
Understanding and Taming the Variability of
Cloud Storage Latency

Gurneet Kaur Umesh Moghariya John Reed

June 14, 2013

Contents

1 Introduction 1

2 Related Work 2

3 Design & Implementation 2

4 Experimental Setup 4

5 Evaluation 4

6 Conclusions 10

1 Introduction

With the emergence of cloud computing and
its advantages over the other systems, organi-
zations of various sizes are increasingly look-
ing to utilize cloud-storage services, especially
for storing large quantities of data. Cloud stor-
age services for consumers and companies are
currently offered by many different providers.
They can roughly be divided into commercial
and consumer service providers. Services of-
fered by Amazon (S3) and Microsoft (Windows
Azure Blob Storage, abbreviated from now on as
WABS) are generally targeted at companies with
relatively large storage needs (up to thousands
of terabytes per customer), therefore referred to
as commercial service providers. Companies
such as Dropbox and Google1 (Google Drive)

1Google also offers cloud-storage services designed for
commercial customers (those that utilize cloud comput-
ing), but these services are not considered in this project.

are generally designed to attract consumers and
businesses with relatively small storage needs.
While Dropbox and Google Drive do offer plans
for business customers, they will be referred to as
consumer services in this report for convenience.

Each of the cloud-storage service providers
covered in this project offer different packages
for their services, and have data centers at vari-
ous locations. Because the complexities of cloud-
storage services are hidden from users, it can be
difficult to anticipate or estimate cloud-storage
performance. It is essential to understand the la-
tencies involved in uploading or downloading the
files in the cloud storage network which will help
in making the choice of right service provider de-
pending on the kind of data you want to store.

For this project we measured the variability
of latency associated with using cloud-storage
services — two commercial services (Amazon
S3, and Windows Azure Blob Storage), and two
consumer services (Dropbox, and Google Drive).
The first part of this project was focused on mea-
suring the dependence of latency on time (e.g.
over the period of a week), and on file size. The
second part of this project explored two different
candidate techniques for reducing the latency and
variability of cloud-storage services; one candi-
date technique used file compression to reduce
PUT and GET latencies, and the other candidate
technique used file replication to reduce the vari-

Google only opened it’s Google Compute Engine for all
customers on May 15, 2013 — too late to include in our
measurements which started on May 12, 2013.

1



ability in latency. This report includes a brief
summary of related work, details on the design
and implementation of our latency measurement
scripts, information on our experimental setup, a
results of our evaluation, and conclusions.

2 Related Work

Replication is already used extensively by var-
ious cloud service provider to improve data in-
tegrity and in many systems to reduce latency.
This technique is more useful when the size of
the file to be transferred is small. As mentioned
in [2], human-computer interaction studies show
that people react to small differences in the de-
lay of operations. Achieving low-latency con-
sistently in a distributed framework has always
been a challenging task. Task replication has al-
ways been useful in improving the response-time
and alleviating the impact of slowest performing
nodes.

There has been an enormous work in reducing
latency through replication. This can be accom-
plished by replicating DHT queries and trans-
missions to multiple servers [4, 5], using multi-
home proxy servers in which DNS queries are
replicated to their local DNS server and connec-
tion establishment request is sent in parallel to all
the servers [3], or by sending multiple copies of
TCP SYNs to the same server on the same path
and replicating DNS queries to multiple public
servers over the same access link. It has been
shown [1] that replication is a general technique
that can be applied in a variety of common wide-
area Internet applications.

There are various file compression techniques
that are widely used to compress/decompress
the file and send it over the network to reduce
latency. Many modems even have compression
algorithms built-in. It has been shown that one
of the easiest solutions for limited bandwidth
connections is to use file compression. It also
provides maximum benefit for the resources that
are required to provide storage efficiency.

