
RuntimeDroid: Restarting-Free Runtime Change Handling
for Android Apps ∗

Umar Farooq
University of California, Riverside

ufaro001@ucr.edu

Zhijia Zhao
University of California, Riverside

zhijia@cs.ucr.edu

ABSTRACT
Portable devices, like smartphones and tablets, are often subject to
runtime configuration changes, such as screen orientation changes,
screen resizing, keyboard attachments, and language switching.
When handled improperly, such simple changes can cause serious
runtime issues, from data loss to app crashes.

This work presents, to our best knowledge, the first formative
study on runtime change handling with 3,567 Android apps. The
study not only reveals the current landscape of runtime change
handling, but also points out a common cause of various runtime
change issues – activity restarting. On one hand, the restarting
facilitates the resource reloading for the new configuration. On
the other hand, it may slow down the app, and more critically, it
requires developers to manually preserve a set of data in order to
recover the user interaction state after restarting.

Based on the findings of this study, this work further introduces a
restarting-free runtime change handling solution – RuntimeDroid.
RuntimeDroid can completely avoid the activity restarting, at the
same time, ensure proper resource updating with user input data
preserved. These are achieved with two key components: an online
resource loading module, called HotR and a novel UI components
migration technique. The former enables proper resources loading
while the activity is still live. The latter ensures that prior user
changes are carefully preserved during runtime changes.

For practical use, this work proposes two implementations of
RuntimeDroid: an IDE plugin and an auto-patching tool. The
former allows developers to easily adopt restarting-free runtime
change handling during the app developing; The latter can patch
released app packages without source code. Finally, evaluation with
a set of 72 apps shows that RuntimeDroid successfully fixed all
the 197 reported runtime change issues, meanwhile reducing the
runtime change handling delays by 9.5X on average.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Software and its engineering;

∗Github homepage: https://github.com/ufarooq/RuntimeDroid.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiSys ’18, June 10–15, 2018, Munich, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5720-3/18/06. . . $15.00
https://doi.org/10.1145/3210240.3210327

Weather&Clock [9] 3-7 seconds delay

Apps Issues

ImapNote 2 [3] loss of inputs

Vlille Checker [8] overlapped GUI
Alarm Klock [1] app crash

Figure 1: An example runtime change and its issues.

KEYWORDS
Runtime Configuration Change, Android, Event Handling
ACM Reference Format:
Umar Farooq and Zhijia Zhao. 2018. RuntimeDroid: Restarting-Free Run-
time Change Handling for Android Apps . In MobiSys ’18: The 16th An-
nual International Conference on Mobile Systems, Applications, and Services,
June 10–15, 2018, Munich, Germany. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3210240.3210327

1 INTRODUCTION
Nowadays, smartphone, tablets, and wearable devices are emerging
as an essential component of modern life. According to IDC [27],
over 1.46 billion smartphones were shipped in 2017. Among them,
85% are based on the Android platform.

Unlike traditional computers, such as desktops and laptops, these
smart devices are more portable and subject to higher frequency
of configuration changes, such as screen rotation, screen resizing,
keyboard attachment, and languages switching. Such changes can
happen at runtime while users interact with the devices, known as
runtime configuration changes or runtime changes. Recent studies
have shown that runtime changes happen regularly as users operate
their apps. For example, on average, users change the orientation of
their devices every 5 mins accumulatively over sessions of the same
app [53]. For multilingual users, changing the language setting is of-
ten needed [16] and for tablet users, attaching an external keyboard
often ease the uses of tablets [7]. As newer versions of Android
system with multi-window supports getting adopted, it is projected
that runtime changes will happen more frequently in more apps in
the future. Each time a user drags the boundary between two split
windows, a runtime change would be triggered [4].
Rise of Runtime Change Issues. Just as runtime changes become
common to mobile apps, issues with runtime change mishandling
also increases. Our preliminary examination of 765 repositories
from Github shows that 342 of them had at least one issue due
to runtime change mishandling, such as slowness, losing inputs,
malfunctioning user interface, and even app crashes. All these
issues can be triggered by simply rotating the device or attaching a
keyboard. Figure 1 lists four example issues [1, 3, 8, 9] triggered each
time a runtime change happens. In general, the runtime change
issues can manifest in a variety of ways (see Section 3).

110

https://github.com/ufarooq/RuntimeDroid
https://doi.org/10.1145/3210240.3210327
https://doi.org/10.1145/3210240.3210327

MobiSys ’18, June 10–15, 2018, Munich, Germany Umar Farooq and Zhijia Zhao

Formative Study. To better understand the landscape of runtime
change handling and examine the root causes to various runtime
change issues, this work presents, to our best knowledge, the first
formative study on runtime change handling strategies and their
related issues. The study is based on a large corpus of 3,567 Android
apps with 16,160 activities and a focused corpus of 72 apps with 197
reported runtime change issues. All the studied apps are selected
from Github based on their popularities and qualities, including
many popular apps from Google Play Store (see Section 3).

The study results show that a large portion of Android apps
(92.3%) rely on the passive restarting-based runtime change handling.
Basically, the system first deconstructs the current user activity,
including destroying all UI components and the internal logic data,
then reconstructs the activity with the alternative resources (e.g.,
layouts and drawables) that can match to the new configuration
(e.g., landscape orientation).

Though activity restarting facilitates the loading of alternative
resources, the study results indicate that it raises risks of a series
of critical runtime issues. First of all, restarting an activity invokes
a sequence of callbacks (known as lifecycle methods), which may
carry expensive operations, such as network connecting, database
accessing, and other blocking operations. As a result, the app may
become less responsive during runtime changes. More critically,
to recover the user interaction state after activity restarting, it
often requires developers to manually preserve a set of critical data.
However, identifying such data and properly saving and restoring
it are non-trivial and error-prone, especially as the complexity of
app logic grows. When such data is not handled properly, runtime
change issues as aforementioned would appear.
State of The Art. Some recent work [57] tries to identify the proper
set of the data to save and restore during an activity restarting.
However, since such data highly depends on the app logic, a generic
data analysis often fails to identify the proper set of data. As a
consequence, such approaches often produce over-conservative
results – saving and restoring data that is not necessarily needed.
Even worse, it is actually more challenging to verify if the data is
correctly saved and restored, due to the availability of a wide range
of APIs used for data saving and restoring [10–13].
Solution of This Work. Unlike prior efforts, this work proposes a
restarting-free runtime change handling solution – RuntimeDroid.
By preventing the activity from restarting, RuntimeDroid ensures
that all the activity data remains live after runtime changes, thus
making the data preservation a trivial task.

