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Mobile operating systems, especially Android, expose apps to a volatile runtime environment. The app state

that reflects past user interaction and system environment updates (e.g., battery status changes) can be

destroyed implicitly, in response to runtime configuration changes (e.g., screen rotations) or memory pressure.

Developers are therefore responsible for identifying app state affected by volatility and preserving it across

app lifecycles. When handled inappropriately, the app may lose state or end up in an inconsistent state after a

runtime configuration change or when users return to the app.

To free developers from this tedious and error-prone task, we propose a systematic solution, LiveDroid,

which precisely identifies the necessary part of the app state that needs to be preserved across app lifecycles,

and automatically saves and restores it. LiveDroid consists of: (i) a static analyzer that reasons about app

source code and resource files to pinpoint the program variables and GUI properties that represent the

necessary app state, and (ii) a runtime system that manages the state saving and recovering. We implemented

LiveDroid as a plugin in Android Studio and a patching tool for APKs. Our evaluation shows that LiveDroid

can be successfully applied to 966 Android apps. A focused study with 36 Android apps shows that LiveDroid

identifies app state much more precisely than an existing solution that includes all mutable program variables

but ignores GUI properties. As a result, on average, LiveDroid is able to reduce the costs of state saving

and restoring by 16.6X (1.7X - 141.1X) and 9.5X (1.1X - 43.8X), respectively. Furthermore, compared with the

manual state handling performed by developers, our analysis reveals a set of 46 issues due to incomplete state

saving/restoring, all of which can be successfully eliminated by LiveDroid.
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1 INTRODUCTION

Smartphones are in wide use (there were 3.2 billion smartphone users worldwide in 2019 [statista
2020]) and mobile apps have a substantial economic impact (the mobile app market is projected to
reach $407 billion by 2026 [alliedmarketresearch 2020]). Hence, there is an impetus for ensuring
and improving mobile app reliability. Building reliable mobile apps poses additional complications
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Table 1. Example State Issues Triggered by Volatile Runtime Environments.

GitHub Repo Issue ID Issue Description

WordPress [wor 2020] 12223 Rotate the device (either from portrait to landscape or vice versa) while

the tag editor is open in Post Settings, the tags are removed.

K9 Mail [k9 2020] 4519 Open General settings, click on the search icon, enter some text, then

change screen orientation, the app crashes.

K9 Mail [k9 2020] 4936 Create Unread widget, click on Account and select user mail-box, then

rotate the device, the selected account is lost.

OpenMF [ope 2020] 829 Run the app, generate a collection sheet, select office from the drop-down,

change the orientation. The state gets refreshed.

TileView [til 2020] 535 Put TileView in layout, set layout as content view in Activity, put the

app to background, kill the process (either from system or logcat), then

bring the app to foreground, the app crashes.

MapBox [map 2020] 3517 Open Press for marker activity, long press to add a marker, click the marker

to open infowindow, then rotate the device (infowindow is closed; marker

is visible), clicking marker results in a crash.

Glucosio [glu 2020] 431 Open the app, fill user information such as language, gender and age, then

change the orientation by rotating, the user inputs are lost.

when compared to desktop/server applications, due to the challenges imposed by rich yet volatile
mobile runtime environments.

Volatile Runtime Environment. Unlike desktop or server applications, mobile apps run in a more
challenging environment: devices are resource-limited, and the underlying OS subjects the app to a
richer set of disruptive events. Consequently, mobile apps often go through multiple lifecycles ś
being destroyed and recreated ś before they are explicitly dismissed. For Android apps, when a
runtime configuration change occurs, like a phone rotation (portrait ↔ landscape) or attaching a
keyboard, the OS destroys the current screen instance (a.k.a activity in Android), including both the
GUI elements and (Java) class associated with the screen, and then recreates a new screen instance.
This process is known as activity restarting. The purpose of activity restarting is to automatically
reload the activity with resources that match the new configuration (e.g., landscape mode layout
after rotation) [Google 2020b]. Another destructive scenario involves low resources: a running app
(especially when sent to the background) can be killed at any time by the OS when memory runs
low, then relaunched when the user comes back to the app [Apple 2020d; Google 2020h]. This is
due to mobile OSes, including both iOS and Android, eschewing swapping (i.e., paging out) [Apple
2020a; Google 2020h], to minimize flash memory wear [Apple 2020c]. When an app is killed due to
low memory, all its running activities are destroyed.
To avoid losing user progress, or entering into an inconsistent state, certain program variables

and properties of the GUI elements must be saved before the activity is destroyed (or app is killed)
and restored after the activity gets recreated (or app gets relaunched), as if the activity (or app)
remains running in the same lifecycle [Apple 2020b; Google 2020d]. We refer to this set of data,
that is necessary to preserve in order to maintain the illusion that the activity or app is always
running, as necessary instance state.

State of The Art. Currently, while the Android system saves and reinstates some GUI state upon
restart, developers still have to explicitly perform a substantial amount of data saving and restoring
using system callbacks upon activity restarts [Google 2020e]. For many real-world apps, it is non-
trivial to manually reason about necessary instance state, as it depends on how user interaction
and system events affect the program variables and GUI properties, which is loosely defined in
various callbacks. This challenge is further compounded by the complex lifecycle stage transitions.
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Before After

(a) Lost account binding in K-9 Mail [k9 2020]

Before After

(b) Lost user inputs in Glucosio [glu 2020]

Fig. 1. Example State Issues of Two Popular Android Apps.

For example, a StackOverFlow question [sta 2020] on how to deal with initialization in the presence
of activity restarting received 1394 thumbs-up.1 Recent studies [Farooq and Zhao 2018; Shan et al.
2016] have shown that when handled improperly, Android apps may suffer from various runtime
issues, ranging from data loss to unresponsiveness, UI distortion, and app crashes. In this work, we
refer to these runtime issues that are caused by failing to save and restore the data in the necessary
instance state as state issues. Table 1 lists a few example state issues found in several very popular
GitHub repositories, including K-9 Mail [k9 2020], MapBox [map 2020], WordPress [wor 2020],
TileView [til 2020], OpenMF [ope 2020], and Glucosio [glu 2020]. Take K-9 Mail and Glucosio as
examples: after a configuration change (e.g., screen rotation), K-9 loses its binding to the Gmail
account, as shown in Figure 1-(a); Glucosio loses user inputs, such as country, language, and gender,
as shown in Figure 1-(b). Such unexpected app behavior negatively affects user experience.

To mitigate the aforementioned challenges, prior efforts have focused on either detecting [Shan
et al. 2016] or preventing [Farooq and Zhao 2018] state inconsistency. Shan et al. [2016] focus on
detecting the control-flow disparity in saving and restoring of mutable activity fields ś whether
a conditionally saved variable is restored under the same condition, and vice versa. However, as
we will show later, not all mutable activity fields are part of the necessary instance state. Serious
over-saving may lead to observable delays that negatively impact the user experience, as both saving
and restoring usually occur while the user interacts with the app (e.g., during a phone rotation).
Additionally, Shan et al.’s work does not take into account GUI elements declared in resource files,
which may also carry the past user interaction. In contrast, Farooq and Zhao [2018]’s approach
is to prevent the activity from restarting at all, by overwriting the default configuration change
handling, thus eliminating the needs for data saving and restoring. However, this approach cannot
handle system-initiated app killing ś activities will still be forced to restart once memory runs
low, in which case apps can still lose their states. More critically, no prior work has systematically
addressed the fundamental question ś how to identify the necessary instance state of mobile apps?

Overview of This Work. The goal of this work is to leverage static analysis to answer the above
question ś statically identifying the necessary instance state of mobile apps and automatically
generating the state saving and restoring routines, thus freeing developers from this tedious and
error-prone task. Similar to prior work, we focus this work on the Android platform due to the
platform’s popularity (75% market share as of July 2020 [Statista 2020]) and open-source ecosystem.
To achieve our goal, we propose (i) a three-phase model to characterize the callbacks based on
their potential impacts on app state, (ii) a combination of static analyses that reason about the app

1As of September 9th, 2020.
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Pre-Interaction

onCreate(), onStart(), onResume()

Interaction

onClick(), onCheckedChanged(), 

onLocationChanged(), ...

Post Interaction

onPause(), onStop(), onDestroy()

skip

MOD and LIVE

LIVE

(a) lifecycle (b) callback modeling (c) static analysis

Fig. 2. Callback Modeling and Static Analysis.

source code and resource files to identify program variables and GUI properties that belong to the
necessary instance state, and (iii) tools for developers to generate state-saving/restoring routines.
Android apps consist of many different callbacks (i.e., event handlers) to respond to various

events, including those generated from user interactions (e.g., clicking, scrolling, and typing), as
well as those triggered by system updates (e.g., battery status and location changes). To capture the
impact of different callbacks on app state, we break down the activity lifecycle into three phases ś
(i) pre-interaction, (ii) interaction, and (iii) post-interaction ś and group the callbacks accordingly, as
shown in Figure 2-(a-b). Then, for callbacks of different categories, we perform a suite of analyses to
find out which access paths of variables (like this.account.user.addr) and properties of GUI elements
(like this.mEditText.text) are part of the necessary instance state. Informally, there are two basic
requirements for an access path to be in the necessary instance state:

• Live: Any future łusež of the access path after the activity restart or app relaunch should
yield the same result as if the the restart or relaunch had not happened;

• Modified: The access path should be modified (written) at least once by a callback during
the interaction phase (note that this excludes the initialization in the pre-interaction phase).

The first requirement captures the fact that the necessary instance state to be preserved must
be sufficient to guarantee correctness, by including all the access paths that may be used (i.e., live)
for future interactions. To fulfill this requirement, we conduct an interprocedural entry-liveness
analysis on callbacks belonging to the interaction and post-interaction phases. We exclude the
pre-interaction phase as it belongs to łthe pastž ś activity restart or app relaunch only happens
after this phase. Let the result of this analysis be LIVE.
The second requirement reveals the fact that the necessary instance state should reflect the

past user interaction and system updates. It excludes the access paths that cannot be modified
during the interaction, or callbacks invoked before or after the interaction. Since they either remain
unchanged after the activity restart or app relaunch, or carry no effects of user interaction or
system updates. To fulfill this requirement, we perform an interprocedural may-modify analysis on
callbacks belonging to the interaction phase. Let the result of this analysis be MOD.

Finally, we take the intersection between LIVE andMOD to obtain a static over-approximation of
the internal2 necessary instance state, denoted as NISTATE𝑖𝑛 (i.e., NISTATE𝑖𝑛 = LIVE ∩ MOD). Note
that even though we leverage a series of techniques to improve the precision of the static analyses,
including field-sensitivity and alias-awareness, over-approximation in general is often unavoidable
due to the nature of static analysis. Besides analyzing the activity (Java) classes, we also perform

2It is internal in the sense that they are not GUI elements, though they may include GUI element references.
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a UI property analysis on activity resource files to find out the external necessary instance state
NISTATE𝑒𝑥 regarding the GUI elements that are directly visible to users. The design of UI property
analysis also follows the two basic requirements (live and modified). Putting them together, we
have the necessary instance state NISTATE = NISTATE𝑖𝑛 ∪ NISTATE𝑒𝑥 .