3 Design & Implementation

Internal and public IP addresses are optionally
recorded as identification numbers for the client
machine in cases where multiple clients are used
to evaluate a single cloud-storage service. In
the case of each script (the latency measurement
script and the scripts for each of the two candi-
date techniques), the test files were read from,
and written to, system memory. Since all of the
test clients were either Linux VMs or physical
servers running Linux, /dev/shm was used to
store all the test files in system memory; this
prevented local storage from contaminating our
cloud-storage latency measurements with fluctu-
ations in hard drive performance. This is espe-
cially important for VMs located in public clouds
due to the potential for local storage to be utilized
by many different customers at once.

The first set of test files were created using
pseudo-random data from /dev/urandom/ with
sizes of 1kB, 10kB, 100kB, 1MB, and 10MB;
these are our binary data files. In each case,
the binary test files were placed in /dev/shm/2

in order to prevent files from being read from,
or written to, shared or local storage. Be-
cause the binary test files created directly from
/dev/urandom/ did not compress very well, a
separate set of text test files with sizes of 1kB,
10kB, 100kB, 1MB, 10MB, 25MB, and 50MB
were created by base 64 encoding the binary data
from /dev/urandom/.

All of the latency measurements were logged
to .csv files that included a timestamp, type of
request (GET or PUT), file-size (or other file
identifier), and latency. A local machine that
was not being used to run measurement scripts
was used to backup the log files generated by
each test script, every two hours. The resource
requirements involved with backing up log files
is assumed to be negligible.

2/dev/shm/ is a file system mounted in virtual memory
instead of persistent storage. It is commonly found on
Unix-like operating systems.

2



3.1 Latency Measurement

Latency measurements for all four services
started on 2013-05-12 02:35 UTC, and stopped
on 2013-05-19 02:35 UTC. In all, one week of
data was collected. Measurements on GET and
PUT latency for each service were run approxi-
mately every 10 minutes. Each loop through the
measurement script uploads and then downloads
each test file; on average, this would add about
19kB/s of reads and writes to each service — low
enough that we assume the effect of our mea-
surements on the performance of each service is
negligible.

The latency data for each of the services were
measured and recorded using APIs for each of the
services. Measurement scripts written in Python
(depending on which language is best-supported
by each service’s existing API SDKs) were used
to automate the process of latency measurement
and logging.

The test files have known file sizes, so pro-
grammatic determination of file size is not nec-
essary. We define latency associated as the time
from issuing a GET or PUT request until the
file has been transferred. By running our latency
measurement programs at roughly the same time,
and letting them run for a significant period of
time — long enough to observe daily trends in
latency — we were able to make comparisons
between the variability in latency associated with
each cloud-storage service.

3.2 Candidate Techniques

In order to reduce the latency of cloud storage file
transfers, we evaluate two candidate techniques.
One technique uses file replication to reduce vari-
ability in GET latencies, and the other uses file
compression to reduce PUT and GET latencies.

3.2.1 File Replication

Latency measurements for GET requests were
started on 2013-05-26 04:48 UTC, and stopped
on 2013-05-28 08:53. The file replications

latency measurement script logged measure-
ments roughly every 10 minutes. For the redun-
dancy technique, only GET latency is considered.
Three copies of a file are uploaded to the cloud
storage service. Then, three separate GET re-
quests for the three identical files are issued in
parallel. The GET latency when using the mul-
tiple GET requests can then be compared with
single GET requests to determine whether or not
it is beneficial. While only one file would be
fully downloaded in practice, the script used to
evaluate file replication downloads each of the
three copies entirely in order to get overall la-
tency measurements for each of the three GET
requests. Using this data, we can make compar-
isons between the effect of using one, two, and
three copies of a file on overall cloud-storage
latencies.

3.2.2 File Compression

Latency measurements started on 2013-05-27
06:31 and stopped on 2013-05-27 13:59. Mea-
surements were made roughly every 10 minutes.
For the compression technique, files are com-
pressed on the client using Python’s gzip library
before being uploaded to cloud storage; the gzip
library’s default compression level is a 9 — on
a scale from 0 to 9, with 9 being the slowest
and resulting in the highest data compression
ratio. GET requests for this technique are not
complete until the file has been decompressed.
The time taken to complete the compression and
decompression steps are included in the measure-
ment of cloud-storage latency since the files are
not assumed to be precompressed. Within the
script, the PUT and GET latencies for the uncom-
pressed files were also measured as a baseline
for our comparison.