On the other hand, without activity restarting, the resources
needed for the new configuration will not be automatically loaded.
To address this issue, RuntimeDroid features HotR – a novel online
resource loading solution that systematically loads the resources
needed for the new configuration while the activity remains live.
In cases where new UI resources are loaded, it will automatically
migrate the properties of the original UI components to the newly
generated UI components. We refer to this data migration technique
as dynamic view hierarchy migration.

For easy adoption of RuntimeDroid, this work presents two
alternative implementations:

• RuntimeDroid-Plugin: an Android Studio plugin that allows
developers to easily adopt the restarting-free runtime change

handling into the current app development by simply extending
a customized activity class.
• RuntimeDroid-Patch: an automatic patching tool that can
patch a compiled Android app package (i.e., APK file) to enable
restarting-free runtime change handling, without source code.

In neither implementation would RuntimeDroid require any
modifications to the existing Android framework.

We evaluated RuntimeDroid on a corpus of 72 Android apps
from Github and Google Play Store with 197 reported runtime
change issues. The results show that, after applying RuntimeDroid
to the apps with runtime change issues, 197/197 issues have been
fixed, thanks to the adoption of restarting-free handling strategy.
Furthermore, RuntimeDroid reduces the runtime change handling
time by 9.5X on average. On the other hand, RuntimeDroid may
introduce some space overhead due to the factoring or patching,
but typically less than 1% after packaging.
Contributions. This work makes a four-fold contribution.
• It provides, as far as we know, the first formative study on the
landscape of runtime change handling, and points out a type
of emerging issues in mobile apps – runtime change issues and
its root cause – activity restarting.
• It proposes a versatile restarting-free runtime change handling
solution – RuntimeDroid, which mainly consists of two novel
components, an online resource loading module and a dynamic
view hierarchy migration technique.
• It offers two practical implementations: RuntimeDroid-Plugin
and RuntimeDroid-Patch. They together make the adoption
of restarting-free runtime change handling an easy task both
during and after the app development.
• Finally, this work evaluates RuntimeDroid and demonstrates
its capability in addressing real-world runtime change issues
and improving the responsiveness in general.

In the following sections, we will first give a brief introducation
of Android programming and runtime change handling (Section 2),
then present the formative study on runtime change handling,
including its common issues (Section 3). After that, we will present
RuntimeDroid and its implementations (Section 4), followed by
the evaluation (Section 5). Finally, we will discuss related work and
conclude this work (Sections 6 and 7).

2 BACKGROUND
In this section, we first briefly introduce the programming model
for Android apps, then discuss runtime changes and their basic
handling strategies.

2.1 App Programming Model
Android apps are primarily written in Java and built around the
concept of activities. In brief, an activity represents a screen with
UI components and the app logic behind the screen.
Activity Lifecycle. As the user interacts with an app, an activity
may go through a series of stages in its lifecycle, such as created,
started, resumed, paused, stopped and destoryed. To help the
app transition among the stages, Android system provides a core
set of lifecycle callback methods that will be invoked during the
transitions, as illustrated in Figure 2. By overriding the lifecycle

111

Restarting-Free Runtime Change Handling for Android Apps MobiSys ’18, June 10–15, 2018, Munich, Germany

onCreate()

onStart()

onResume()

onPause()

onStop()

onDestroy()

app launch

Created

Started

Destroyed

Paused

Stopped

user
interacts

Resum
ed

onStart(), onRestart()

onResume()

Figure 2: Lifecycle methods of an activity

callbacks, developers can customize the responses to lifecycle stage
transitions, such as establishing server connections, initializing the
data structures, or acquiring system resources (e.g., camera).
Event-driven Model. Like other GUI frameworks, Android models
the user-app interactions as a sequence of event handling. Under
the Android system, typical events include user input events (e.g.,
clicks and swipes) and sensor events (e.g., GPS and orientation
changes). To respond to these events, developers need to implement
corresponding handler methods. For example, to handle long-touch
clicks of a button (i.e., holding the button for one second), developers
need to first register a long-touch click listener for the button, then
override the onLongClick() handler method.

To process events, Android adopts a single-thread model. When
an app is started, a Linux process is created with a single thread,
called the UI thread. The UI thread receives event messages and
dispatches them to the corresponding callback/handler methods to
respond to the events. This single-thread model requires developers
to limit the workload of UI thread to keep the app responsive.

2.2 Runtime Change Handling
Unlike the traditional operating systems for desktops and laptops,
Android is an operating system targeting the mobile devices that
may frequently encounter various runtime configuration changes
during its interactions with users.
Runtime Changes. Table 1 lists the runtime configuration changes
defined by the Android API (Level 25). There are several runtime
changes related to the screen, including screen size change, screen
orientation change and touch screen change. Note that a common
device rotation will trigger both screen orientation and screen size
changes (since Android 3.2) and window resizing in multi-window
mode will only trigger screen size changes (since Android 7).

Besides screen-related changes, there are also runtime changes
for cellular network, keyboard availability, language, font size, and
layout direction. Among these changes, screen orientation change,
screen size change, and keyboard availability change are commonly
considered by developers (see Section 3).
Resources. During a runtime change, an app may need to load
alternative resources based on the new configuration. For example,
when switching the screen from portrait mode to landscape mode,
an app may need to load a different layout designed for landscape
mode. In general, Android allows developers to provide alternative
resources for different configurations to enable rich user experiences.
They can also specify the default resources in cases no resources are
available for the new configuration. All app resources are grouped
and placed in folder /res under the project root directory.