Based on the formalization above, we implemented our static analyzer, on top of the Soot analysis
framework [Soot 2020]. Furthermore, to facilitate the use of the analysis results, we also designed
and developed: (i) an Android Studio plugin that interactively guides developers to generate the
state-saving and restoring routines, and (ii) an APK patching tool that automatically inserts state-
saving and restoring routines into the app binary code to preserve the NISTATE. Together, we refer
to the entire app state handling solution as LiveDroid.
We evaluated LiveDroid on both a large corpus of 966 apps and a focused corpus of 36 apps

collected from F-Droid [F-Droid 2020], Google Play [GooglePlay 2020], and GitHub. The evaluation
shows that LiveDroid can be successfully applied to the apps in the large corpus, and can correctly
and precisely identify the necessary instance states of apps in the focused corpus. On one hand,
compared to the state-of-the-art app state identification approach [Shan et al. 2016] which includes
all mutable fields of the activity but ignores the GUI properties, LiveDroid yields much smaller app
states to preserve, decreasing the delay for state saving and restoring by 16.6X (1.7X - 141.1X) and
9.5X (1.1X - 43.8X), respectively. On the other hand, compared to manual state handling performed
by developers, the static analysis of LiveDroid reveals a set of 46 app state issues due to insufficient
state saving/restoring, all of which can be successfully eliminated after applying LiveDroid.
Artifacts related to this evaluation are available via https://github.com/ucr-riple/LiveDroid.

In summary, this work makes the following contributions:

• We introduce necessary instance state based on liveness and modification to capture the
essential data that need to be preserved during activity restarting and app relaunching.

• We model and categorize the callbacks based on their invocation orders relatively to the user
interaction such that their impacts on the app state can be more precisely analyzed.

• We present static analyses (inter-procedural entry-liveness, may-modify, etc.) to automatically
compute the necessary instance state for a given app.

• To handle aliasing, we combine points-to analysis, an access path abstraction, and dynamic
checking to achieve the required precision and scalability.

Next, we provide the background of this work.

2 BACKGROUND

In this section we first introduce the programming model for Android apps; then discuss the main
state loss causes ś activity restart and app relaunch; finally, we discuss the basic Android strategies
for handling data save/restore and their inadequacy.

2.1 App Programming Model

Following the Android programming model, apps are mainly organized as activities, where an
activity represents an individual screen that users interact with.

Activity and Its Lifecycle. Typically, an activity consists of a layout file (in XML) that specifies
the GUI elements (e.g., EditText and Button) on the screen and a Java class that implements the user
interaction logic behind the screen. The lifecycle of an activity instance is composed of a sequence
of stages, including created, started, resumed, paused, stopped, and destroyed [Google 2020d], as
illustrated in Figure 3. Once the activity is resumed, it becomes available for user interaction and
accepting system updates. During the transition from one stage to the next, Android invokes its
corresponding lifecycle callback(s) for developers to overwrite in order to respond to the transition.
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Fig. 3. Activity Lifecycle.

Note that there are a couple of łinternal cyclesž within the lifecycle of an activity, illustrated
with the blue dashed lines in Figure 3. For example, when a pop-out dialog shows up, the activity
becomes paused. After the user closes it, the activity comes back to resumed. Similarly, when the
user moves away from the activity (e.g., by clicking the łHomež button), the activity goes to stopped
and comes back to created once the user returns to the activity. However, once the activity is
destroyed, for example, in response to a runtime configuration change or low-memory system
killing, its current lifecycle ends. A subsequent access to the activity (after the configuration change
or system relaunching) would correspond to a new activity instance, illustrated with the red dashed
line in Figure 3. This is the scenario where the necessary instance state of the activity needs to
be preserved. The routines used for saving and restoring are also illustrated in Figure 3, namely
onSaveInstanceState() and onRestoreInstanceState(), for which we will provide more details later.

Events and Callbacks. Android apps treat both user actions and system status changes (e.g., a
location change) in a unified manner, as events. By implementing and registering event handlers,
developers make the app respond to specific events. For example, when the user clicks a button or
the phone location has changed, the corresponding event handlers onClick() or onLocationChanged()
will be automatically invoked. Following the convention, we refer to these event handlers as
callbacks. Depending on whether the event is triggered by the system (e.g., location changes) or the
user (e.g., clicks), the callbacks can be grouped into system callbacks and UI callbacks, respectively.

2.2 Volatile Runtime Environments

Unlike conventional desktop applications, Android apps (and activities) may go through multiple
lifecycles (i.e., being destroyed and recreated) before they are explicitly dismissed by the user.
Depending on the cause, the lifecycle change may occur at either the activity or the app level.

Activity Restart.An activity restart can be triggered by runtime configuration changes. For example,
when the app window dimension is changed (e.g., due to a phone rotation or screen resizing), the
system may decide to assign the activity a different layout that better matches the new dimension.
Loading the new layout requires restarting the activity, going through the lifecycle from state
resumed to destroyed, then back to resumed again (the red line in Figure 3). During the restart,
a fresh activity instance is created and used for the subsequent user interaction. This process is
known as runtime change handling [Google 2020b]. Besides screen size changes, other runtime
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Table 2. Restart Levels.

Activity Level App Level

Cause Runtime configuration changes High memory pressure

Effect Instance of the current activity is destroyed Instances of all active activities are destroyed

changes include changing the system language, attaching and detaching a keyboard, among others.
All these runtime configuration changes by default result in activity restarting. Developers may
overwrite the default behavior of runtime change handling, but it requires developers to manually
load resources for the new configuration via system callback onConfigurationChanged(). According
to our prior study [Farooq and Zhao 2018], such customized handling is not common in practice.

App Relaunch.As mobile apps run on devices with limited resources, the systemmay run into low-
memory situations, especially when the user has recently used memory-consuming apps [Google
2020h]. When the memory pressure becomes high enough, the system will start to kill background
apps by terminating their underlying Linux processes to reclaim memory [Google 2020d]. When
the app is killed, all the activities in a łtask back stackž (recently visited, yet still active) will be
destroyed first, before the app process is terminated. For this reason, when the user comes back to
the killed app (e.g., from the łrecent app listž), Android is responsible for relaunching it, which will
create a fresh process for the app.
Table 2 summarizes the causes and consequences of these two levels of restarting. When an

activity is restarted, the instance of the Activity (Java) class and the instances of all GUI elements
specified in the layout file, are first destroyed, then recreated. When the app is relaunched, instances
of the active activities are first destroyed, then recreated when the user comes back. In either case,
it is critical that activity/app state is preserved, such that, from the user’s perspective, it appears
like no restarting or relaunching has ever happened.

2.3 Preserving App State

To facilitate app state preservation, Android provides two basic methods for developers to manage
the app state during activity restart or app relaunch.

Saving/Restoring Instance State. Before the system stops an activity, it first invokes callback
onSaveInstanceState() (see Figure 3) to give the activity a chance to save its state into a Bundle object.
A Bundle is a persistent key-value map, serialized to disk, that survives app restarts or device reboots.
To save data in the Bundle object, the data should be either primitive data (like int) or serializable
objects (that implement Serializable or Parcelable). Note that, for GUI components with assigned
IDs (either by android:id or View.setId()), Android automatically saves some of their user-editable
properties (e.g., text in EditText or checking status of RadioButton). However, to save additional data,
such as variables in the Activity class, properties of customized GUI elements, or non-user-editable
GUI properties, developers need to override onSaveInstanceState() and add extra key-value pairs
into the Bundle object to preserve them across activity/app lifecycles. When an activity instance is
recreated or the app is relaunched, developers can recover the activity state by extracting the data
from the Bundle object, which is accessible in both onCreate() callback and onRestoreInstanceState()

callback. Since the Bundle is persistent, the state saved via this mechanism can survive runtime
configuration changes and system-initiated process kill.

ViewModel. ViewModel[Google 2020j] is part of several newly released components for Android
developers to manage UI-related data in a lifecycle-aware manner. Technically, the ViewModel is not
part of the Android framework. A ViewModel can be created in association with an activity and will
be retained in memory as long as the associated process is still live. Unlike saved instance state, a
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Table 3. Two Basic Methods for Preserving App State.

Saving Instance State ViewModel

Storage location Serialized to disk In memory

Runtime change Survives Survives

System killing Survives Fails

ViewModel can hold complex types of data without any serialization. Its in-memory saving solution
works well for configuration changes, but cannot preserve data upon system-initiated killing.

In addition, developers can also leverage the fine-grained construct, Fragment, to retain some
of the data during activity restart. Similar to ViewModel, Fragments cannot retain state in wake of
system-initiated killing, where a fresh process of the app is created.

Table 3 summarizes the two basic methods for preserving app state. Note that, in either method,
developers need to first identify the data to preserve, then implement the preserving methods by
either overwriting the callbacks to save and restore the app state or creating a ViewModel class that
encapsulates the data. Both require a significant amount of programming effort to ensure the right
set of data is preserved correctly. Unfortunately, as surveyed by recent work [Farooq and Zhao 2018],
a large majority of apps do not implement the state preserving methods appropriately. For example,
92.4% of activities allow restarting during runtime changes, but only 27.1% of activities implement
one of the state preserving mechanisms. For simple activities, state loss upon restart may be small
enough so re-creating it manually is not burdensome. However, as UI and app logic complexity
increase, restarting an activity without sufficient data preservation makes the app vulnerable to
various state issues. For instance, 172 state issues were reported in 72 popular apps [Farooq and
Zhao 2018]. In our evaluation (Section 7), we reveal 46 state issues found in 21 apps from Google
Play store and GitHub, including highly popular apps. To free developers from this complex and
error-prone task, this work proposes an automatic approach for identifying the app state that is
necessary to preserve and tools for generating the state saving and restoring routines, together
referred to as LiveDroid. Next, we first give an overview of LiveDroid.

3 OVERVIEW

Figure 4 shows LiveDroid’s architecture. At the high level, it follows a hybrid design consisting a
static analyzer (the upper part) and a runtime module (the lower part). The static analysis is applied
to each app activity offline (only once) to identify the necessary instance state (NISTATE); the
runtime part verifies certain properties of NISTATE and performs saving and restoring. There are
two main reasons for this hybrid design. First, the aliasing relationships among references may
change at runtime; it is impossible for a static analysis to determine them. As we will show later,
failing to preserve the exact aliasing relationship may compromise correctness. On the other hand,
a purely runtime solution that tracks the actually changed state could minimize the necessary
instance state, but requires monitoring every update to the entire app state, which may only work
well for apps with small-sized app state and limited dynamic features.