This technique is based on reducing latency
by decreasing the quantity of data transmitted
across network connections; however, the cost of
this technique is that it requires more CPU time
to perform the compression and decompression
steps. Consumers that use services such as Drop-

3



box or Google Drive may have extra CPU cycles
available to handle file compression and decom-
pression. Companies that use VMs provided by
Amazon or Microsoft to use either Amazon S3
or WABS, respectively, are charged per hour for
their computing power; transferring large quan-
tities of data that need to be compressed and
decompressed may increase costs for these types
of customers.

4 Experimental Setup

When possible, we made reasonable efforts to
minimize the latencies involved with using each
service. For Amazon S3 and Windows Azure
Blob Storage (WABS), we ran the latency mea-
surement scripts from virtual machines (VMs)
running inside of each company’s cloud. For
Dropbox and Google Drive, latency measure-
ment scripts were run on a server located in
UCR’s network in order to utilize UCR’s internet
connection.3

4.1 Amazon S3

Amazon S3 latency measurements are made us-
ing a Python-based customer app called s3cmd4

— used to interact with the S3 service. The script
was run in an Amazon EC2 instance located in
the same region as the S3 container to minimize
network latency between the measurement VM
and the S3 service. The t1.micro Amazon EC2
VM instance is located in Amazon’s us-west-2a
region and has a shared virtual core and 613MB
of memory. Oregon was chosen as the region for
the Amazon S3 bucket. Ubuntu 12.04.2 was used
as the OS for the VM.

3UCR has a 10Gb internet connection through CENIC
(Corporation for Education Network Initiatives in Califor-
nia), see cenic.org.

4http://s3tools.org/s3cmd

4.2 Windows Azure Blob Storage

Windows Azure Blob Storage latency measure-
ments were made using a script that was written
in Python and is based on the official Python
Azure SDK5 from Microsoft. WABS latency
measurements were made using a Small (A1)
Windows Azure VM instance located in Mi-
crosoft’s West US region; the Small instance has
1 virtual core and 1.75GB of memory. Ubuntu
12.10 was used as the OS for the VM. The WABS
storage container is also located in the West US
with geo-replication disabled.

4.3 Dropbox & Google Drive

The latency measurement scripts for Drop-
box and Google Drive were each written in
Python, with each using the Python API SDK
provided by Dropbox6 and Google,7 respec-
tively. The server used to run the scripts was
storm.engr.ucr.edu. The storm server is
a machine with Dual Intel Xeon (E5-2630 @
2.30GHz) CPUs, 32GB RAM, a 1GbE connec-
tion to UCR’s network, and runs CentOS release
6.3 as its OS.

5 Evaluation

Using the results we collected with our scripts
(discussed in Section 3), we evaluated each of
the services included in our week-long latency
measurement tests, and the potential benefits of
using compression, and file replication to reduce
latency and variability.

5http://www.windowsazure.com/en-us/develop/
python/common-tasks/install-python/

6https://www.dropbox.com/developers/core/
sdk

7https://developers.google.com/api-client-
library/python/

4

cenic.org
http://s3tools.org/s3cmd
http://www.windowsazure.com/en-us/develop/python/common-tasks/install-python/
http://www.windowsazure.com/en-us/develop/python/common-tasks/install-python/
https://www.dropbox.com/developers/core/sdk
https://www.dropbox.com/developers/core/sdk
https://developers.google.com/api-client-library/python/
https://developers.google.com/api-client-library/python/


5.1 File Size Variability

5.1.1 PUT Latency

Median PUT latency measurements for several
file types for each service are shown in Figure 1.
Tabulated data for Figure 1 is shown in Table 1.

0.00 

1000.00 

2000.00 

3000.00 

4000.00 

5000.00 

6000.00 

7000.00 

8000.00 

1kB 10kB 100kB 1MB 10MB 

La
te

n
cy

 (
m

s)
 

File Size 

PUT Latency 

S3 WABS Dropbox Google Drive 

Figure 1: Median PUT latency measurements for a variety
of file sizes on each service. The measurements were made
over a period of one week and have been adjusted for each
setup’s RTT.

