 
search engine. We chose not to use standard IR collections, 
as we were interested in the performance of document 
clustering on rhe Web. As the MetaCrawler is a meta search 
engine, (i.e. it routes queries to several other search engines 
and then collates their results), we assume its search results 
and the snippets it returns are representative of Web search 
engines. 

4.1 Effectiveness for Information Retrieval 

As we did not use a standard IR corpus, we were forced to 
generate our own queries and relevance judgments, though 
we are aware that this could lead to a bias in our results. To 
counteract any potential bias, we plan to publish our data set 
on the Web to allow independent validation and replication 
of our experiments. 

The process was as follows: We first defined IO queries 
by specifying their topics (e.g., “black bear attacks”) and 
their descriptions (e.g., “we are interested in accounts of 
black bear attacks on humans or information about how to 
prevent such attacks”). The words appearing in each query’s 
topic field were used as keywords for a Web search using the 
MetaCrawler search engine. We generated 10 collections of 
200 snippets from the results of these queries. For each 
snippet returned by the search engine, we also downloaded 
its original document from the Web, thus generating IO 
collections of 200 Web documents. We manually assigned a 
relevance judgment (relevant or not) to each document in 
these collections based on the queries’ descriptions. On 
average there were about 40 relevant documents for each 

query. 
In our first experiment we applied the various clustering 

algorithms to the document collections and compared their 
effectiveness for information retrieval. Specifically, we used 
the results of the clustering algorithms to reorder the list of 
documents returned by the search engine, according to a 
variation of the method laid out in (Hearst and Pedersen, 96; 
Schiitze and Silverstein, 97), which assumes that the user is 
able to select the cluster with the highest relevant document 
density.* 

As different clustering algorithms tend to produce clusters 
of different sizes and we did not want this to artificially 
influence the comparison between them, we considered only 
a constant number of documents (chosen by starting with the 
‘top cluster and working our way down through subsequent 
clusters until we reach 10% of the document collection); the 
remaining 90% of the documents were considered irrelevant. 
Thus, while (Hearst and Pedersen, 96) always pick a single 
cluster, we may pick more than one, or only a fraction of one 

2 This assumption is strong, but it has become standard in evaluating 
clustering algorithms (even though empirical tests have shown that 
the users fail to choose the best cluster about 20% of the time - 
Hearst and Pedersen, 96). We are currently working on a more 
realistic model in which the user has a probability of making errors. 

in the case where the top cluster contains more than 10% of 
the documents in the collection. When this reordering 
method is applied to overlapping clusters, one might 
consider the same document more than once. Therefore, if a 
document is seen an additional time it is deemed irrelevant, 
as re-viewing it does not help the user. 

While actual user behavior is quite complex and 
idiosyncratic, we believe that our methodology provides a 
better model of user behavior. A user picking a large cluster 
to investigate first might not scan all the documents in it, 
while a user picking a small cluster first might proceed to a 
second cluster once she’s done with the first. 

All algorithms (including STC) were run to produce the 
same number of clusters (IO in our experiments). This is 
necessary to allow a fair comparison of the different 
algorithms. The algorithms use the same parameter settings 
wherever relevant (e.g., the minimal cluster size), and were 
optimized on a separate data set. Figure 5 compares the 
average precision of the various clustering algorithms with 
that of the original ranked list, averaged over the IO Web 
document collections. 

0.40 

0.00 

STC 
GAHC 

algorithm 

Figure 5: The average precision of the clustering 
algorithms and of the original ranked list returned by 
the search engine, averaged over the 10 original 
document collections. 

As seen in Figure 5, the STC algorithm scored highest in 
this experiment. We believe that these positive results are 
due in part to STC’s use of phrases to identify clusters and 
due to the fact that it naturally allows overlapping clusters. 
In our experiment each document was placed in 2.1 clusters 
on average and 72% of the documents were placed in more 
than one cluster. Regarding the use of phrases, 55% of the 
base clusters were based on phrases containing more than 
one word. 

To measure the impact of these features on STC’s 
performance, we ran an ablation study in which we created 
two hobbled variants of the STC algorithm. In the first 
variant - STC-no-overlap - we ran a post-processing phase 
that eliminated any overlap between the clusters by 
removing each document that was placed in several clusters 
from all but one cluster, the one whose centroid was the 
closest to the document. In the second variant - STC-no- 
phrases - we allowed STC to use only single word phrases. 
The performance of these variations appears in Figure 6. 