Table 1: Runtime changes (API 25)
Change Description
mcc/mnc IMSI mobile country/network code
locale language

touchscreen touchscreen
keyboard keyboard type

keyboardHidden keyboard accessibility
fontScale font scaling factor

uiMode user interface mode
orientation screen orientation
screenSize available screen size

smallestScreenSize physical screen size
layoutDirection layoutDirection

MyProject/
src/
MainActivity.java

res/
drawable/
graph.png
layout/
main.xml
layout-land/
main.xml
layout-port/
main.xml
values/
strings.xml
values-sp/
strings.xml

<LinearLayout … >
<TextView android:id="@+id/text1"

android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/hello" />

<Button android:id="@+id/b1"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@+string/hello" />

</LinearLayout>

<resources>
<string name="hello">hello</string>

</resources>

Figure 3: Example resources

Figure 3 shows an example resource folder, where the sub-folder
/layout contains the default layout in XML format main.xml for
the main activity, while folders /layout-land and /layout-port
contain the layouts customized for the landscape mode and portrait
mode, respectively. In addition to layouts, some other commonly
used resources include strings, drawable images, menus, colors,
dimensions, and styles. Developers can also define resources for
different combinations of configurations, such as resources for
Spanish language under the landscape mode (/layout-sp-land).
A complete list of available resources and their naming conventions
can be found in the Android API Guides [5].

For easy access to the resources, Android dynamically generates
a resource class R.java based on the available resources (i.e., /res).
The generation may happen in two situations: (i) when an activity
is created and (ii) when a runtime change happens. The second
situation is critical to the design of RuntimeDroid (see Section 4).

To effectively handle various runtime changes and load needed
resources accordingly, Android offers two basic strategies: H1 -
restarting-based handling (default) and H2 - customized handling.
H1: Restarting-based Handling. By default, to handle a runtime
change, Android would first kill (deconstruct) the current activity,
then restart a new activity with resources matched to the new
configuration. This process typically involves transitions of all the
lifecycle stages of an activity, from Paused all the way back to
Resumed again (see Figure 2).

In the simplest cases, the default runtime change handling does
not require any extra programming efforts from the developers,
except providing alternative resources for certain configurations
based on the design of their app. Beyond that, the activity restarting
automatically handles and updates the resources accordingly.

112

MobiSys ’18, June 10–15, 2018, Munich, Germany Umar Farooq and Zhijia Zhao

However, in slightly more complex cases, an activity may carry
various data, such as articles in a news app or the state of a game.
When the old activity gets killed during a runtime change, such data
is destroyed together. To avoid content reloading or losing the user
interaction state, developers need to preserve a set of critical data
during the activity restarting. There are two basic ways to preserve
the data: saving/restoring activity state and retaining objects. For
easy references, we refer to them as H1.1 and H1.2, respectively.

• H1.1: saving/restoring activity state. Before deconstructing the
activity, the systemfirst calls onSaveInstanceState()method
to save the activity state into a Bundle object as a collection of
key-value pairs. In fact, by default, this method already saves
some transient information for some UI components, such as
the text in an EditText or the selection of a CheckBox. To save
additional state data, developers need to override this method
and add extra key-value pairs into the Bundle object.
When an activity instance is recreated, developers can recover
the activity state by extracting data from the Bundle object,
which might be performed either in onCreate() callback or in
onRestoreInstanceState() callback.
• H1.2: retaining objects. When the data to save is complex or
substantial in size, a more suitable way is retaining the data as
objects. This can be achieved with fragment, which represents
a behavior or a portion of an activity. There are four basic
steps: (i) extend the Fragment class and declare references to
the stateful objects; (ii) call setRetainInstance(true) when
the fragment is firstly created; (iii) attach the fragment to the
activity; and (iv) retrieve the fragment with FragmentManager
when the activity is restarted. Despite the activity restarting,
the data encapsulated by fragments remains accessible.
Besides fragment, another solution to retain objects during
activity restarting is adopting the ViewModel and LiveData
components, which are recently introduced in the Architecture
Components Library [19]. In this case, developers need to create
a ViewModel class with critical data encapsulated, where the
critical data is declared as LiveData. In this way, the Android
framework will retain the ViewModel object while the activity
object is recreated (i.e., activity restarting), hence the critical
data will remain live after the restarting.

Both H1.1 and H1.2 can be adopted by the default runtime change
handling for preserving critical data. However, the complexity lies
in identifying the various data to preserve. As shown later in the
formative study, developers often fail to identify the critical data or
do not save/restore it correctly.
H2: CustomizedHandling. Instead of letting the activity to restart,
developers may choose to directly program the runtime change
handling. To do this, developers first need to set the runtime change
flag android:configChanges for self-handling changes in the app
configuration file (i.e., Manifest.xml). Once flagged, a runtime
change will no longer result in any activity restarting. Instead, it
will trigger onConfigurationChanged() callback. By overriding
this callback, developers can manually load the altenative resources
for the new configuration.

However, manually updating resources for different runtime
changes requires deep understanding on the types of resources and
their allocation mechanisms, thus this option is usually beyond the

reach of most Android developers. As shown later in the formative
study, few apps (7.7%) actually adopt this option in practice.

For certain runtime changes (e.g., screen orientation and screen
size), developers may opt to disable them by setting flags in an
activity declaration (since API 24). Once they are specified, users
cannot change the orientation or resize the screen (in multi-window
mode) under the activity. It is obvious that this setting limits app
functionalities, thus may negatively affect the user experience. We
refer to this option asH3. Note that H3 is only available to a subset
of runtime changes, rather than a general runtime change handling.

To understand how different runtime change handling strategies
(H1-H3) are adopted in practice, we next present a formative study
on real-world Android apps.

3 FORMATIVE STUDY
Our formative study on runtime change handling aims to address
two fundamental questions:
• RQ1 (Landscape): How do developers program runtime change
handling? What are the common practices?

• RQ2 (Common Issues & Causes): What are the basic types
of runtime change issues? Are there any common causes?

For each question, we first present the corpus and methodology,
then discuss the results and implications.

3.1 RQ1: Landscape
First, we examine the common practices of runtime change handling
in real-world Android apps.
Corpus-L. We collected Android apps from Github [2], mainly for
two reasons. First, as the largest code hosting service provider,
Github hosts a large number of industrial-grade Android apps, such
as Telegrammessenger [28], K-9 email [23], Google I/O [21], Amaze
File Manager [25], Timber player [26], and Wordpress [31], just to
name a few.Many of these apps are hosted onGoogle Play Store [22].
Second, with the availability of source code, our formative study
provides more precise runtime handling analysis.

To focus on popular apps, we sorted the searching results based
on the number of stars and the number of forks of each repository.
That is, only the top Android apps on Github are selected. To ensure
the collected repositories are Android apps, we checked the source
code of every selected project to ensure the existence of an app
manifest file AndroidManifest.xml (required by Android). After
searching and filtering, the corpus contains 3,567 apps with 16,160
activities and 24.7 M lines of code, referred to as Corpus-L.
Methodology. To analyze the runtime change handling for the large
volume of apps in Corpus-L efficiently, we developed an automatic
code analysis tool – RuntimeAnalyzer.