File Size S3 WABS Dropbox Google Drive

1kB 428.40 203.21 1055.74 1682.09
10kB 409.40 10.86 774.23 1193.59

100kB 753.40 16.29 1030.69 1179.25
1MB 1676.40 73.65 2259.33 1624.51

10MB 6956.40 344.98 7306.86 4721.82

Table 1: Median PUT latency measurements for a variety
of file sizes on each service. The measurements were made
over a period of one week and have been adjusted for each
setup’s RTT. Units are in milliseconds.

Of all four services, WABS has the lowest
PUT latency for all file types. This is likely
due to a combination of low network contention
with other VMs and possibly being in the same
datacenter as the Azure storage servers. While
the EC2 instance used to make latency measure-
ments for S3 may have also potentially shared
the benefit of being physically located close to
the S3 servers, the EC2 instance had less avail-
able bandwidth. The Azure VM had an observed
upload bandwidth of at least 248Mbps whereas
the EC2 VM had an observed average upload

bandwidth of roughly 96Mbps (spiking briefly at
a maximum of 200Mbps).8 This is likely due to
the increased VM density on the server that the
EC2 VM was located on. Because the Azure VM
and EC2 VM were not created using comparable
instance types (the Azure VM is larger), it is ex-
pected for the Azure VM to have less contention
for network resources and more available band-
width; this might account for Azure’s relatively
low latency measurements.

The latency for Dropbox and Google Drive
vary with file size. For example, for the 1kB and
10kB files, the latency measurement for Dropbox
is higher than that of the Google Drive; alterna-
tively, Google Drive shows has a higher latency
when issuing PUT requests for larger files. Also,
it can be noted that the latency measurements for
all the service providers are higher for upload-
ing a 1kB file than a 10kB file. For file sizes
larger than 10kB, the latency measurements for
all tested storage services show an increasing
trend.

Something that is not captured in the plots of
PUT latency is the number of failed requests.
In our experiments, Google Drive had a signifi-
cantly higher failure rate of PUT requests for 1kB
files than any other service — roughly 20%.9 The
failure rate of PUT requests for the other services
was either nonexistent or negligible.

5.1.2 GET Latency

Median GET latency measurements for several
file types for each service are shown in Figure 3.
Tabulated data for Figure 3 is shown in Table 2.

Unlike PUT latency measurements, the GET
latency measurements do not show a decrease
in performance for the 1kB file; as file size in-
creases, latency increases. The only exception
to this is Google Drive, which has a marginally

8Upload bandwidth was estimated by copying an 800MB
linux .iso from the test VM to another instance in the
same region using scp.

9This high failure rate was only observed when issuing
PUT requests for 1kB files.

5



0.000001 

0.00001 

0.0001 

0.001 

0.01 

0.1 

1 

1kB 10kB 100kB 1MB 10MB 

La
te

n
cy

 p
e

r 
b

it
 (

m
s/

b
it

) 

File Size 

PUT Latency per bit 

S3 WABS Dropbox Google Drive 

Figure 2: Median PUT latency per bit for each test file.
The latency measurements were made over a period of one
week and have been adjusted for each setup’s RTT.

0.00 

1000.00 

2000.00 

3000.00 

4000.00 

5000.00 

6000.00 

1kB 10kB 100kB 1MB 10MB 

La
te

n
cy

 (
m

s)
 

File Size 

GET Latency 

S3 WABS Dropbox Google Drive 

Figure 3: Median GET latency measurements for a variety
of file sizes on each service. The measurements were made
over a period of one week and have been adjusted for each
setup’s RTT.