In the first component of the static analyzer, callback modeling, all the registered callbacks
in the activity are grouped into three basic categories based on the phases in which they may
occur: pre-interaction callbacks, interaction callbacks, and post-interaction callbacks. Note that the
interaction callbacks include both the system callbacks and the UI callbacks (see Section 2). The
categorized callbacks (except those in the first category) are then fed into two major static analysis
components: entry-liveness analysis and may-modify analysis. The former reports the access paths
of the activity that are live (i.e., used before they are defined) at the callback entries (i.e., LIVE). The
latter identifies the access paths of the activity that may be modified during the interaction phase
(i.e., MOD). Note that the above analyses only capture łinternalž state in Java code but not the
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Fig. 4. Overview of LiveDroid.

łexternalž state ś properties of GUI components declared in the layout files (łresourcesž in Android
parlance). The layout files of the activity are fed into the UI property analysis component, which
extracts editable properties of declared GUI components (i.e., EUI) and also properties that may be
modified by the interaction callbacks (i.e.,MUI). Finally, results of the above analyses are integrated
by the data integration component and the necessary instance state, NISTATE, is produced. To
ensure correctness in the presence of reference comparisons and to avoid duplicate object saving
and restoring, the data integration also yield a set of statically found aliases.
The runtime module has three components which run with the app; they are integrated as

parts of the app through code generation. The first component, alias grounding, checks which
statically-identified aliases are the actual aliases when the activity is destroyed, such that only
these actual ones are preserved (for correctness purposes). The alias grounding can also ensure
that the object pointed to by one alias class is saved and restored only once. Next, the state saving
module saves the access paths in the NISTATE. For references, we first serialize the corresponding
objects, then add them along with the primitive access paths into the Bundle object. These first
two components are automatically invoked by onSaveInstanceState() before the activity or the app
gets destroyed. Once the restarting/relaunching process is completed, the third component, state
restoring is invoked by callback onRestoreInstanceState(), which extracts data from the Bundle object
and deserializes it into the corresponding access paths. One complexity in the design of the runtime
module lies in the handling of private and partial objects, which we will address in Section 5.
In the following two sections, we describe these modules in detail.

4 STATIC ANALYSES

Given an Android activity, the domain of our static analyses include all the access paths in the
activity class (a Java class) and the access paths in the GUI elements declared in the layout files. Here,
an access path is a sequence of fields rooted in the activity class (e.g., Activity.user.name) or rooted in
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a GUI element instance declared in one of the layout files for this activity (e.g., TextViewId.text). The
goal of the static analyses is to discover those access paths that must be preserved to make activity
restarts and app relaunches transparent to the user. To achieve this, we next discuss two key access
path properties: liveness and modification.

• Liveness. First, for correctness, after an activity restart or app relaunch, any łusež of an
access path should yield the same result as it would have without the restart or relaunch. The
set of access paths that our technique automatically saves and restores must be sufficient
to guarantee this property. Note that if an access path is always defined (written) within a
callback before it is used (read), there is no need to preserve the access path. Hence, following
the data-flow analysis terminology, an access path must be live right after the activity restart
or app relaunch to be a candidate for saving and restoring.

• Modification. Second, from another perspective, if any łusež of an access path is already
guaranteed to yield the same result before and after an activity restart or app relaunch, there
is no need to save and restore the access path. In other words, we only need to save and
restore the access paths that may be modified by the user interaction or system updates.

The above two properties form the core design principles for our approach. Based on them, we
design three static analyses: entry-liveness analysis, may-modify analysis, and UI property analysis.
The first two are for the łinternalž access paths defined in the Activity class while the third is for
the łexternalž access paths ś the GUI elements and their properties declared in the layout files (and
Activity class3). To find out the appropriate targets (codes) for each static analysis, we model the
callbacks, including all UI, system, and lifecycle callbacks, based on their timing constraints and
impacts on the app state. Next, we first present the callback modeling.

4.1 Callback Modeling

Note that specific callbacks are attached to specific lifecycle stages of an activity, which leads to
different impacts on the activity state. For example, UI and system callbacks can only be invoked
when the activity is in the resumed stage. Before that, the callbacks mainly initialize the activity and
allocate resources. Based on this observation, we partition the activity lifecycle into three phases
based on the availability of the activity for user and system interaction: (i) pre-interaction phase, (ii)
interaction phase, and (iii) post-interaction phase. Then, according to the phases where the callbacks
may be invoked, we group the callbacks of each activity into three categories:

Definition 4.1. Pre-interaction callbacks invoked before the activity becomes available for user
and system interaction (i.e., resumed), including onCreate(), onStart(), and onResume().

Definition 4.2. Interaction callbacks that may be invoked after the activity becomes ready for
user and system interaction ś the activity is resumed. These include all registered UI and system
callbacks, such as onClick() and onLocationChanged() (among others).

Definition 4.3. Post-interaction callbacks executed when the activity is no longer available for
user and system interaction, including onPause(), onStop(), and onDestroy().

Besides the above, there is also one lifecycle callback that we deliberately ignore ś onRestart(),
which is used for handling restarts. Since our goal is to automate the restart handling process,
there is no need to include it in the following analyses. In addition, there are also callbacks related
to asynchronous tasks (i.e., AsyncTask [Google 2020a]), which can be launched in the interaction
phase. Hence, these callbacks also belong to the interaction callbacks. However, they are treated
slightly differently than others due to the unrecoverable nature of asynchronous tasks (more details

3A GUI element can also be dynamically declared in Java class; more details will be given later.
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1 class FooActivity extends Activity{

2 ...

3 void onClick() {

4 this.f = this.a.f; //LIVE = {this.a.f.b, this.tView, this.d, this.dView}

5 if(this.f.b == true) //LIVE = {this.f.b, this.tView, this.d, this.dView}

6 this.d = this.d * 9 / 5 + 32; //LIVE = {this.tView, this.d, this.dView}

7 this.t = Calendar.getInstance().getTime(); //LIVE = {this.tView, this.d, this.dView}

8 updateViews(this.t, this.d); //LIVE = {this.t, this.tView, this.d, this.dView}

9 //LIVE = { }

10 }

11 void updateViews(Time t, Degree d) {

12 this.tView.setText(t); //LIVE = {t, this.tView, d, this.dView}

13 this.dView.setText(d); //LIVE = {d, this.dView}

14 }

15 }

Code 1. Example of liveness analysis.

in Section 5). Specifically, LiveDroid only analyzes the onPostExecute() callback, triggered when
the asynchronous task is fully completed. Other related callbacks, such as onProgressUpdate() (for
handling progress updates), will not be analyzed for state saving/restoring under the assumption
that their impacts on the activity instance state are temporary and can be recreated when the
asynchronous task is relaunched (see Section 5). Based on the callback modeling, the analyses will
become more focused, as we will show next.

4.2 Entry-Liveness Analysis

According to the liveness property, we need to find all the access paths that are live right after
activity restart or app relaunch. Because that is the moment when the activity comes back to the
resumed stage, only interaction and post-interaction callbacks may access them in the future.4

Therefore, we only need to perform static analysis on these callbacks. Moreover, as an activity is
never restarted (and an app is never relaunched) in the middle of a callback execution, we only
need to find the access paths that are live at the entry of the callbacks, hence the name entry-liveness
analysis. Next, we formally define the concept of liveness, then present its analysis.

Liveness is a well-known compiler concept that has been used for register allocation [Aho et al.
2006], garbage collection [Albert et al. 2009], etc. In this work, we use it for identifying the app
state to preserve. Formally, the liveness of a variable can be defined as follows.

Definition 4.4. A variable 𝑣 is live at program point 𝑝 , if and only if there is an execution path
from 𝑝 to a use of 𝑣 , along which 𝑣 is not redefined.

Code 1 lists the LIVE set for each statement in the callback onClick(), which contains the access
paths that are live right before the statement. For example, at line 7, LIVE = {this.tView, this.d,
this.dView}, because access paths this.tView and this.dView will be used at line 12 and 13 and access
path this.d will be used in line 8. Note that though this.t will also be used in line 8, it will be first
redefined (killed) in line 7. Therefore, it is not live right before line 7.

As a classical analysis, liveness analysis is typically solved iteratively backwards [Aho et al. 2006].
Initially, at the exit of a callback, no access path is live (see line 9 in Code 1). As the analysis traverses
backwards, depending on whether the statement is a reference copy statement (like the one in

4Pre-interaction callbacks execute during a restart before instance state is restored (onRestoreInstanceState() in Figure 3),

hence they cannot rely on saved instance state.
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line 4), different rules (i.e., transfer functions) are applied. For a non-reference-copy statement, the
analysis first removes the access paths it defines/kills (denoted as DEF) from LIVE, then adds the
access paths it uses (denoted as𝑈𝑆𝐸) to LIVE. For a reference copy statement, if its left-hand side
reference (𝐿𝐻𝑆) appears as the prefix of some access paths in LIVE, we substitute the prefix with
its right-hand side reference (𝑅𝐻𝑆). At line 4, we substitute the prefix of this.f.b with this.a.f. As
a result, this.a.f.b replaces this.f.b in the LIVE. When (backward) control flow edges are joined,
the LIVE sets of different edges will be merged with a union operation. The data-flow equations are
formally summarized by Equation 1.





𝐿𝐼𝑉𝐸𝑂𝑈𝑇 [𝑖] =
⋃

𝑠∈𝑠𝑢𝑐𝑐 [𝑖 ]
𝐿𝐼𝑉𝐸𝐼𝑁 [𝑠]

𝐿𝐼𝑉𝐸𝐼𝑁 [𝑖] =

{
𝐿𝐼𝑉𝐸𝑂𝑈𝑇 [𝑖] .prefixsub(𝐿𝐻𝑆 [𝑖], 𝑅𝐻𝑆 [𝑖]) if 𝑖 is a ref copy

𝑈𝑆𝐸 [𝑖] ∪ (𝐿𝐼𝑉𝐸𝑂𝑈𝑇 [𝑖] − 𝐷𝐸𝐹 [𝑖]) otherwise

(1)

where LIVEIN[𝑖] and LIVEOUT[𝑖] define the sets of live access paths before and after statement 𝑖 ,
respectively, and 𝑠𝑢𝑐𝑐 [𝑖] consists of the successor statements of 𝑖 . By solving the above data-flow
equations iteratively and inter-procedurally, the LIVEIN sets will converge to a fix-point. Finally,
the analysis outputs the LIVEIN at the entry as the LIVE for this callback (i.e., LIVEIN at line 4).