For each app in the corpus, RuntimeAnalyzer first parses its
manifest file and collects the basic runtime change configurations
for each registered activity. These include the settings for screen
orientation changes (screenOrientation) and resizing changes
(resizableActivity), and the setting for self-handling runtime
changes (configChanges). If configChanges is set (i.e., H2), the
analyzer will parse the activity class to examine if the callback
onConfigurationChanged() has been overridden.

To better understand the data preserving methods in the default
handling (Section 2), RuntimeAnalyzer also checks the uses of

113

Restarting-Free Runtime Change Handling for Android Apps MobiSys ’18, June 10–15, 2018, Munich, Germany

Table 2: Uses of Runtime Change Handling.
Handling Strategies #activities #app
Activity Restarting 14,934 (92.4%) 3,293 (92.3%)

Customized Handling 1,226 (7.6%) 274 (7.7%)

Table 3: Uses of Restarting-based Handling (H1).
Data Preservation Method #activities #app
saveInstanceState (H1.1) 999 (7.6%) 458 (12.7%)

Object Retaining (H1.2) 223 (1.7%) 105 (3.0%)
No Data Preservation 11,792 (90.6%) 3,024 (84.3%)

Table 4: Uses of Customized Handling (H2).
Overridden Callback #activities #app

onConfigurationChanged 155 (12.6%) 87 (31.7%)
No Overriding 1,071 (87.4%) 187 (68.3%)

state saving callback saveInstanceState() and the Bundle object.
If saveInstanceState() is overridden and the Bundle object is
also unpacked either in onCreate() or restoreInstanceState(),
then the handling is H1.1. Similarly, if a fragment is attached to the
activity with a call to setRetainInstance(true) or a ViewModel
is declared, then the handling would be categorized as H1.2.
Results. Tables 2-4 report the statistical results of the study. As
shown in Table 2, the restarting-based runtime change handling
(H1) absolutely dominates the handling strategies. Among the
16,160 activities examined, 92.4% choose H1, which covers 92.3% of
total apps. This is mainly due to its lower barriers to programming
than the customized handling (H2). H2 requires solid understanding
of resource loading mechanisms (see Section 2).

Among the activities with restarting-based handling, only 13.9%
leverage the callback saveInstanceState() (H1.1) to preserve
the data and 15.4% adopt object retaining (H1.2). In contrast, a
large portion of the activities (68.3%) provide no mechanisms for
data preserving at all. As the activity restarting invokes lifecycle
methods, such as onCreate() and onStart(), which provide the
basic UI initialization and even the data loading, in many cases, the
screen may appear the same as the one before the runtime change,
especially for simple activities. However, as the logic complexity
of an activity grows, restarting the activity without sufficient data
preservation makes the app vulnerable to various runtime change
issues (see Section 3.2).

Among the activities that choose the customized handling (H2),
only about one third (31.7%) actually override the callback method
onConfigurationChanged(). For the other two thirds, developers
do not provide alternative resources for different configurations,
thus there would be no need to override the callback. These results
indicates that manually resources updating is only practiced in a
limited way, due to its complexity.

Table 5 lists the statistics of runtime changes that are flagged
for self-handling (i.e., listed in configChanges). Among them, the
most popular ones include orientation, keyboardHidden, and
screenSize. Ironically, despite the flagging, as just mentioned in
Table 4, very few activities actually implement the “self-handling”.
They simply use the flags to prevent activities from restarting under
certain runtime changes.

Another interesting finding is a gap between screenSize (22.9%)
and orientation (32%). Actually, to handle orientation changes,

Table 5: Uses of Configuration Changes Properties.
Changes #activities #app
keyboard 326 (8.8%) 69 (25.2%)

mnc 17 (0.5%) 12 (4.4%)
mcc 16 (0.4%) 11 (4.0%)

locale 71 (1.9%) 20 (7.3%)
navigation 29 (0.8%) 18 (6.6%)
fontScale 22 (0.6%) 10 (3.6%)

layoutDirection 10 (0.3%) 6 (2.2%)
keyboardHidden 986 (26.8%) 225 (82.1%)

orientation 1,178 (32.0%) 271 (98.9%)
screenLayout 129 (3.5%) 20 (7.3%)

uiMode 20 (0.5%) 15 (5.5%)
screenSize 844 (22.9%) 198 (72.3%)

smallestScreenSize 37 (1.0%) 10 (3.6%)

developers need to specify both screenSize and orientation
(since Android 3.2). This gap implies that there exist many misuses
of the runtime change configurations configChanges.

Finally, the study shows that a small ratio of activities (15.5%) are
set with a fixed orientation (either landscape or portrait) and only
4.3% apps have fixed orientation for all the activities. Moreover, it
shows no activities actually disable the resizing in multi-window
mode. The results indicate that for most apps, developers would not
like to limit the functionalities by disabling the runtime changes.

3.2 RQ2: Common Issues and Causes
Corpus-S. To examine the issues in runtime change handling, we
collected another corpus with apps actually suffering from runtime
change issues, named as Corpus-S.

Corpus-S consists of 72 Android apps collected from Github, for
the same reasons as Corpus-L (see Section 3.1). 36 out of the 72 apps
are also hosted on Google Play Store [22], including quite a few
highly popular ones, such as Loop - Habit Tracker [24] with 1M
installs, WiFiAnalyzer [30] with 1M installs, Barcode Scanner [20]
with over 100M installs, and among others. Another reason that we
choose Github is for its availability of issue reports. The traceable
issue reports on Github allows us to easily identify specific apps
with runtime change issues. Together, Corpus-S composes of 507
activities with a total of 1.5M SLOC and 197 runtime change issues.
Methodology. Wemanually examine the runtime change issues one
by one and categorize them based on their manifestation. Overall,
there are four basic types: T1 - poor responsiveness, T2 - lost state,
T3 - malfunctioning UI, and T4 - app crash. Together, they reflect
the common issues that apps encounter during runtime changes.
T1: Poor Responsiveness. This type of issues causes significant
delays during runtime changes. The app Weather&Clock shown
in the introduction (Figure 1) falls into this category. In addition,
the study found three other apps reported with unexpected delays
during runtime changes.