We see that both cluster overlap and multi-word phrases 
are critical to STC’s success. Phrases are key because they 
are the basis for identifying cohesive clusters; overlap is key 
because we have no means of deciding which phrase in a 
document ought to determine its assignment to a cluster. 
Overlap enables the document to potentially participate in all 



clusters that are based on shared phrases from that 
document. 

iteration of the algorithm. Again the impact on performance, 
as seen in Figure 8, is quite small. 
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Figure 8: The average precision of overlap-producing 
clustering algorithms compared to their non- 
overlapping versions. The Buckshot and K-Means 
algorithms were chosen as they can easily be adapted to 
produce overlapping clusters. 

It is interesting to note that the degree of cluster overlap 
produced by the algorithms is quite different. Table 9 
presents the average number of clusters that a document is 
placed in by the three overlap-producing algorithms. We 
calculated this statistic separately for relevant and for 
irrelevant documents. As can be seen in Table 9, the degree 
of overlap that STC produces is much greater than that of the 
two other algorithms. Given an average precision metric, 
allowing a document to appear in multiple clusters is only 
advantageous if that document is relevant, because it tends to 
increase the density of relevant documents that the user sees 
(on average). On the other hand, placing an irrelevant 
document in multiple clusters can hurt cluster quality. 
Therefore, the ratio of the two statistics in rows one and two 
of Table 9 could be viewed as an indication of the benefit of 
overlapping clusters. Indeed, the average precision results in 
Figure 8 correlate with this ratio - the algorithm most 
effected by allowing overlapping clusters in Figure 8 (STC) 
has the highest ratio, etc. 

Figure 6: The average precision on the 10 document 
collections of the varrants of STC: STC-no-overlap 
whrch forces the results into a true partition and STC- 
no-phrases which uses only single word phrases. 

Next we considered whether the use of phrases or overlap 
could be used to improve the average precision of standard 
clustering algorithms in a straightforward manner. For 
instance, one might argue that the suffix tree is merely 
performing a term extraction of sorts on the documents. 
Nevertheless, we measured the impact of introducing multi- 
word phrases as additional attributes on the performance of 
vector-based clustering algorithms. We examined two 
vector-based clustering algorithms - GAHC and K-Means - 
and compared the standard algorithm which uses only single 
words as document vector attributes, to a modified version 
which uses phrases (single- and multi-word) identified by a 
suffix tree as attributes of the document vectors. This 
experrment was run on the original Web documents 
collections. The results m Figure 7 show that the 
modrfrcation can have either a positive or a negative impact 
on the performance of the vector-based algorithms, but this 
effect is not as dramatic as the impact of multi-word phrases 
on the STC algorithm. More experimentation is needed to 
understand this Issue further. 

STC 

K-Means Buckshot STC 
Avg. num of clusters: 1.40 1.40 2.60 
Relevant document. 
Avg. num of clusters: 1.55 1.35 1.90 
Z&Zevrmt document 1 I I 
Ratio of the above ] 0.90 ] 1.04 ) 1.37 

GAHC 

K. 

Table 9: The average number of clusters each 
document is placed in by the three overlap-producing 
algorithms. We calculated this statistic separately for 
relevant and for irrelevant documents. The ratio of 
these two statistics could be viewed as an indication of 
the benefits of overlapping clusters. 

algorithm It’s clear that while multi-word phrases and overlap are 
critical to the success of STC (Figure 6), these elements of 
STC cannot be plugged in willy-nilly into clustering 
algorithms (Figures 7 and 8); they are an inextricable part of 
the novel STC algorithm. 

We also conjecture that the multi-word phrases of the 
base clusters are very useful in conveying the clusters’ 
contents to the user. For each cluster we display the phrases 
of the base clusters it contains (in our experiments, each 
cluster contained an average of five base clusters), as well as 
additional words that appear most frequently in the cluster 

Figure 7: The average precision of clustering 
algorithms with and without the use of phrases 
identified by a suffix tree. Whereas STC’s performance 
degraded substantially when multi-word phrases were 
disallowed, the modification did not have a substantial 
or consistent effect on the vector-based algorithms. 