A couple of details of the above static analysis are worth mentioning. First, it does not analyze any
methods that are not rooted in the activity instance itself (i.e., this), such as the method getTime()

at line 7 or any constructor like new A(), because they are out of the scope of the activity instance
state. Second, it is possible that an access path gets killed via some alias that we are not tracking, in
which case a must-alias analysis could be incorporated if imprecision is observed to be excessive;
we did not observe this in our experiments.

In practice, there could be complexities that prevent the analysis from being fully field-sensitive,
in which cases we may have to conservatively save and restore their ancestor objects. Next, we
discuss some of these cases. First, when we discover a repeating access path for a recursive type,
we bound the access path and retain the prefix of the access path before the cycle, to ensure the
entire data structure is retained for soundness. Second, accesses to collections (such as List and
Set) or arrays are treated index-insensitively. Finally, for Android APIs whose implementations are
not part of the application package (APK file), we conservatively mark the base access path and
the parameters with łUSEž. For example, at line 12 in Code 1, the analysis marks this.tView and
this.t with łUSEž. For third-party APIs, the analysis, by default, enters into their implementations
to reason about the liveness as long as they are accessible as Java bytecode in the APK file.
As discussed earlier, we only need to perform the entry-liveness analysis on the interaction

and post-interaction callbacks. After that, the analysis results of these individual callbacks are
aggregated with a union: LIVE =

⋃
LIVE𝑖 , where LIVE𝑖 is the result of entry-liveness analysis on the

interaction or post-interaction callback 𝑖 . In fact, our analysis can directly produce the aggregated
LIVE by creating a pseudo-callback root() that calls all relevant callbacks one by one.

4.3 May-Modify Analysis

According to the modification property (mentioned at the beginning of Section 4), we only need to
save and restore the access paths that may be modified by some UI or system callbacks. As discussed
in the callback modeling, UI and system callbacks can only be invoked during the interaction phase.
Therefore, we need to perform a may-modify analysis on the interaction callbacks.

Code 2 shows an intuitive example of the may-modify analysis on callback onClick(). We perform
may-modify analysis as a backward analysis. Given a callback, may-modify analysis starts from
the exit of the callback with an empty MOD set (see line 9 in Code 2). Going backwards, for each
statement that modifies a field, the analysis adds the statement’s DEF access path to the current
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1 class FooActivity extends Activity{

2 ...

3 void onClick() {

4 if(mCheckBox.isSet() == true) { //MOD = {this.pView, this.u.name, this.p}

5 this.u.name = mEditText.getText(); //MOD = {this.pView, this.u.name, this.p}

6 this.p = this.u; //MOD = {this.pView, this.p}

7 this.pView.setText(this.p.name); //MOD = {this.pView}

8 }

9 //MOD = { }

10 }

11 }

Code 2. Example of may-modify analysis.

MOD. For a local variable write x = RHS, we substitute the 𝑅𝐻𝑆 access path for all occurrences of x
in MOD. When (backward) control flow edges are joined, the MOD sets of different edges will be
merged with a union operation. Data-flow Equation 2 formally captures this analysis.




𝑀𝑂𝐷𝑂𝑈𝑇 [𝑖] =
⋃

𝑠∈𝑠𝑢𝑐𝑐 [𝑖 ]
𝑀𝑂𝐷𝐼𝑁 [𝑠]

𝑀𝑂𝐷𝐼𝑁 [𝑖] =

{
𝑀𝑂𝐷𝑂𝑈𝑇 [𝑖] .prefixsub(𝐷𝐸𝐹 [𝑖], 𝑅𝐻𝑆 [𝑖]) if 𝐷𝐸𝐹 [𝑖] is a local var

𝑀𝑂𝐷𝑂𝑈𝑇 [𝑖] ∪ 𝐷𝐸𝐹 [𝑖] if 𝐷𝐸𝐹 [𝑖] is a field

(2)

Here MODIN[𝑖] and MODOUT[𝑖] define the sets of may-modify access paths before and after
statement 𝑖 . By solving the above data-flow equations inter-procedurally, the analysis finally
outputs the MODIN at the entry of this callback (i.e., the MODIN set at line 4).

Similar treatments for the complexities discussed in entry-liveness analysis are also applied here.
In particular, an assignment to a local access path with value unreachable from the activity removes
all the descendants of this local access path in MOD, as it is not part of the activity’s instance state.
Additionally, if at any point a MOD set contains access paths 𝑎𝑖 and 𝑎 𝑗 such that 𝑎𝑖 is a prefix of 𝑎 𝑗 ,
𝑎 𝑗 can be removed, since the analysis treats the presence of 𝑎𝑖 in MOD as meaning that all state
reachable from 𝑎𝑖 (including 𝑎 𝑗 ) may be modified. Assuming the may-modify analysis result for
callback 𝑖 is𝑀𝑂𝐷𝑖 , then the aggregated analysis result would be𝑀𝑂𝐷 =

⋃
𝑀𝑂𝐷𝑖 .

So far, we have introduced the internal state identification in Java Activity class. Next, we will
discuss the external state identification regarding the GUI elements. Note that while GUI element
references in the Activity class are part of the internal state, the actual objects are usually declared
in XML files. As we will elaborate next, the above analyses cannot cover the all GUI elements.

4.4 UI Property Analysis

As mentioned in Section 2, besides a Java class, an activity also contains layout files (in XML)
for declaring and organizing the GUI elements. Android compiles the layout files at runtime and
provides APIs (typically findViewById()) for accessing their GUI elements. Once the GUI elements
are referenced in the Activity class, our previous analyses (entry-liveness and may-modify analyses)
can determine whether their references should be preserved. But they are insufficient to cover all
the GUI elements that should be preserved. First, unlike a Java object which becomes useless if its
last reference is łkilledž, a GUI element is still useful (łreadž by users) even when all its references
in the Activity class are łkilled.ž Second, for GUI elements that are never referred in the Activity

class, their properties may still be modified by the user directly. Essentially, GUI elements can be
łreadž and łmodifiedž via a non-programmatic channel ś direct user interaction. For the above
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reasons, we developed a separate analysis, called UI property analysis, to find the properties of
GUI elements that are necessary to preserve during activity restarts and app relaunches. Note that,
besides those statically declared in the XML layout files, some GUI elements may also be declared
in the Activity class, referred to as dynamic GUI elements. The UI property analysis covers both
kinds of GUI elements.

The output of UI property analysis is called the external state. For the liveness aspect of external
state, we assume all the GUI elements are live as they are visually łreadž by users. In the following,
we focus on themodification aspect of external state. First, like the internal state, only modifications
to the external state during the interaction phase should be analyzed. However, unlike the internal
state, the external state can be either directly modified by the user or programmatically updated by
UI and system callbacks through references. Thus, we separate the łMODž of the external state
into two parts: (i) EUI ś the (user) editable properties of all the declared GUI elements; and (ii)
MUI ś the GUI properties (including the non-editable ones) that may be modified by UI and system
callbacks. For EUI, we first list the editable properties for each type of GUI element in Android.5

Given this list, the analysis scans the layout files and the Activity class to identify all the statically
and dynamically declared GUI elements, and then outputs their editable properties. For MUI, the
analysis first searches the UI and system callbacks transitively for GUI element access APIs that
modify GUI properties, and then marks such properties of all declared GUI elements of the same
type as MUI. For example, a call to tempTextView.setText() puts the property text of all declared
TextView elements to MUI.

In summary, similar to the internal state analysis, UI property analysis finds the corresponding
łLIVEž and łMODž for the external state, where łLIVEž includes all properties of declared GUI
elements while łMODž is the union between EUI and MUI.

4.5 Data Integration

Finally, we can integrate the results from all the prior static analyses to compute the overall
necessary instance state to preserve, which can be summarized by the following equations.





NISTATE𝑖𝑛 = 𝑀𝑂𝐷 ∩𝑎𝑙𝑖𝑎𝑠,𝑓 𝑖𝑒𝑙𝑑 LIVE

NISTATE𝑒𝑥 = 𝐸𝑈 𝐼 ∪𝑀𝑈𝐼

NISTATE = NISTATE𝑖𝑛 ∪ NISTATE𝑒𝑥

[NISTATE, 𝑎𝑙𝑖𝑎𝑠𝑒𝑠] = aliasing(NISTATE, LIVE)

(3)

where NISTATE𝑖𝑛 and NISTATE𝑒𝑥 represent the internal and external necessary instance state,
respectively. Operation aliasing(NISTATE, LIVE) finds aliasing relations of the access paths between
NISTATE and LIVE. We elaborate these equations next.

Complexities in Data Integration. For the external state, the union operation EUI ∪ MUI simply
combines the two sets together. However, for the internal state, the intersectionMOD ∩ LIVE needs
to be both alias-aware and field-sensitive to be safe and precise.

• First, consider two access paths this.a.b and this.b, where this.a.b ∈ MOD but this.a.b ∉ LIVE
and this.b ∈ LIVE but this.b ∉ MOD. A conventional intersection MOD ∩ LIVE will exclude
both this.a.b and this.b. However, this may be unsafe as this.a.b and this.bmight be aliases, in
which case both of them should be included inMOD ∩ LIVE. To address this hazard, we perform
may-alias analysis over the two sets MOD and LIVE, and make the intersection alias-aware.
However, it is well-known [Sridharan et al. 2013] that may-alias analysis may suffer from
over-approximation. As a result, the intersection may be unnecessarily large. We will address
the issues related to aliases in NISTATE in detail shortly.

5Note that this is manual effort once for the Android library.
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• Second, the intersection MOD ∩ LIVE should also be field-sensitive to preserve precision. For
example, if this.a ∈ MOD and this.a.b ∈ LIVE (or vice versa), the intersection should include
this.a.b, but not this.a. In fact, this.a is safe but this.a.b is optimal, reducing the amount of
data saved and restored (as shown later, our runtime can save and restore partial objects). To
achieve field sensitivity, the intersection requires checking for prefixes in the access paths.

Addressing Aliases. Besides the access paths in NISTATE, some aliasing relations, in particular,
those related to reference comparisons (e.g., if (this.a == this.b)), may also need to be preserved
to ensure correctness. In fact, not all references involved in reference comparisons need to be
preserved. Considering two references in a comparison, say this.a and this.b, their aliasing relation
needs to be preserved only if one of the references is in NISTATE and the other is in LIVE, because (i)
both references need to be live so that the comparison will be useful; (ii) at least one of the references
may be modified so that the comparison is non-trivial (i.e., the boolean value may be changed).
The operation aliasing(NISTATE, LIVE) shown in Equation 3 finds the aliasing relations satisfying
the conditions. Besides correctness, an additional benefit of finding such aliasing relations is to
avoid duplicate saving and restoring. Consider two access paths this.a and this.b in the NISTATE;
if they are known as aliases, only one of them needs to be saved and restored, while the other can
be simply redirected to the restored one. However, as aliasing analysis might be imprecise, we
cannot completely rely on it for correctness. To remedy the precision limitation, we will leverage
the runtime module to dynamically check (ground) the aliasing relations.