Note that, poor responsiveness, despite often appearing with
runtime change mishandling, is less likely to be reported. First, as a
non-functional issue, some users and developers often choose not
to report it as “an actual issue”. Second, due to the lack of expertise
in runtime change handling, some developers consider the issues
as “how it is supposed to be” or "the issue of Android".
Causes: There are two basic conditions jointly contributing to the
occurrences of poor responsiveness during runtime changes: (i)

114

MobiSys ’18, June 10–15, 2018, Munich, Germany Umar Farooq and Zhijia Zhao

the use of restarting-based handling H1 and (ii) the existence of
blocking operations in the lifecycle callbacks.

The first condition causes an activity to restart, going through
the whole sequence of lifecycle stages (see Figure 2). Meanwhile,
the lifecycle methods are invoked one by one, from onPause()
to onResume(). If any of these lifecycle methods performs some
blocking operations, such as I/O operations, network connections
or Bitmap manipulations, there will be substantial extra delay(s)
for the runtime change handling. When the total delay becomes
significant, the user would observe it. In the weather app example
(Weather&Clock), the activity restarting triggers re-connecting to
the server and re-downloading the map and weather data. Together,
they contribute a delay of 3-7 seconds.
T2: Lost State. This is the most common type of issues triggered by
runtime changes – losing user interaction state. Note that runtime
changes may happen at any point during a user-app interaction
session. At the time a runtime change occurs, the user may have
already performed some actions and changed the state of some
UI components, such as entering some text, selecting an item, or
opening a dialog. With lost state issues, such user inputs will be
lost during runtime changes. In more serious cases, the users may
even lose their login state. Consequences like these frustrate users,
undermining the overall impression of the app qualities.
Causes: The study shows that most lost state issues are due to the
missing or insufficient data preservation with the use of restarting-
based handling (H1). As the activity is restarted, the associated
UI components will be destroyed together with their attributes,
like text, selection, and position. For built-in UI components with
assigned IDs, the system can automatically save/restore certain
editable attributes (e.g., text in EditText). However, this may not
cover all critical attributes of all UI components, not to mention the
internal logic data. Furthermore, the study shows that despite the
saving/restoring, the data may be reset with initial values during
runtime changes (e.g., by the onCreate() callback). The results
indicate that many developers who adopted the restarting-based
handling (H1) are not prepared for such detailed data handling
requirements, thus their apps may suffer from the loss of the user
interaction state at runtime changes.
T3: Malfunctioning UI. In some use scenarios, the study shows
that runtime changes can result in malfunctioning user interface,
such as overlapped views, stretched images, and mispositioned
menus. For example, in the setting view of Vlille Checker [8],
an app for self-service biking, runtime changes result in two layers
of GUIs overlapped with each other.
Causes: The issue happened in Vlille Checker is due to themisuse
of fragments in restarting-based handling (H1). When a runtime
change occurs, a new activity is restarted with a new fragment
attached. Meanwhile, the old fragment is still retained by the system,
thus overlapped with the new one. In general, the malfunctioning
UI issues are often caused by the improper ad-hoc handling of UI
components during the activity restarting.
T4: App Crash. In some cases, a simple runtime change, like screen
rotation, can cause an app to crash. When it happens, a message
“Unfortunately your app has stopped ” pops to the screen. This class
of issues is of the most severe type.

Button btn

runtime
change

AsyncTask
btn.setText() // NullPointer

activity instance A’activity instance A

Dialog dlg dlg.dismiss() // WindowLeaked

Figure 4: A common app crash scenario, caused by the mis-
use AsyncTask during activity restarting.

Causes: The study shows that a few Java and Android exceptions
commonly contribute to the app crashes, including NullPointer,
WindowLeaked, IndexOutofBound, and Instantiation. Among
them, NullPointer and WindowLeaked are the most common ones,
which are often triggered by the misuse of asynchronous function
calls (e.g., AsyncTask) with the restarting-based runtime change
handling H1. Figure 4 illustrates a common app crash scenario.

Before the runtime change, an AsyncTask instance was created
by the activity instance A. Some time after the runtime change,
the AsyncTask instance finished and attempted to update a UI
component and dismiss a dialog. However, after the restarting, the
activity instance had become A′. Thus, neither the dialog or the
GUI component is available. Accesses to these components would
result in a NullPointer exception and WindowLeaked exception,
respectively, causing the app to crash.
Discussion on Common Causes. On one hand, runtime change
issues exhibit a variety of consequences, from the loss of an input to
brutal app crashes. On the other hand, based on the cause analysis,
the study results indicate that they share a common condition – the
adoption of the restarting-based runtime change handling (H1).

In general, activity restarting requires developers to take special
care of the of lifecycle method design (T1), the GUI attributes (T2
and T3), the state of activity logic objects (T2), as well as use of
asynchronous function calls (T4). These strong requirements make
the runtime change handling a tedious and error-prone task.

Instead of trying to fulfill all the requirements as mentioned
above, a clean solution is to avoid the activity restarting (H1) during
runtime changes. This will remove a necessary condition for most
runtime change issues (T1-T4). However, as mentioned earlier, the
other strategies (H2 and H3) are either beyond the reach of develop-
ers or limit the functionalities of the apps. To bridge this gap, this
work proposes RuntimeDroid – a restarting-free runtime change
handling solution that can be easily adopted by developers.

4 RUNTIMEDROID
In this section, we introduce a restarting-free runtime handling
solution – RuntimeDroid. We first describe its basic ideas, then
elaborate its key components, which consists of an online resource
loading module – HotR and a dynamic view hierarchy migration
technique. Finally, we discuss two alternative implementations of
RuntimeDroid for easy adoption.

4.1 Challenges
As mentioned earlier, to prevent activities from restarting during
runtime changes, developers can set the configChanges flag in
the activity configuration (i.e., customized handling H2). However,
this requires developers to manually load resources for the new
configuration, which, unfortunately, is very challenging for many
Android developers, due to three reasons:

115

Restarting-Free Runtime Change Handling for Android Apps MobiSys ’18, June 10–15, 2018, Munich, Germany

• Complexity of Resource Types. In the latest API (API 27) of
Android, there are 16 types of resources for mobile apps, each
requiring a specific loading mechanism.
• Complexity of Resource Uses. Resources can be statically bound
to other resources, like layout, or dynamically referred in the
callbacks of the activity class.
• Dynamic Nature of UI Components. As the user interacts with
an activity, the properties of some UI components might be
changed dynamically. Such changes need to be preserved while
the resources are loaded. Even more complex, there might be
UI components added or deleted during the user interaction.