File Size S3 WABS Dropbox Google Drive

1kB 319.46 8.87 465.71 353.26
10kB 349.32 10.11 471.98 324.37

100kB 631.81 14.11 803.09 394.77
1MB 1401.66 61.58 1874.34 658.44

10MB 4863.93 427.90 4029.66 1380.19

Table 2: Median GET latency measurements for a variety
of file sizes on each service. The measurements were made
over a period of one week and have been adjusted for each
setup’s RTT. Units are in milliseconds.

smaller latency for the 10kB file relative to the
1kB file. This may have been influenced by the
relatively high failure rate of PUT requests for
the 1kB file; in the Google Drive latency script, if
the the test file fails to upload after two requests,
then the upload and the GET (since there is no
file in cloud-storage to download) are abandoned
for that file until the next test. With the smaller
dataset for Google Drive, the calculated median
for the 1kB GET latency might be more sensitive
to occasional spikes in latency.

The latency of the GET requests for each ser-
vice are lower, on average, than the latency of the
PUT requests. If we only compare the consumer
services, the measurements for Dropbox are bet-
ter than Google Drive for the GET requests on all
the file sizes. In this case, the latency of Dropbox
is lower than the latency of Amazon S3, one of
the commercial cloud-storage services. As the
file size increases to 10MB, Amazon S3 latency
increases above Dropbox latency. This is likely
due to limited download bandwidth available to
the EC2 VM. For all other file sizes where band-
width limitations are not as significant, S3 has
consistently lower latencies than Dropbox.

0.000001 

0.00001 

0.0001 

0.001 

0.01 

0.1 

1 

1kB 10kB 100kB 1MB 10MB 

La
te

n
cy

 p
e

r 
b

it
 (

m
s/

b
it

) 

File Size 

GET Latency per bit 

S3 WABS Dropbox Google Drive 

Figure 4: Median GET latency per bit for each test file.
The latency measurements were made over a period of one
week and have been adjusted for each setup’s RTT.

5.2 Latency Variability Over Time

In order to evaluate how cloud-storage perfor-
mance varies over the period of a week, we cal-

6



culated the median latency for 24 hour periods.
Daily medians were used because the latency
measurements for each service included in this
project are highly variable; by using median val-
ues instead of mean values, the daily calculated
averages are less sensitive to extreme outliers in
the latency measurements.

It should be noted that the script for our
dropbox measurements crashed at approximately
2013-05-13 08:44 UTC and was not resumed un-
til approximately 18:23 UTC on the same day.
This temporary failure of the script does not seem
to have significantly affected the results of the
latency calculations for that day; however, the
daily medians for that day might potentially be
higher than they actually were due to the failure
occuring during the early to mid morning in the
United States — a time during which usage of
the service is expected to be relatively low.

Because of the large number of permutations
for file size and type of transactions, not all of
the time-variant latency plots are reproduced in
this paper. A plot of the daily median PUT la-
tency for the 1MB binary test file is shown in
Figure 6. A plot of the daily median GET latency
for the 1MB binary test file is shown in Figure 5.
Plots for the 1MB file size were included in this
paper — rather than plots for the other file sizes
— primarily because we assume that 1MB is ap-
proximately the average size of files stored in
cloud-storage services.

0 

0.5 

1 

1.5 

2 

2.5 

5/12/2013 0:00 5/13/2013 0:00 5/14/2013 0:00 5/15/2013 0:00 5/16/2013 0:00 5/17/2013 0:00 5/18/2013 0:00 

La
te

n
cy

 (
m

s)
 

Daily Average GET Latency 

Azure Dropbox Amazon S3 Google Drive 

Figure 5: Median GET latency for the 1MB file over the
period of one week.

0 

0.5 

1 

1.5 

2 

2.5 

3 

5/12/2013 0:00 5/13/2013 0:00 5/14/2013 0:00 5/15/2013 0:00 5/16/2013 0:00 5/17/2013 0:00 5/18/2013 0:00 

La
te

n
cy

 (
m

s)
 

Daily Average PUT Latency 

Azure Dropbox Amazon S3 Google Drive 

Figure 6: Median PUT latency for the 1MB file over the
period of one week.