In summary, with the above integration, the static analysis module finally produces the state to
preserve NISTATE and the associated potential aliasing relations aliases.

5 RUNTIME MODULE

LiveDroid’s runtime module carries out two tasks: (i) grounding potential aliases and (ii) managing
the state saving/restoring, including data serialization and deserialization.

5.1 Alias Grounding

The task of alias grounding is to verify the statically identified aliases among access paths as in
[NISTATE, 𝑎𝑙𝑖𝑎𝑠𝑒𝑠] in Equation 3 are actual or not at the time the activity is about to get destroyed.
As discussed earlier, the main reason for alias grounding is for correctness ś precisely preserving
the exact aliasing relations is critical for preserving the values of reference comparisons. Moreover,
finding out the actual aliasing relations can avoid duplicated saving of objects.
To implement the alias grounding, LiveDroid saves and restores the actual alias relations as

boolean values, along with access paths in NISTATE. Furthermore, LiveDroid inserts condition
checks right before saving references in each alias class. If some of these references are actual
aliases, only one copy of the object they point to is saved. Later, to restore the activity instance
state, LiveDroid restores the objects and references based on the recovered alias relations, such
that aliased references remain aliases. An example will be provided shortly in the next section.

5.2 State Saving and Recovering

As mentioned in Section 2, there are two basic approaches for preserving data: (i) saving/restoring
the instance state, and (ii) using the ViewModel. We choose the first approach, because ViewModel

requires significant refactoring to adopt and it cannot survive system-initiated killing. Code 3
shows an implementation of the first approach by overwriting the saving and restoring callbacks.

Saving/Restoring Internal State. For primitive variables (e.g., this.x of type int), saving and
restoring is intuitive, as shown at lines 3 and 11. A unique key is used for saving and retrieving
the variable in the Bundle object with APIs matched with its primitive type. For non-primitive
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1 class FooActivity extends Activity{

2 void onSaveInstanceState(Bundle state) { ...

3 state.putInt("int_x", this.x); //primitive

4 state.putString("obj_b", gson.toJson(this.b)); //object

5 if(this.a.b == this.b)

6 state.putBoolean("a_b=b", true); //save the alias relation

7 else //field

8 state.putString("obj_a_b", gson.toJson(this.a.b));

9 }

10 void onRestoreInstanceState(Bundle savedState) { ...

11 this.x = savedState.getInt("int_x");

12 String str = savedState.getString("obj_b");

13 this.b = gson.fromJson(str, B.class);

14 is_alias = savedState.getBoolean("a_b=b", false);

15 if(is_alias)

16 this.a.b = this.b;

17 else {

18 String str = savedState.getString("obj_a_b");

19 this.a.b = gson.fromJson(str, B.class);

20 }

21 }

22 }

Code 3. Saving and restoring internal state.

types, if the references point to GUI elements (like this.dView), we handle them together with
the external state; otherwise, we serialize their corresponding objects to strings before saving
(line 4) and deserialize the strings back to objects after restoring (lines 12ś13). For serialization and
deserialization, we leverage the widely used Gson [Google 2020g] library to convert Java objects to
JSON strings and vice versa. The example also shows the alias grounding, which checks potential
aliases at runtime and only save and restore one copy of the corresponding object (lines 5ś8
and 15ś19). For access paths with levels deeper than the Activity fields (e.g, this.a.b), there are a
couple of complexities for saving and restoring, which we discuss and address next.

• Handling Private Fields. Private fields are not accessible outside their class. For example,
assume this.a.b is in NISTATE but b is a private field of a. In this case, we cannot access the
private field as in the serialization call gson.toJson(this.a.b). Instead, we have to call a getter
method like getB() that returns the private field b, as in gson.toJson(this.a.getB()). Similarly,
to restore a private field, we need to call its setter method (e.g., this.a.setB()). For private
fields without getter and setter methods, LiveDroid offers automatic generations of such
methods under the direction of developers. Alternatively, we can move up along the access
path (e.g., this.a.b.c → this.a.b), until we reach a publicly accessible field or a field that
developers are comfortable to add setter/getter methods. In the worst case, the Activity field
(e.g., this.a.b.c → this.a) can be saved and restored. In general, this option compromises the
precision of the app state, thus may increase the cost of state saving/restoring.

• Handling Subfields. During the reconstruction of access paths, the parent objects need to
be constructed before the construction of their child objects. For example, before this.a.b is
restored, this.a must be constructed first; otherwise a null pointer exception will be thrown
when this.a.b is accessed (e.g., at lines 16 and 19 in Code 3). There are two scenarios for the
parent object construction. If the default constructor of the parent (e.g., A()) is available, we
simply invoke it before constructing the child object; Otherwise, if the parent object has an
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1 class FooActivity extends Activity{

2 void onSaveInstanceState(Bundle state) { ...

3 TextView view = findViewById(R.id.text_time);

4 state.putString("text_time", view.getText()); //property of static view

5 state.putBoolean("tView_ref", this.tView.getViewId() == R.id.text_time); //ref

6 state.putString("dView", this.dView.getText()); //property of dynamic view

7 state.putId("dView_parent", getParentId(this.dView)); //parent GUI of dyn. view

8 }

9 void onRestoreInstanceState(Bundle savedState) { ...

10 TextView view = findViewById(R.id.text_time);

11 view.setText(savedState.getString("text_time")); //restore property

12 if(savedState.getBoolean("tView_ref", false))

13 this.tView = view; //redirect GUI reference to new GUI instance

14 if(this.dView == NULL) { //if not created during pre-interaction

15 this.dView = new TextView(this);

16 View parent = findViewById(savedState.getInt("dView_parent"));

17 parent.add(this.dView); //attach the dynamic GUI to its parent GUI

18 }

19 this.dView.setText(savedState.getString("dView")); //restore property

20 }

21 }

Code 4. Saving and restoring external state.

overridden constructor (like A(B b)), then we can generate a łdefaultž constructor that carries
no parameters (i.e., A()) and use it for constructing the parent object. After the construction
of the parent object, we can construct the child object and assign it to the corresponding field
of the parent object (like this.a.b = this.b). If the corresponding field is private, then we can
solve it using the solution just mentioned in the prior paragraph ś either generating a setter
method for the private field or moving up in the access path to save an ancestor object.

Note that saving and restoring a subset of the app state (i.e., the NISTATE) can potentially violate
object invariants [Leino and Müller 2004]. Recall the two groups of access paths that LiveDroid
does not save and restore: (i) access paths that remain unchanged during interaction and (ii) access
paths that will be redefined before they get used. The first category clearly will not violate object
invariants. For the second category, failing to restore these access paths may break some object
invariants. However, this violation is temporary and inconsequential because the analysis ensures
that the values of these access paths will not be read until they are redefined. After the redefinition,
the object invariants are re-established. Hence app semantics are unchanged.

Saving/Restoring External State. For the external state (EUI ∪ MUI), saving and restoring fall
into two cases: First, for editable properties of built-in GUI elements (e.g., text of EditText), Android
offers automatic saving and restoring as long as their instances are declared with IDs. For those
without IDs, we assign IDs in the places where the GUI elements are declared. Second, for editable
properties of customized GUI elements (defined by developers) and non-editable properties that may
be modified by UI and system callbacks (MUI), we preserve them using the state saving/restoring
callbacks, as shown in Code 4. Note that here we distinguish between the static and dynamic GUI
elements. For static GUI elements, they are recreated automatically by Android, thus we only need
to retrieve them (via findViewById() at line 10) and restore their properties (line 11). Furthermore, if
there are corresponding references found in NISTATE𝑖𝑛 , we redirect those references to the newly
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created GUI elements. For dynamic GUI elements, we need to recreate them first (line 15) and
attach them to their parent GUI elements (lines 16-17), then recover their properties (line 19).
The aforementioned external state saving/restoring strategy assumes that the GUI elements

and their appearances should remain the same after restarting or relaunching. In certain cases
of activity restarting, however, developers may want to change the GUI elements and/or their
appearances after restarting (e.g., changing the appearances of some GUI elements after the phone
rotation). For such cases, developers can step in and bypass the saving and restoring of relevant
parts of the state to avoid overwriting their customized setups of GUI elements and properties,
which are usually specified in a different layout file.

Handling Asynchronous Tasks. An activity instance may offload some blocking tasks (e.g.,
downloading a file) asynchronously to background threads to keep the UI thread responsive.
Android offers several ways to achieve this; commonly used strategies include AsyncTask[Google
2020a], Service[Google 2020i], and IntentService[Google 2020f]. First, as these components are
separated from Activity, they can continue executing on the background threads during the activity
restarting. However, upon app relaunching, their execution will be terminated along with the
activities. Unfortunately, unlike Activity, there are no dedicated saving and restoring mechanisms
offered by Android for these components to preserve their states before they get destroyed. On the
other hand, this design aligns with the nature of the asynchronous tasks ś they are temporary and
can be relaunched as needed. So, instead of preserving their states upon destroying/termination,
we may preserve their initial states ś their łinputsž, so that they can be relaunched. As long as
these asynchronous tasks do not depend on the activity instance state, this handling will not affect
the correctness. Actually, such handling has been provided by Android for IntentService. The Bundle

that serves as the input to an IntentService is automatically saved, and then it is reused when
the IntentService is relaunched (following the app relaunching). For Service, similar handling can
be easily enabled via a flag named START_REDELIVER_INTENT. For AsyncTask, Android does not offer a
similar service. In order to preserve the input parameters of an AsyncTask, we need to locate the
callsite where the AsyncTask was launched, save and restore its parameters along with the activity
instance state. An alternative solution is to refactor the AsyncTask to an IntentService. In fact, prior
work [Lin et al. 2014] has shown that AsyncTask is the source of many runtime issues and the more
recent component IntentService is preferred.

6 IMPLEMENTATION

As some implementation details have already been discussed, in this section we focus more on the
tools that realize the static analyses and runtime module; including a static analyzer, an Android
Studio plugin, and an APK patching tool. The latter two are alternative ways to help developers
generate state-saving/restoring routines. Together, they constitute LiveDroid.