The above three complexities involved in resource loading make
the customized runtime change handling beyond the reach of most
Android developers. To address this challenge, we next present an
automatic online resource loading module – HotR. HotR is able to
load resources for the new configuration while the current activity
remains live. Moreover, it does not depend on the app logic.

4.2 HotR
The purpose of HotR is to load resources needed for the new
configuration without restarting the activity. In the following, we
first define the concept of alternative resources, then present the
major components of HotR.

Depending on the design, an activity may have different versions
of resources that are defined for different configurations. For easy
references, we define alternative resources as follows.

Definition 4.1. During a runtime change, an alternative resource is
a resource designed for the configuration after the runtime change,
but not used by the configuration before the runtime change.

We now present the major components in HotR following the
order that they are employed in actual resource loading.

When a runtime change occurs, HotR first examines the needs
for resource loading. To achieve this, HotR constructs two hashmaps
for recording resources used before and after the runtime change.
C1: Resource Hashmap Construction. For a given configuration
C , a resource hashmap (RH) contains an entry for each resource
declared in C , except the layouts. Unlike a typical hashmap, the
key in RH is the “content” of a resource, represented as a string,
such as text “Enter” in a string resource. For non-string resources,
such as drawable (e.g., bitmaps), color, or dimension, they will
be either hashed or serialized into strings. The value in RH is the
resource ID, which is uniquely assigned by the system. Both the
“contents” and the IDs of resources for the current configuration
can be accessed from the built-in class R.

For example, the following resources for the portrait modewill be
compiled into the R.class, then built into the resource hashmaps
RHport. After the screen orientation, the process happens again to
form the resource hashmaps RHland.

/res/values-port/res.xml
<string name="enter">Enter</string>

<color name="yellow">0xffffff00</color>

/res/values-land/res.xml
<string name="enter">Enter Name</string>

<color name="yellow">0xffffff00</color>

RHport :
Key Value

"Enter" 134
"0xffffff00" 152

RHland :
Key Value

"Enter Name" 134
"0xffffff00" 152

Note that both "Enter" and "Enter Name" have the same resource
ID (134). This is because they are given the same name (“enter”) in
the declarations, hence system yields the same ID for them.

As we will explain shortly, layouts play a special role in resource
loading, thus HotR treats them separately.
C2:AlternativeResource Identification. Given a runtime change,
HotR determines the needs for resource loading by calculating
the difference resource hashmap RHdiff between the old resource
hashmap RHold with the new one RHnew in terms of the key set.

RHdiff = RHold − RHnew (1)
If RHdiff is non-empty, then HotR would consider the existence

of alternative resources, hence the needs for loading resources.
Following the example in C1, the difference would be:

RHdiff :
Key Value

"Enter" 134

Thus, there exists an alternative resource (“Enter Name”) to load.
Note that the above process for determining resource loading

may yield false positives, that is, there might be no actual needs for
resource loading despite a non-empty RHdiff. This is because the
R class consists of the resources for all the activities, not only for
the current activity. Such false alarms could be avoided with static
analysis or activity-level R class supports from Android runtime.
In fact, even in the presence of false alarms, our evaluation shows
that the online resource loading by HotR is still much faster than
the restarting-based mechanism.

For the layout, HotR can obtain its resource ID for the current
activity (via setContentView(layoutID)), hence it can directly
compare the new layout Lnew with the old one Lold to determine
the existence of an alternative resource (i.e., Ldiff = Lold − Lnew). In
this case, there will be no false positives.

If RHdiff and Ldiff are both empty, HotR will skip the resource
loading and terminate – the runtime change handling is completed.
C3: Property-Resource Mapping. In Android apps, resources are
mainly used for defining the view properties. For example, a string
resource can be used as the text property of a EditText, a color
resource can be the background of a LinearLayout, and a drawable
can be linked to the resource of an ImageView.

Knowing the mapping between the view properties and their
corresponding resources can help locate the uses of resources, hence
facilitating the loading process. For this purpose, HotR constructs
the property-resource mapping MPR based on the programming
conventions. For example, the text property of view EditText is
mapped to the string resource.

MPR :
View Property Resource Type

EditText.setText() string

Note that the mappingMPR can pre-constructed offline.
C4: Resource Loading. All the components from C1 to C3 are the
preparation for the actual resource loading – C4. When a runtime
change occurs and the outcome of C2 is positive (i.e., at least one

116

MobiSys ’18, June 10–15, 2018, Munich, Germany Umar Farooq and Zhijia Zhao

of RHdiff and Ldiff is non-empty), then HotR will initiate the actual
resource loading process.

Note that during the user-app interactions, the properties of
some views might be modified (e.g., text property of EditText).
Moreover, some viewsmight be even removed or added dynamically
(by event handlers). HotR treats these cases differently.

For easy references, we categorize the views into two classes:
static views and dynamic views, defined as follows.

Definition 4.2. For a given activity, its views that are declared in
the layout file are referred to as static views. Correspondingly, the
resource loading for static views is called static resource loading.

Definition 4.3. For a given activity, its views that are added or
deleted at runtime are referred to as dynamic views. The resource
loading for dynamic views are called dynamic resource loading.

Note that a view that was originally declared in the layout may
be deleted at runtime. In this case, we say that a static view turns
into a dynamic view after it is deleted. So whether a view is static
or dynamic depends on when we refer to it.

Next, we first discuss the static resource loading. For dynamic
resource loading, which is more complex, we leave it to Section 4.3
when we discuss the dynamic view hierarchy migration.

To perform static resource loading, HotR leverages a handy
callback from the system setContentView(). Though the callback
is used for loading layout resources, it actually also loads other types
of resources implicitly. This is because the layout consists of all the
static views (see Definition 4.2). After the layout is loaded, all the
static views will also have their properties loaded with alternative
resources, automatically ensured by the system.