As can be seen in Figure 5 and Figure 6,
WABS has the lowest latency of all of the ser-
vices, followed by Google Drive, then Amazon
S3, and finally by Dropbox. This is consistent
with what is shown in Figure 1 and Figure 3.
In general, the trends observed for the latencies
observed when transferring the 1MB file are con-
sistent with the trends in latency observed for the
other file sizes.

While WABS and Google Drive have rela-
tively consistent performance over the course
of an entire week, both Dropbox and Amazon
S3 show clear drops in latency of the course of
a week for GET latency measurements. While
the causes of these trends is unknown, it is clear
that there are long-term (longer than one week)
trends in latency for both Amazon S3 and Google
Drive.

Unlike the gradual decrease in GET latency
observed for Amazon S3 and Dropbox, PUT la-
tencies for all services are relatively stable for
the entire week. PUT latencies for Dropbox de-
crease slightly during the week, and increase
slightly towards the weekends; this may be due
to increased utilization of the dropbox service
on the weekends. Amazon S3 and WABS do
not show significant variation in latency over
the measurement period. Google Drive latency
measurements demonstrate a slight increase in
latency during the middle of the week; latencies
also drop slightly on before, and slightly after,

7



the middle of the week.

5.3 Reducing Latency: File Compression

Graphical comparisons of PUT and GET laten-
cies with compression and without using com-
pression are shown in Figure 7 and Figure 8,
respectively. Compression is ideal for reducing
latency for cloud-storage customers who have
extra CPU time, but limited network bandwidth.
trickle was used to simulate a client with a
low-bandwidth, 1Mbps symmetric internet con-
nection; this is representative of a cloud-storage
customer who uses a standard T1 internet con-
nection. Customers whose cloud-storage transac-
tions are not limited by bandwidth are unlikely
to benefit from using file compression; the use of
file compression in scenarios where there is abun-
dant bandwidth are much more likely to increase
cloud-storage latencies due to the additional CPU
time required to compress files. In some cases it
may be ideal to use file compression to reduce
bandwidth usage — and data transfer costs — at
the cost of increased latency; however, reduction
in latency is our goal.

0.00 

10000.00 

20000.00 

30000.00 

40000.00 

50000.00 

60000.00 

70000.00 

80000.00 

1kB 10kB 100kB 1MB 10MB 25MB 50MB 

La
te

n
cy

 (
m

s)
 

File Size 

PUT Latency 

uncompressed compressed 

Figure 7: Comparison between latencies for various file
sizes when using compression and not using compression.

As seen in Figure 7, the reduction in file trans-
fer times due to file compression more than off-
sets the increase in time taken to compress or
decompress the file.

The effect of file compression is either not ob-
served at all or is minimal for smaller file sizes
less than equal to 1MB. But on increasing the
file sizes beyond 10 MB, a significant reduction
in the latencies is observed. Also, it can be ob-
served that the reduction in latency is more while
uploading (PUT requests) the files than it is for
downloading (GET requests) the same files.

In cases where the connection between the
client and cloud service has limited bandwidth,
we have demonstrated that compression is ef-
fective at reducing both GET and PUT laten-
cies. In order to verify our assumption that high
bandwidth clients would not benefit from com-
pression, we also ran our latency measurement
scripts using a high-bandwidth Azure VM and a
WABS container; using this setup, we found that
compression significantly increased both GET
and PUT latencies for each of our test files. In
some cases, the use of compression increased the
latency measurements by almost 100%.

0.00 

10000.00 

20000.00 

30000.00 

40000.00 

50000.00 

60000.00 

1kB 10kB 100kB 1MB 10MB 25MB 50MB 

La
te

n
cy

 (
m

s)
 

File Size 

GET Latency 

uncompressed compressed 

Figure 8: Comparison between latencies for various file
sizes when using compression and not using compression.

For the 1kB to 50kB files, compression of our
random text test files using gzip resulted in re-
ductions in file size between 19% (for the 1kB
file) and 24% (for the 50MB file). For PUT re-
quests, the reduction in latency ranged between
−.98% and 16.36%. For GET requests, the re-
duction in latency ranged between −1.38% and
12.99%. In each of these cases, the worst change

8



in latency occurs for the 1kB file, and the best for
the 50MB file. For this specific set of test files,
the reduction in file size does not correspond to
an equally large decrease in latency.