Static Analyzer. The static analyzer, namely LiveDroid-analyzer, is implemented using several
program analysis libraries built upon the Soot [Soot 2020] framework, including Heros [Bodden
2012], Spark [Lhoták and Hendren 2003], and FlowDroid [Arzt et al. 2014]. The Soot [Soot 2020]
framework provides an easy-to-manipulate intermediate representation (Jimple) for analyzing Java
programs, and Heros [Bodden 2012] provides a solver for inter-procedural, finite, distributive subset
(IFDS) problems in a flow-sensitive and context-sensitive manner. LiveDroid-analyzer takes an
app’s APK file as input and feeds it into FlowDroid [Arzt et al. 2014] to collect user interaction and
post-user interaction callbacks in the form of inter-procedural control-flow graphs (ICFGs). By
traversing the ICFGs, LiveDroid-analyzer then identifies the GUI properties that may be modified
by callbacks (MUI). Next, the ICFGs are passed to Heros where the entry-liveness and may-modify
analyses are implemented. The analysis results are then integrated (i.e., MOD ∩𝑎𝑙𝑖𝑎𝑠,𝑓 𝑖𝑒𝑙𝑑 LIVE)
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with the help of an alias analysis module in Soot, called Spark [Lhoták and Hendren 2003]; Spark
implements Andersen’s points-to analysis. The editable GUI properties (EUI) are captured in a
manually-constructed list, based on Android APIs. Developers may expand this list with editable
properties of their customized GUI elements. Finally, LiveDroid-analyzer outputs the aggregated
analysis results into a report file in XML.

Per the IFDS framework [Bodden 2012; Reps et al. 1995], the worst-case time complexity for our
entry-liveness and may-change analyses (two locally separable problems) is 𝑂 (𝐸𝐷), where 𝐸 is the
number of edges in the supergraph, and 𝐷 is domain size, that is the number of access paths. The
time complexity for pointer analysis using Spark [Lhoták and Hendren 2003] is cubic in program
size for typical inputs.

Android Studio Plugin. We developed a plugin based on Android Studio 3 ś LiveDroid-plugin,
which can generate code that realizes the runtime module either for an activity or the whole app.
To do so, LiveDroid-plugin first takes the report from static analyzer as an input and extracts
the static analysis results. Then, when directed by developers, it generates constructors for classes
missing default constructors and getter/setter methods for private fields that need to be accessed.
Finally, the plugin inserts the saving and restoring code into callbacks onSaveInstanceState() and
onRestoreInstanceState() for each access path together with the alias grounding code for each
group of potentially aliased references specified in the static analysis report. The plugin can help
developers refactor their code based on their needs.

APK Patching Tool. As an alternative solution, we also developed a patching tool ś LiveDroid-

patch, which can directly insert code into a compiled app (APK), without accessing the source
code. The tool uses the static analysis report as the plugin does, based on which it injects the data
saving and restoring code into the APK file. To achieve this, LiveDroid-patch leverages Soot for
reverse engineering, code insertion, and recompilation. After that, Zipalign and apksigner are used
to align and sign the final APK. Note that LiveDroid-patch avoids the complexities of accessing
private fields and constructing parent objects (see Section 5), as it directly modifies the binary.

Limitations. Although LiveDroid aims for an accurate solution with a combination of static
analysis and runtime modules, the static analysis inherits limitations from other static analysis
tools. For example, FlowDroid [Arzt et al. 2014] does not support lambda-style event declarations in
Java 8 and native method modeling. It also inherits limitations on reflective calls, which are resolved
only if their arguments are string constants. The LiveDroid analysis and plug-in can only process
Java code at the moment, as Soot does not fully support the invokedynamic bytecode [Fourtounis and
Smaragdakis 2019] which affects apps written in Kotlin (or Java code using lambdas and method
refs). Similar limitations apply to the plug-in, which is written for Java only, and cannot process
NativeActivity [Google 2020c] or apps written in Kotlin.

7 EVALUATION

This section evaluates LiveDroid on real-world Android apps to demonstrate its applicability,
effectiveness in identifying the NISTATE, its costs and benefits for generating state-saving and
restoring routines, as well as some of its limitations.

7.1 Methodology

To evaluate LiveDroid, we crawled 1,033 packages from F-Droid [F-Droid 2020] app store and
retained 966 apps (denoted as 𝐺𝑟𝑜𝑢𝑝𝐿); apps without activities, or for which FlowDroid failed to
build an ICFG, were removed. We selected an additional set of 36 apps (denoted as 𝐺𝑟𝑜𝑢𝑝𝑆), as
they had necessary instance states and at least 20 Stars on Github [Github 2020] or 5K downloads
on GooglePlay [GooglePlay 2020]. As shown in Table 5, they include some highly influential
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Table 4. Activities and Apps (𝐺𝑟𝑜𝑢𝑝𝐿) with Non-Empty External/Internal States.

Necessary instance state (NISTATE) #activities #apps

Non-empty external state (NISTATE𝑒𝑥 ≠ ∅) 1630 (33.9%) 452 (46.8%)

Non-empty internal state (NISTATE𝑖𝑛 ≠ ∅) 512(10.6%) 322 (33.3%)

open-source projects, such as K-9 mail, Free RDP, and LeafPic. Together, 𝐺𝑟𝑜𝑢𝑝𝐿 and 𝐺𝑟𝑜𝑢𝑝𝑆 are
composed of 4,808 and 231 activities, respectively. We use 𝐺𝑟𝑜𝑢𝑝𝐿 for evaluating the applicability
of the static analyzer in general and 𝐺𝑟𝑜𝑢𝑝𝑆 for a focused study, including collecting the statistics
of the app state NISTATE and analyzing the costs and benefits of state saving and restoring. For
each Android project, we applied LiveDroid to each activity registered in the AndroidManifest.xml.

To examine the actual app behaviors, we use a Nexus 5X smartphone running Android version
8.1. The programming environment is Android Studio 3.4. Experiments on𝐺𝑟𝑜𝑢𝑝𝐿 were conducted
on a PC with a 3.5 GHz Intel Xeon processor and 16 GB RAM, while results for 𝐺𝑟𝑜𝑢𝑝𝑆 were
collected on a MacBook Pro with a 2.0 GHz Intel Core i5 processor and 8 GB RAM.

7.2 Static Analysis

We evaluated the applicability of the static analyzer on 𝐺𝑟𝑜𝑢𝑝𝐿 and the static analysis results
on 𝐺𝑟𝑜𝑢𝑝𝑆 in detail, including performance, app state statistics, and correctness. In summary,
our evaluation results show that the proposed static analysis is generally applicable to various
real-world apps, effective in identifying necessary instance state ś yielding significantly fewer
access paths compared to previous work [Shan et al. 2016] but being more systematic than manual
state identification. In the following, we first present the applicability results of the static analyzer,
then discuss the detailed static analysis results on 𝐺𝑟𝑜𝑢𝑝𝑆 .

Applicability. Table 4 summarizes the static analysis results on 𝐺𝑟𝑜𝑢𝑝𝐿. At the activity level,
among 4,808 activities, 1,896 activities contain non-empty state NISTATE, including 1,630 activities
(33.9%) with non-empty external state and 512 activities (10.6%) with non-empty internal state. At
the app level, among 966 apps, 452 (46.8%) contain at least one activity with non-empty external
state and 322 (33.3%) contain at least one activity with non-empty internal state. Note that the
above results are from static analysis, rather than the ground truth. Later in this section, we will
report the number of false positives in the static analysis results when we study𝐺𝑟𝑜𝑢𝑝𝑆 . While we
did not observe any failures during the above analysis, there are a couple of situations where the
static analyzer may fail, including NativeActivity written in C/C++ and activities implemented in
Kotlin (Soot does not fully support invokeDynamics [Fourtounis and Smaragdakis 2019]).

Time Cost. We measured the time required for performing the static analysis on 𝐺𝑟𝑜𝑢𝑝𝑆 . The
results are reported in Table 5 under Column łTimež. For most apps (30/36), the analysis finishes
within 1 minute and often within 10 seconds. For app#28, the analysis took much longer, nearly 30
minutes. After examining its source code, we found the app uses multiple external libraries (e.g.,
Dropbox, JodaTime and Apache Jackrabbit), which greatly increases the analysis workload. This
problem can be mitigated with the help of developers by specifying the source code packages that
the analyzer may skip, a functionality we plan to add later.

State Statistics. The detailed analysis results on 𝐺𝑟𝑜𝑢𝑝𝑆 are reported in Table 5. First, Column
EX reports the size of external state NISTATE𝑒𝑥 in terms of the number of properties. We found
that 21 out of 36 apps have necessary GUI properties that must be preserved. Among them, app#27
has the most ś 35 GUI properties, due to its richer and more interactive user interface, which take
more inputs from the user. The next column, UIC, reports the number of GUI elements with at least
one necessary access path. Comparing this column with the prior one, we can find that most GUI
elements have just one necessary access path. The next two columns, MOD and LIVE, show the
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Table 5. Detailed static analysis results from applying LiveDroid-Analyzer on 𝐺𝑟𝑜𝑢𝑝𝑆 .
Stars: #stars on GitHub, Popu.: #downloads on Google Play, ACT: #activities,

MUT: #access paths of all mutable activity fields (up to 3rd level) ś state in [Shan et al. 2016],

EX: #access paths in the external state, UIC: #necessary GUI elements, MOD: #access paths in set MOD,

LIVE: #access paths in set LIVE, IN: #access paths in the internal state,

S: #access paths in set NISTATE, Alias: #alias groups (#total aliases), Time: analysis time (s)