However, note that the properties of static views may be updated
at runtime by some callbacks. Thus, simply loading the alternative
resources for static views may lead to inconsistent view properties.
In addition, as mentioned earlier, some static views may turn into
dynamic views (i.e., being deleted). We will address these issues
with dynamic view hierarchy migration. Before that, let us first finish
the last component of HotR.
C5: Resource Reference Updating. The last component of HotR is
about the resources that are referred in the callbacks of the activity
class. For example, the following statements access a string resource
or a view resource from some callback:

String hello = getString(R.string.hello);

TextView name = findViewById(R.id.nameview);

When the alternative resources are loaded, we need to make sure
that the corresponding references point to the newly loaded resources,
instead of the original ones. We separate this discussion into two
cases based on locations where the resources are referred:
• Local Resource References. When resources are referred locally
in a callback method, the reference updating will be naturally
ensured, thanks to the automatic updating of R class. When
a runtime change happens, the system would automatically
recompile the R class for the new configuration (see Section 2.2).
Hence, when a callback is invoked after the runtime change,
its resource references (through the R class) will automatically
point to the alternative resources.
• Global Resource References. However, the same situation does
not apply to the cases where resource references are declared
globally (i.e., the activity class level). This is due to the fact

Res. Hashmap
Construction

Alternate Res.
Identification

Property-Res.
Mapping

Resource
Loading

Runtime
Change

R class

RHnew
RHold

no

stop

prog.
convention

Res. Reference
Updating

MPR

RHdiffActions yes
C3

C2

C5

C1

C4

Figure 5: High-level Workflow of HotR.

that global resource references may not be reassigned after a
runtime change. For example, String str is first declared at
the activity level, then initialized in onCreate() with

str = getString(R.string.hello);

Even though the R class has been updated with references
to the alternative resources, the assignment to str will not
be invoked again without activity restarting, therefore it will
remain pointing to the original resource.
To address the stale global resource references issue, HotR
performs a resource reference localization procedure for each
global resource reference. Basically, given a global resource
reference p, HotR first traces where p is used, then inserts an
assignment with the corresponding reference in the R class
right before p is used (e.g., p=getString(R.string.hello)).
By adding the “assignment” for global resource references,
this reference localization ensures the accesses to the correct
references, just like accessing local resource references.

Summary. Figure 5 summarizes the major components in HotR
with a high-level workflow. Components C1 to C3 prepare for the
actual resource loading C4. If no alternative resources are found in
C2, HotR will stop after C2; otherwise, it will finish C4 and C5.

So far, we have introduced the static resource loading in C4. Next,
we discuss the other part of C4 – dynamic resource loading, as well
as how to address the view properties that are updated at runtime.
We address the two problems together with a novel dynamic view
hierarchy migration technique.

4.3 Dynamic View Hierarchy Migration
Before presenting the technique, we first introduce a couple core
concepts that are used in our design. The UI components (i.e., views
in Android’s term) of an activity forms a hierarchical structure,
typically with a type of layout view as the root (e.g., LinearLayout).
Depending on when the view hierarchy is referred to, we define
static view hierarchy and dynamic view hierarchy as follows.

Definition 4.4. A static view hierarchy, denoted asV , is the initial
view hierarchy that is derived from the activity layout (XML file).

Definition 4.5. A dynamic view hierarchy, denoted as Ṽ , is the
view hierarchy that is referred to while the user interacts with the
activity. Ṽ may evolve over the interaction. When the layout of an
activity is just loaded, Ṽ equals to the static view hierarchyV .

The static resource loading described in component C5 of HotR
(see Section 4.2) essentially builds a static view hierarchy for the
new configuration. However, during user interactions, some views’

117

Restarting-Free Runtime Change Handling for Android Apps MobiSys ’18, June 10–15, 2018, Munich, Germany

Algorithm 1 Dynamic View Hierarchy Migration
1: Vold : the static view hierarchy before runtime change
2: Ṽold : the dynamic view hierarchy before runtime change
3: Vnew : the static view hierarchy after runtime change
4: Ṽnew : the dynamic view hierarchy after runtime change
5:
6: /* preparation */
7: Vdyn = compare(Vold , Ṽold); ▷ identify dynamic views
8: Vstatic = derive(Vold); ▷ derive static views
9: Pmut = find(Activity.class); ▷ identify mutable properties
10:
11: /* migrate static views */
12: for each view v in Vstatic do
13: for each property p of v do
14: if p ∈ Pmut then
15: if p has RHdiff then ▷ RHdiff : res. w/ alternatives
16: loadResource(p , RHdiff);
17: copy(p , Vnew (v)); ▷ Vnew (v) returns the view w/ same id
18:
19: /* migrate dynamic views */
20: for each view v in Vdyn do
21: if v was deleted from Vold then
22: detach(v , Vnew); ▷ detach v from Vnew
23: else ▷ v was attached to the Ṽold
24: for each property p of v do
25: if p ∈ Pmut && p has RHdiff then
26: loadResource(p , RHdiff);
27: attach(v , Vnew); ▷ attach v to Vnew
28: Ṽnew = Vnew ; ▷ after updating Vnew , it becomes Ṽnew
29: return Ṽnew ;

properties might be changed and others might even be added or
deleted (i.e., dynamic views). Preserving such changes is critical
to the UI consistency. To achieve this, RuntimeDroid needs to
update the static view hierarchy and generate another dynamic view
hierarchy that is consistent with the one before the runtime change,
meanwhile ensuring its compliance with the resource loading. We
refer to this process as dynamic view hierarchy migration.

To distinguish view properties that might be changed during the
user interactions, we introduce mutable properties.

Definition 4.6. A view property p is mutable if and only if there
exists at least a write operation to the property in at least one
callback method of the activity class.

Next, we explain the basic procedure of dynamic view hierarchy
migration. For easy references, we useVold and Ṽold to represent
the old static and dynamic view hierarchies before a runtime change.
Correspondingly, we useVnew and Ṽnew to represent the new static
and dynamic view hierarchies after the runtime change.

Algorithm 1 illustrates the procedure of dynamic view hierarchy
migration. At high level, it has three steps: (i) preparation, (ii) static
view migration, and (iii) dynamic view migration. The preparation
step identifies the sets of dynamic views, static views, and mutable
properties, respectively. In the second step, it migrates the mutable
properties of static views from the old static view hierarchyVold
to the new static view hierarchyVnew. If a mutable property has a
resource inRHdiff (existence of alternative resource), then a resource
loading is performed before the property copying. The third step
migrates dynamic views from the old dynamic view hierarchy Ṽold
to the new static view hierarchyVnew. When a view was deleted
from old static view hierarchy (Vold), it also needs to be detached
from the new static view hierarchy (Vnew). Similarly, a newly added
view needs to be attached to the new static view hierarchy as well.