Because the compression technique involves a
balance of decreased bandwidth utilization and
increased CPU utilization, customers who might
consider using this technique should evaluate
whether or not it is cost-effective. An expression
to evaluate whether file compression is a useful
technique for reducing costs is given by

tcCCPU < ∆S(Cb +Cs) (1)

where tc is time spent on compression, CCPU
is the cost of CPU time, S is the total reduction
in data size due to compression, Cb is the cost of
data transfer, and Cs is the cost of data storage.
This relationship assumes unlimited bandwidth.
In cases where bandwidth is restrictive, the re-
duction in file transfer times would need to be
considered. In cases where the workload is spe-
cific and well-understood, it is straightforward
to estimate all these variables, making it a trivial
task to determine whether or not compression
would be beneficial.

5.4 Reducing Variability: File Replication

Figure 9 shows the impact of issuing a different
number of GET requests to the same file; the
single file is replicated three times on Amazon
S3. It can be seen that for the smaller file sizes
of 1kB and 10kB, issuing more than one GET
requests to the same file has negligible impact on
their variability. However, for file sizes greater
than 100kB, it is clear from the graph that issu-
ing 3 GET requests is better than 2 or less GET
requests. It is likely that variability could be re-
duced further by increasing the number of file
copies; however, that would be a topic for future
study.

It can be observed from Figure 9 that replica-
tion is effective in reducing variability in GET
latency. When evaluating the file replication can-
didate technique, it is important to note that it

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

1KB 10KB 100KB 1MB 10MB 

St
an

d
ar

d
 D

e
vi

at
io

n
 (

m
s)

 

File Size 

File Replication Variability 

no replication w/ replication, 2 w/ replication, 3 

Figure 9: Comparison between variability in latency when
using various numbers of file copies. For the tested degrees
of replication, standard deviation decreases as the number
of file copies increases.

uses three times as much disk space, and requires
three times as many GET requests. Given that
cloud-storage providers generally charge cus-
tomers based on storage consumption and the
number of GET requests, the needs of the cus-
tomer and the costs of the cloud-storage service
need to be considered. An expression for evaluat-
ing whether file replication is a useful technique
for reducing costs is given by

NGCV∆V> FS̄(Cs +CG) (2)

where S̄ is average file size, F is the replication
factor (number of file copies), ∆V is the average
decrease in variability, NG is the number of GET
requests, CG is the cost of GET requests, Cs is
the cost of data storage, and CV is the cost of vari-
ability. Unlike the expression for evaluating the
benefit of file compression, not all of these vari-
ables have tangible costs associated with them.
Because of this, individual customers will need
to determine how much they value decreases in
variability of their cloud-storage performance.

Although we initially considered file replica-
tion solely for reducing latency variability, this
technique also shows a clear decrease in 90th
percentile latencies as the number of replicas in-
creases. These results are shown in Figure 10. As
with the reduction in variability demonstrated by

9



this technique, latency reduction become more
significant as file size increases. While decreases
in 90th percentile latencies are almost negligible
for the 1kB and 10kB files, 100kB and larger
files show more significant decreases.

0 

2000 

4000 

6000 

8000 

10000 

12000 

1KB 10KB 100KB 1MB 10MB 

9
0

th
 p

e
rc

e
n

ti
le

 (
m

s)
 

File Size 

File Replication Latency 

no replication w/ replication, 2 w/ replication, 3 

Figure 10: Comparison between the 90th percentile la-
tencies when using various numbers of file copies. For
the tested degrees of replication, 90th percentile latency
decreases as the number of file copies increase.