App Information Static Analysis Results

# Package Stars Popu. ACT MUT EX UIC MOD LIVE IN S Alias Time

1 au.com.wallaceit.reddinator 30 50K+ 18 1,529 32 23 42 99 7 39 0 21

2 com.alaskalinuxuser.hourglass 5 5K+ 2 25 0 0 13 15 6 6 0 2

3 com.dozingcatsoftware.asciicam 105 100K+ 5 102 0 0 7 31 5 5 1(2) 3

4 com.freerdp.afreerdp 4,297 100K+ 30 254 0 0 12 55 10 10 1(2) 14

5 com.fsck.k9 4,659 5M+ 29 3,275 0 0 59 241 25 25 1(2) 62

6 com.github.axet.binauralbeats 16 50K+ 23 549 1 2 90 252 49 50 0 40

7 com.github.xloem.qrstream 29 - 4 25 2 2 12 28 10 12 0 54

8 com.ihunda.android.binauralbeat 135 1M+ 1 225 0 0 0 11 0 0 1(2) 3

9 com.kiminonawa.mydiary 1,402 - 14 2,542 0 0 8 31 8 8 0 24

10 com.llamacorp.equate 45 10K+ 13 201 0 0 27 86 25 25 0 7

11 com.namelessdev.mpdroid 557 100K+ 26 172 5 5 140 172 58 63 1(2) 42

12 com.ringdroid 692 - 3 142 0 0 18 30 10 10 0 7

13 com.sagar.screenshift2 47 1M+ 36 297 10 10 12 45 0 10 0 11

14 com.tastycactus.timesheet 42 - 6 67 19 19 10 52 8 27 0 2

15 de.baumann.browser 387 10K+ 12 319 17 12 31 61 24 41 0 11

16 de.onyxbits.listmyapps 57 100K+ 5 69 10 10 5 15 4 14 0 5

17 de.schildbach.wallet 1,818 1M+ 13 415 0 0 24 61 17 17 0 507

18 de.smasi.tickmate 78 1K+ 10 173 13 13 36 22 10 23 0 6

19 jackpal.androidterm 2,318 10M+ 21 185 0 0 53 98 34 34 0 61

20 jp.sblo.pandora.aGrep 18 10K+ 21 65 0 0 2 30 1 1 0 1

21 moe.minori.pgpclipper 18 - 5 54 0 0 15 33 12 12 0 5

22 net.kervala.comicsreader 1 100K+ 11 166 2 2 41 97 29 31 1(2) 9

23 nl.asymmetrics.droidshows 53 - 6 283 30 19 7 43 5 35 0 7

24 org.billthefarmer.diary 98 - 3 48 5 4 4 16 2 7 1(2) 4

25 org.billthefarmer.tuner 91 - 3 171 0 0 6 6 6 6 0 16

26 org.disrupted.rumble 138 23 553 13 10 20 48 13 26 0 24

27 org.glucosio.android 324 - 17 621 35 35 1 7 0 35 0 116

28 org.gnucash.android 987 100K+ 22 1,169 18 10 3 29 2 20 1(2) 1,779

29 org.horaapps.leafpic 2,948 - 11 3,038 0 0 20 57 13 13 0 47

30 org.openintents.notepad 38 50K+ 9 127 2 2 20 38 12 14 1(2) 6

31 org.secuso.privacyfriendlynotes 46 5K+ 11 145 22 15 21 47 16 38 0 10

32 org.secuso...tapemeasure 8 5K+ 11 644 5 5 21 43 15 20 2(4) 6

33 org.yaxim.androidclient 91 100K+ 10 205 0 0 10 25 8 8 0 68

34 ru.henridellal.emerald 42 10K+ 8 108 7 7 17 27 6 13 0 5

35 se.bitcraze.crazyfliecontrol2 85 10K+ 12 713 7 7 55 189 34 41 2(4) 22

36 tellh.com.gitclub 620 - 15 1,102 0 0 10 84 7 7 0 49

Total 469 19,778 255 212 872 2,224 491 746 13 -

sizes of MOD and LIVE, respectively. In general, there are more access paths in LIVE than MOD,
indicating that some access paths remain unchanged through the app lifecycle (e.g., łconstantsž).
As mentioned earlier, the intersection between MOD and LIVE defines the internal state NISTATE𝑖𝑛 ,
whose size is reported in Column IN. As the results show, IN is consistently less than MOD and
LIVE among all tested apps, except for app#8, app#9, and app#25, in which cases IN = MOD. Adding
the internal state size IN and external state size EX together, the overall app state size is shown in
Column S (i.e., S = IN + EX). Finally, as discussed in Section 4, some access paths in the NISTATE
may be aliases. Column Alias shows the number of alias groups and the number of aliases in total,
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which (1) confirms the necessity of aliasing analysis, and (2) shows that aliases do not occur often
or in large groups in the NISTATE.

State Comparison with Prior Work. It is important to note that internal necessary instance state
(Column IN) is significantly smaller than the number of mutable activity fields in the app (shown
in Column MUT) ś the app state considered by recent work [Shan et al. 2016]. On average, IN is
only 1.5% of MUT. The reduction mainly comes from a more rigorous definition of the necessary
instance state based on the liveness and modification properties, as well as field-sensitive analysis
results (i.e., access paths). Moreover, the prior work [Shan et al. 2016] does not cover the external
state which also represents a large portion of the total necessary instance state (see Column EX).

Revealed State Issues. We manually compared the state identified by the static analyzer (Column
S in Table 5 and 6) with the state actually saved by developers in the original app code (Column S𝑠
in Table 6). Interestingly, we found that a large number of necessary access paths are not saved and
restored, as reported in Column S𝑢 (i.e., S - S𝑠 ). In total, there were 231/393 identified access paths
(including GUI properties and activity fields) that were not saved and restored in the original apps,
which may lead to various state issues during the user interaction. To confirm this, we manually
tested activities of each app in 𝐺𝑟𝑜𝑢𝑝𝑆 based on the identified unsaved access paths S𝑢 to verify if
they cause any state issues. The testing results confirm that 200 out of 230 unsaved access paths do
trigger state issues. The number of issues from the user’s perspective is reported under Column
Issue𝑑 . Note that a state issue often involves multiple (necessary) access paths in the app state.
Most issues are manifested as the loss of some user interaction state. Table 7 reports some examples
of the newly-revealed state issues exposed by our approach. As we will show later, all these new
state issues can be fixed by the runtime module with generated state-saving/restoring routines.

Table 6. New Issues discovered by applying LiveDroid-Analyzer on 𝐺𝑟𝑜𝑢𝑝𝑆 .
S: size of NISTATE, Issue𝑑 :#issues detected, S𝑢 : #access paths of unsaved NISTATE,

S𝑠 : #access paths of saved NISTATE, FP% : false positive ratio

Package S Issue𝑑 S𝑠 S𝑢 FP%

com.alaskalinuxuser.hourglass 6 1 0 6 0

com.fsck.k9 25 2 23 2 0

com.github.xloem.qrstream 12 1 0 10 16.7

com.kiminonawa.mydiary 8 3 0 8 0

com.ringdroid 10 1 0 7 30.0

com.tastycactus.timesheet 27 4 1 24 7.4

de.baumann.browser 41 3 14 27 0

de.smasi.tickmate 23 2 4 13 26.1

moe.minori.pgpclipper 12 3 2 9 8.3

nl.asymmetrics.droidshows 35 2 32 2 2.9

org.billthefarmer.diary 7 4 3 4 0

org.billthefarmer.tuner 6 1 0 6 0

org.disrupted.rumble 26 2 13 4 34.6

org.glucosio.android 35 3 31 4 0

org.gnucash.android 20 1 1 17 10.0

org.horaapps.leafpic 13 1 3 10 0

org.openintents.notepad 14 3 1 10 21.4

org.secuso.privacyfriendlynotes 38 6 20 18 0

org.secuso.privacyfriendlytapemeasure 20 1 5 15 0

org.yaxim.androidclient 8 1 3 3 25.0

tellh.com.gitclub 7 1 6 1 0

Total 393 46 162 200 7.9
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Table 7. Example issues revealed by static analysis.

Package State issues

com.alaskalinuxuser.hourglass timer state lost and paused

com.fsck.k9 bound email account lost

com.fsck.k9 entered email text lost

de.baumann.browser webpage reloaded

org.gnucash.android search results disappear

org.horaapps.leafpic player position reset to 0

1 // activity_bootloader.xml

2 <RelativeLayout xmlns:android="http://schemas.android.com/..." ...>

3 <TextView android:id="@+id/bootloader_title" ... /> //false positive

4 ....

5 <TextView android:id="@+id/bootloader_statusLine" ... /> //true positive

6 ...

7 </RelativeLayout>

8

9 // BootloaderActivity.java

10 public class BootloaderActivity extends Activity {

11 private TextView mConsoleTextView; //true positive

12 ...

13 @Override

14 protected void onCreate(Bundle savedInstanceState) {

15 super.onCreate(savedInstanceState);

16 setContentView(R.layout.activity_bootloader);

17 ...

18 this.mConsoleTextView = (TextView) findViewById(R.id.bootloader_statusLine);

19 }

20 @Override

21 protected void onPostExecute(String result) { ... //callback of an AsyncTask

22 appendConsoleError("Firmware file can not be found.");

23 ...

24 }

25 public void appendConsoleError(String status) { ...

26 this.mConsoleTextView.append("\n" + status);

27 ...

28 }

29 public void startFlashProcess(final View view) { //a click handler callback

30 this.mConsoleTextView.setText("");

31 ...

32 }

33 }

Code 5. Case Study: False Positive and True Positive.

False Positives and False Negatives. Our manual examination also showed that some reported
necessary access paths are actually false positives ś they do not trigger any actual state issues even
when they are unsaved. These access paths are reported in Column FP% of Table 6. While false
negatives are possible (e.g., due to reflection), we did not find any false negatives in our evaluation.
In general, our static analyses are designed to be over-approximate, modulo unhandled language
features. Next, we focus our discussions on false positives.
The cost of false positives is extra state saving and restoring; developers are not required to

handle false positives. Our examination reveals two main causes of false positives. The first reason
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is unrealizable execution paths. Like other data-flow analyses, our entry-liveness and may-modify
analyses are conservative in the sense that they assume all the control-flow paths are possible.
However, depending on the constraints along the paths, many of them may never happen. Similarly,
there could be semantic constraints among the GUI elements that restrict the order in which
callbacks may be invoked. Our callback modeling does not reason about such constraints. Another
cause of false positives is our coarse-grained UI property analysis, which does not distinguish
between different GUI elements of the same type. This can be improved by tracking updates to
each individual GUI element. The challenge lies in the fact that a GUI element reference in the
activity class may refer to different GUI elements (in the layout file) at different times. On the other
hand, note that the imprecision of alias analysis does not introduce false positives, because if one
reference is true positive, all of its aliases are also true positives ś they point to the same object.

Case Study. Code 5 presents an example activity from the project se.bitcraze.crazyfliecontrol2.
First, our entry-liveness and may-modify analyses find that the access path this.mConsoleTextView is
both live and may be modified (see lines 28 and 32). On the other hand, the UI property analysis
finds that the text properties of two GUI elements, bootloader_title and bootloader_statusLine, both
belong to the external necessary instance state because some APIs of TextView are invoked, append()
and setText(). In total, our static analyses report three positives. However, one of the GUI properties,
bootloader_title.text, is a false positive as its instance never gets modified in any callback. This false
positive comes from the imprecision of the UI property analysis. Furthermore, it is not hard to find
that the base objects of the external and internal necessary instance states (bootloader_statusLine
and this.mConsoleTextView) actually refer to the same GUI element (see line 18). This indicates
opportunities for improving our static analyses. In fact, if we can infer that a View reference always
points to the same GUI object, we can save just the GUI object and link the View reference to the
object during state recovery. We leave the exploration of such improvements for future work.

7.3 Generating State-Saving/Restoring Routines

In the following, we first evaluate the applicability of code generation for saving/restoring state
using the Android Studio plugin and the APK patching tools, and report the time and space costs
of code generation, as well as the runtime costs of state saving and restarting. For the applicability
evaluation, we use apps in 𝐺𝑟𝑜𝑢𝑝𝑆 ; For the cost measurements, we randomly select 8 apps from
𝐺𝑟𝑜𝑢𝑝𝑆 as they involve significant manual efforts. We ensured that the 8 apps include 4 apps with
collections (i.e., such as List and Set) and 4 apps without collections from 𝐺𝑟𝑜𝑢𝑝𝑆 . The reason we
separate these two cases is because the collections, as dynamic data structures, may carry relative
larger amount of data, in which case the benefits of reduced state size might be more significant.