Next, we examined the effect of allowing overlapping 
clusters on the different algorithms. We modified Buckshot 
and K-Means to allow overlapping clusters by allowing each 
document to be placed in more than one cluster in the last 

5’ 



(these words are identified only after the cluster has been 
formed). Again, user studies will have to be carried out to 
corroborate this conjecture. 

4.2 Snippets versus Whole Document 

A major issue in the feasability of clustering Web search 
engine results is whether similar performance could be 
produced when clustering only the snippets returned by the 
search engines. Fjgure IO shows how clustering snippets 
affects the performance of the different clustering 
algorithms. We continue to rely on the relevance judgements 
from the previous experiments. 

As shown in Figure 10, the decrease in the quality of the 
clusters is apparent but relatively small. This is surprising as, 
in our experiments, a Web document contained 760 words 
on average (220 words after eliminating stoplist words or 
words appearing in too few or too many documents), while a 
snippet contained 50 words on average (20 words after word 
elimination). One explanation is that the snippets represent 
attempts by the search engines to extract meaningful phrases 
from the original documents. Therefore the snippets contain 
phrases that help in the correct clustering of the document, 
and do not contain some of the “noise” present in the 
original documents that might cause misclassification of the 
documents. These results intimate earlier findings by 
Schutze and Silverstein, which showed that cluster quality is 
not adversely affected by truncating the vector representation 
of documents in standard IR collections (Schiitze and 
Silverstein, 97). 

n d c 0 snippets STC 

0 original documents GAHC 

Fradimatim 
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algorithm 

Figure 10: The average precision of clustering 
algorithms on the snippet collections compared with the 
average precision on the original Web documents 
collections. 

4.3 Execution Time 

We measured the execution time of the various clustering 
algorithms while clustering snippet collections of various 
sizes (100 to 1000 snippets). The results are shown in Figure 
11. Each reported time is averaged over 10 collections of the 
same size. The times were measured using a Linux machine 
running on a Pentium 200 processor. 
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Figure 11: Execution time (in seconds) of the different 
clustering algorithms on snippet collections as a 
function of the collection size. In practice, STC is even 
faster than this graph suggests due to its incremental 
nature. STC can carry out the clustering process as 
documents are arriving from the Web. In our 
experiments, MetaCrawler-STC returns its results to the 
user a mere 0.01 seconds after the last document is 
received by MetaCrawler! 

It is plain that only near linear time algorithms can 
produce clusters for collections of hundreds of documents 
fast enough for true on-line interaction. STC is shown to be 
just as fast, if not faster, than other linear time algorithms. 
However, this comparison is conservative as is does not take 
into account the incremental nature of STC. As argued in the 
introduction, we believe document clustering should be done 
on a machine separate from the search engine server, which 
will receive search engine results over the Web and output 
clusters to the user. Because STC is incremental, it can use 
the “free” CPU time in which the system is waiting for the 
search engine results to arrive over the Web. Therefore, if 
the Web delay is on the order of 10 seconds, STC would 
produce results instantaneously after the last document 
arrives, while the non-incremetal algorithms will only start 
their computations. Being incremental also enables the 
system to instantaneously display results when an impatient 
user interrupts the clustering algorithm, and allows it to be 
used for event detection and tracking tasks. 

5 Conclusion 

The main contributions of this paper are (I) the 
identification of the unique requirements of document 
clustering of Web search engine results, (2) the definition of 
STC - an incremental, O(n) time clustering algorithm that 
satisfies these requirements, and (3) the first experimental 
evaluation of clustering algorithms on Web search engine 
results, forming a baseline for future work. 

Overall, our preliminary experiments are encouraging and 
suggest that fast document clustering algorithms (such as 
STC) can indeed be useful in clustering search engine 
results. Moreover, it appears that clustering the snippets 
returned by search engines is a reasonable and speedy 
alternative to downloading the original documents. Needless 
to say, a user study is needed to demonstrate the direct 



usefulness of clustering search engine results to support 
information access tasks on the Web. Further experiments 
are also necessary to confirm STC’s apparent advantage over 
existing clustering algorithms. 

To gather data from “live users”, we have fielded the 
MetaCrawler-STC system on the Web. We have 
instrumented the system to log the queries made, the clusters 
found, and the links followed by users. In future work we 
intend to report statistics on the behavior of the system in 
pra@ce, and to perform a controlled user study to further 
contrast STC with the ranked-list presentation and with other 
clustering methods. 
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