6 Conclusions

In this report, we compared the cloud-storage
services offered by various commercial and con-
sumer service providers. We ran the latency mea-
surement scripts for each of the cloud services
offered by these service providers and noted the
variability in latencies over the entire week. We
plotted and evaluated the latency measurements
for the GET and PUT requests for different file
sizes using each of the cloud services by taking
the median values of the latencies (to avoid the
noise and spikes in latency). We also plotted the
graph to show the variability in latency over time
for the GET and PUT requests by choosing the
most common file size of 1MB. We then eval-
uated the effect of two candidate techniques to
improve latency and variability of cloud-storage
requests: file compression, and file replication.
We evaluated our results for file compression
in both high-bandwidth as well as by limited-
bandwidth setups, to simulate a potential sce-

nario for customers who do not have high speed
internet connection. The results of this test deter-
mined that compression is effective at reducing
latency in limited-bandwidth scenarios, but in-
creases latency in high-bandwidth scenarios. In
our evaluation of file replication as a technique
for reducing latency variability, we compared the
variability in latency and the 90th percentile la-
tencies using a different number of file copies. In
each case, as the number of file copies increases,
both variability and latency are reduced.

The few important observations that were
made by analyzing the data gathered from our
different experiments are as follows.

• Uploading the 1KB file took more time than
10KB file for all the cloud storage service
providers.

• When uploading the files, Dropbox had
higher latency than Google Drive for the
smaller file sizes while the latter showed the
high latencies than the former for the larger
file sizes.

• To upload the file size of 1KB, Google Drive
showed a significant failure rate of around
20%.

• On an average, downloading the same file
takes lesser time than uploading, for each of
the service.

• When downloading the files, Google Drive
took relatively more time to download the
1KB file than 10KB file.

• Dropbox shows better results than Google
Drive for downloading the different file
sizes. It was observed to be even better than
one of the commercial service providers,
Amazon S3, for downloading a larger file
size of 10MB.

• Amazon S3 showed consistently lower la-
tencies than Dropbox where bandwidth lim-
itation was not significant

10



• Of all the four services being compared, the
WABS had the lowest median GET and PUT
latencies for each of the file types.

• Daily average latencies for uploading 1MB
file size is highest for Dropbox and lowest
for WABS.

• Compression is ideal for reducing latency
for cloud-storage customers who have extra
CPU time, but limited network bandwidth.

• With the bandwidth limitation, the file com-
pression showed either a minimal or no ef-
fect at all for file sizes smaller than 1MB.
For larger file sizes it showed a significant
reduction in latencies for both GET and
PUT requests, as expected.

• The reduction in latency was observed to be
more for the PUT requests than for the GET
requests for the same file sizes, in case of
file compression.

• In case of file replication, issuing 3 GET
requests is optimum than 2 or less for all the
file sizes.

• The 90th percentile latency decreases as we
increase the level of replication.

• File replication works best to reduce vari-
ability in larger file sizes, when issuing a
GET request.

The above observations/conclusions will be help-
ful for an organization to choose the cloud ser-
vice provider based on their storage needs.

References

[1] David G. Andersen, Hari Balakrishnan, M. Frans
Kaashoek, and Rohit Rao, Improving Web availability
for clients with MONET, Proc. 2nd USENIX NSDI
(Boston, MA), May 2005.

[2] Jeffrey Dean and Luiz André Barroso, The tail at
scale, Communications of the ACM 56 (2013), no. 2,
74–80.

[3] Sushant Jain, Michael Demmer, Rabin Patra, and
Kevin Fall, Using redundancy to cope with failures in
a delay tolerant network, SIGCOMM Comput.
Commun. Rev. 35 (2005), no. 4, 109–120.

[4] E. Soljanin, Reducing delay with coding in (mobile)
multi-agent information transfer, Communication,
Control, and Computing (Allerton), 2010 48th Annual
Allerton Conference on, 2010, pp. 1428–1433.

[5] Ashish Vulimiri, Oliver Michel, P. Brighten Godfrey,
and Scott Shenker, More is less: reducing latency via
redundancy, Proceedings of the 11th ACM Workshop
on Hot Topics in Networks (New York, NY, USA),
HotNets-XI, ACM, 2012, pp. 13–18.

11


	Introduction
	Related Work
	Design & Implementation
	Experimental Setup
	Evaluation
	Conclusions