Applicability. First, we installed the LiveDroid-Plugin on Android Studio 3.4. Then, for each app
in 𝐺𝑟𝑜𝑢𝑝𝑆 , we loaded its source code into Android Studio and manually went through the code
generation process with the installed plugin. We confirmed that the plugin was applied to all the
apps successfully. Next, we tested the developed patching tool by first generating APK files for all
the apps in𝐺𝑟𝑜𝑢𝑝𝑆 . Then, we applied the patching tool to each APK file. Again, we did not observe
any issues when using the tool. These results demonstrate the applicability of our developed tools.

Code Generation Costs. The time costs of code generation and patching are both reported in
Table 8. The łPluginž column shows the average time cost for applying the code generation, at the
activity level, using the plugin. It contains two sub-columns: one for the first time applying and
one for the second time. Note that the first-time application incurs more setup costs (e.g., inserting
setter/getter methods). On average, the time cost is less than 500ms, hence LiveDroid-Plugin’s
responsiveness makes it suitable for being used in development environments. The łPatchingž
column reports the total processing time of each APK file; on average, it takes about 30 seconds.
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Table 8. Time costs (ms) of code generation.

Package Plugin

1st 2nd Patching

com.alaskalinuxuser.hourglass 257 184 17,691

com.fsck.k9 672 470 35,676

com.kiminonawa.mydiary 302 220 18,436

com.tastycactus.timesheet 205 135 26,515

de.smasi.tickmate 539 457 19,327

nl.asymmetrics.droidshows 576 351 17,745

org.gnucash.android 729 514 451,231

org.secuso.privacyfriendlynotes 275 231 19,809

Arithmetic Mean 444 320 75,804

Table 9. Space costs of LiveDroid-Plugin.

Package APK (Kilobytes) Lines of Code (SLoC)

before after before after

com.alaskalinuxuser.hourglass 2,028 2,143 18.9K 19.0K

com.fsck.k9 6,562 6,640 214.6K 214.8K

com.kiminonawa.mydiary 16,305 16,306 64.5K 64.6K

com.tastycactus.timesheet 58 206 3.4K 4.1K

de.smasi.tickmate 1,467 1,557 15.8K 16.4K

nl.asymmetrics.droidshows 227 320 9.7K 10.4K

org.gnucash.android 7,882 7,889 109.1K 109.3K

org.secuso.privacyfriendlynotes 2,543 2,633 26.7K 27.2K

Arithmetic Mean 4,634 4,712 57.8K 58.2K

Besides time costs, code generation also increases the size of source code. Table 9 reports the
space costs of code generation using the plugin (in terms of #lines of source code) and patching (in
terms of APK file size). The increase is relatively small for large apps and more significant for small
apps. On (arithmetic) average, there is a 0.7% (58.2K vs. 57.8K) increase in terms of lines of code for
using the plugin and a 1.6% (4712KB vs. 4634KB) increase in terms of APK size.

Time Saving with Reduced State Size. We compare the costs of state saving/restoring using
LiveDroid with the costs of saving/restoring using all mutable activity fields [Shan et al. 2016].
To simulate the app restarting scenarios, we turned on the łNo background processž option in
the test smartphone’s Settings ś this way the OS will automatically kill an app once it is moved
into background and relaunch it once the user switches back to it. Table 10 presents the results
of time cost for saving and restoring, and speedup gained using LiveDroid, compared to saving
and restoring all mutable activity fields. In general, for apps with collections, the speedup can
reach over 140X for state saving and over 40X for state restoring. The difference between the
speedups for saving and restoring is due to flash memory’s asymmetric read/write speeds. For apps
without collections, the speedups are relatively smaller, ranging from 1.5-17.5X for state saving
and 1.1-6.8X for state restoring, respectively. The exact speedup depends on the reduction in the
number of access paths (see columns MUT and S in Table 5) and the types of the access paths (e.g.,
a primitive or an object with multiple fields). These results confirm the end-to-end benefits of the
proposed state identification techniques (Section 4), which shrink the app state substantially, hence
substantially reducing the costs of state saving/restoring.

Correctness of Code Generation. To verify if the generated code works correctly or not, we
installed all the apps with generated state-saving/restoring routines on a Nexus 5x smartphone and
manually examined their behavior. First, we checked the 46 state issues we found based on the
static analysis (Section 7.2). The results show that all 46 issues were successfully fixed, because
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Table 10. Time costs (ms) of saving/restoring before and after LiveDroid-Plugin.

Package Saving time and speedup Restoring time and speedup

before after speedup before after speedup

de.smasi.tickmate 300.3 2.4 123.7X 56.8 1.4 41.0X

nl.asymmetrics.droidshows 283.0 2.0 141.1X 43.8 1.0 43.8X

org.glucosio.android 196.4 5.4 36.3X 29.6 1.4 21.6X

org.secuso.privacyfriendlynotes 71.4 2.3 30.8X 29.9 1.4 21.8X

com.alaskalinuxuser.hourglass 173.6 115.3 1.5X 217.1 205.4 1.1X

com.fsck.k9 156.5 23.8 6.6X 30.3 5.5 5.5X

com.kiminonawa.mydiary 158.2 9.0 17.5X 25.8 3.8 6.8X

org.billthefarmer.diary 244.6 145.7 1.7X 42.3 20.8 2.0X

Geometric Mean 182.9 11.0 16.6X 44.7 4.7 9.5X

the issues were due to unsaved necessary access paths, and the generated state-saving/restoring
routines ensured these necessary access paths are saved and restored. In addition, we checked if
there are any new issues introduced by the code generation; none was observed. This is expected as
the data saving itself does not cause any functional side-effect and data restoring occurs after all the
initialization operations, ensured by the onRestoreInstanceState() callback. In actual development
scenarios, the app code may evolve over time. In such cases, developers may re-apply our tools to
their applications after subsequent source code changes; this would not lead to issues because our
tools only insert saving and restoring code to two callbacks dedicated for state saving and restoring,
and new code generations will simply overwrite the previous versions.

8 RELATED WORK

This section summarizes relevant work on mobile app reliability, especially work pertaining to
app restarting. AppDoctor [Hu et al. 2014] identifies app issues related to activity restart based
on orientation change events (a common restart trigger). However, AppDoctor does not reveal
the root causes of issues, neither does it propose a solution to the identified issues. Zaeem and
others [Zaeem et al. 2014] have built GUI models to generate test cases for mobile apps. Their
tool supports richer interaction events such as orientation changes, pause-resume, kill-restart,
and back-key events to trigger more app issues. Their report includes issues related to restarting.
Adamsen and others [Adamsen et al. 2015] perform testing via neutral event sequences, including
lifecycle events, such as pause-resume, pause-stop-restart, and pause-stop-destory-create. Our
approach complements these efforts by providing an automatic solution to avoid states issues.
Farooq and Zhao [2018] have introduced a runtime sub-system, RuntimeDroid, that enables

restarting-free handling for configuration changes. RuntimeDroid can update app resources
automatically during a runtime change without restarting the activity. However, their work focuses
on runtime configuration changes and is unable to address restarting triggered by high-memory
pressure. In comparison, our work covers both restarting scenarios. Shan et al. [Shan et al. 2016]
used program analysis to discover Kill and Restart (KR) errors in Android apps; they combined
static and dynamic analysis to verify KR errors. In contrast, our work focuses on identifying critical
app data that should be preserved during the app restarting, followed by an automatic save/restore
solution. More recently, Lebeck et al. [Lebeck et al. 2020] proposed a new memory manager for
Android, which swaps the apps to the external storage instead of killing them to reclaim memory
when memory runs low. However, enabling disk swapping may shorten the lifespan of the flash
drive [Apple 2020c]. Moreover, activity will still be restarted during runtime configuration changes.
In comparison, our work is capable of handling app killing and activity restarting by identifying
and preserving necessary instance states.
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More generally, there have been research efforts on the evaluation, validation, and refactoring of
mobile apps with different focus compared to ours, such as identifying race conditions and energy
bugs using dynamic analysis [Hsiao et al. 2014; Hu and Neamtiu 2011; Maiya et al. 2014], detecting
network and GPS location bugs [Liang et al. 2014], as well as the uncovering of app quality related
problems [Arijo et al. 2011; Berardinelli et al. 2010; Lillack et al. 2014; Liu et al. 2014; Muccini
et al. 2012] and memory leaks [Yan et al. 2013]. Bavota and others[Bavota et al. 2012] studied the
practices of refactoring and their consequences, e.g., the degree to which faults can be caused by
refactoring. In addition to improving design quality, there is an increase in non-functional quality
refactoring, such as refactoring global-state with thread-local-state [Schäfer et al. 2010], refactoring
built-in locks with more flexible ones[Schafer et al. 2011], refactoring the concurrent programming
constructs [Okur et al. 2014], and refactoring for energy efficiency [Sahin et al. 2014]. Unlike prior
work, our work aims for a refactoring-based solution to address app state issues.

Static analyses with access paths have been seen in prior work, such as taint analysis [Arzt et al.
2014; Tripp et al. 2013], alias analysis [De and D’Souza 2012] and concurrency analysis [Blackshear
et al. 2018; Samak et al. 2015, 2016]. FlowDroid [Arzt et al. 2014] uses access paths to propagate
reachable objects through the program path under scrutiny. As alias analyses commonly [Sridharan
et al. 2005; Xu et al. 2009; Yan et al. 2011] use context-free language (CFL) to express alias relations,
fields are part of the language and access paths provide the abstraction of fields. De and D’Souza
[2012] avoid construction of points-to graphs and compute access paths for reachable local variables
and static fields at each program statement. In [Blackshear et al. 2018] authors use access paths for
race detection between syntactically identical access paths, where access paths are rooted at callee
functions. All of these works use access paths within their analyses specialized to their context,
similarly we use access paths for reachable fields from Activity class at hand for analysis.

9 CONCLUSION

This work targets a major challenge in developing reliable mobile apps ś a volatile runtime
environment that repeatedly destroys app state through activity and app-level restarts. The solution
is an automatic approach that combines callback modeling, static analysis, and runtime data
saving/restoring techniques. The callback modeling categorizes different callbacks based on their
invocation orders relatively to the user interaction. The static analysis takes both app code (Java
class) and GUI interface (layout file) as inputs and identifies critical external and internal app
state via novel, necessary instance state, abstraction. The runtime module saves and restores the
identified app state, based on the actual aliases. Finally, the evaluation confirms that the developed
tool set LiveDroid, including an Android Studio plugin and an APK patcher, is able to find the
critical app state from a large space of candidate access paths and substantially boost reliability of
apps running in volatile runtime environments through code generation.
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