When attaching a dynamic view, it examines if any of its properties
are mutable meanwhile has alternative resources (checking RHdiff),
if so, it first loads the resources before attaching the view.

In practice, the identification of mutable properties (Line 9 in
Algorithm 1) can effectively leverage the existence of view IDs.
When a view is declared without any assigned ID, then it will not be
accessible anywhere from the source code, hence all of its properties
become immutable. For event listeners, the dynamic view hierarchy
migration treats them as the properties of corresponding views
where the listeners are declared. Like other view properties, the
event listeners can be mutable, which means they can be attached,
detached, or changed by some callbacks.

Figure 6 illustrates the dynamic view hierarchy migration with a
simple example, including two dynamically deleted views (c and d),
one added view (f), and one mutable property migration (b.text).
The final result is a new dynamic view hierarchy (the right most).

4.4 Implementations
For easy adoption, we developed two versions of RuntimeDroid: an
Android Studio plugin – RuntimeDroid-Plugin and an automatic
patching tool – RuntimeDroid-Patch. The former can be used
during the app development, while the latter works for compiled
Android APK packages.

The implementation of RuntimeDroid follows a modular design
with a customized activity class RActivity, fromwhich the existing
activities in an app can extend. For example, if a developer-defined
activity A extends from another activity B

A
extends
−−−−−−→ B

then RuntimeDroid would refactor it to
A

extends
−−−−−−→ RActivity RActivity

extends
−−−−−−→ B

Here, some common cases of B include built-in activities, like
Activity, AppCompatActivity, and FragmentActivity.

Inside RActivity, we implement HotR with the dynamic view
hierarchy migration technique mainly by overriding the callback
onConfigurationChanged().

This design has two major benefits. First, by extending from
the class RActivity, all the existing implementation of callback
onConfigurationChanged() can be preserved by the compiler as
the method of a subclass. Second, the class extension provides a
modular design which clearly isolates the newly added runtime
change handling from the existing implementation of an activity.

Besides introducing the RActivity class, RuntimeDroid also
parses the manifest file AndroidManifest.xml to insert the flag
for each type of runtime change into configChanges to suspend
the activity restarting for all the corresponding runtime changes.

Next, we briefly explain the two implementations.
RuntimeDroid-Plugin. The plugin is implemented on Android
Studio 3.0. Developers can use the plugin to refactor a selected
activity. The refactoring process automatically insert the RActivity
into the inheritance hierarchy of the selected activity and injects all
the runtime change flags. One challenge for this implementation
is that the set of resources may be changed after the refactoring.
To address this, the plugin leverages the reflection of R class to
postpone the identification of available resources to runtime.
RuntimeDroid-Patch. In some situations, one may want to avoid
any modifications to the source code or to apply RuntimeDroid

118

MobiSys ’18, June 10–15, 2018, Munich, Germany Umar Farooq and Zhijia Zhao

new static view hierarchy

root element (R.id.content)

a b (text=“hi“)

old dynamic view hierarchy

f

root element (R.id.content)

a b (text=“ “)

d

root element (R.id.content)

a b (text=“hi“)

f

new dynamic view hierarchy

c g (text=@+string/world) g (text=@+string/world)

copy properties

delete views
add views

carry other resources

old static view hierarchy

root element (R.id.content)

a b (text=“ “)

dc e (text=@+string/hello)
delete views

Figure 6: Illustration of Dynamic View Hierarchy Migration.

without the app source code. For such purpose, we implemented
RuntimeDroid also as a patching tool. The tool directly takes a
compiled Android APK file and injects the customized activity class
along with other necessary code into the APK file. More specifically,
we leverage Soot [15] and APKtool [17] for reverse engineering
and recompilation, and zipalign [18] and Jarsigner [14] to align and
sign the processed APK file. The key step – code refactoring – was
implemented by ourselves.

5 EVALUATION
This section evaluates RuntimeDroid on its applicability, issue
fixing effectiveness, and its impacts in terms of time and space.

5.1 Methodology
The evaluation is performed using Corpus-S, which consists of
72 projects, 507 activity instances and 1.5M lines of code. 36/72
apps (i.e., 50%) are also hosted on Google Play Store[22], including
some highly popular ones (see Section 3.2 for more details). For
each project, we applied RuntimeDroid to each activity that is
registered in the AndroidManifest.xml file.

In the evaluation, we tested both RuntimeDroid-Plugin and
RuntimeDroid-Patch. In order to test RuntimeDroid-Patch, we
manually compiled each Android app project in Corpus-S with
Android Studio 3.0 and generated the APK package. To evaluate
RuntimeDroid-Plugin, we loaded each project into an Android
Studio IDE with RuntimeDroid-Plugin installed. In order to verify
the correctness, we manually checked all the processed activities
and examined the app behaviors by deploying the app on a real
device – a Nexus 5x smartphone with Android 8.0 installed. The
platform for measuring the performance of RuntimeDroid is a
Macbook Pro laptop with 2.0 GHz Core i5 processor and 8 GB RAM.

5.2 Applicability
Table 6 summarizes the results of applying RuntimeDroid to the
apps in Corpus-S. In total, RuntimeDroid was applied to all the 507
activities from 72 projects. Among them, there are 503 activities
successfully refactored by RuntimeDroid-Plugin. Only 4 activities
(i.e., less than 1%) failed. The reason for that is the 4 activities are
from some third-party libraries, in which case the source code of
them are not available to RuntimeDroid-Plugin. In comparison,
when processing the compiled APK packages with RuntimeDroid-
Patch, all the 507 activities are successfully patched. The reason is
that RuntimeDroid-Patch does not require accesses to the source
code. In fact, the APK package already contains all the compiled
code, including the ones of third-party libraries.

Despite the success of processing all the activities, there are a few
special cases worth mentioning here. For example, ListActivity

or PreferenceActivity, which do not expose setContentView()
to developers. In this case, there will be no layout resources or static
view hierarchies available. But dynamic views may still be used,
which can be detected by HotR (no layout ID found) and handled
by the dynamic view hierarchy migration. Another special activity
is the NativeActivity, which is used mainly for the development
of graphics-intensive game apps. Due to the high-performance
requirements, these apps often implement their own UI components
and event handling mechanisms in C/C++ language, which are not
part of Android framework. Though RuntimeDroid can disable
the NativeActivity from restarting, it will not be able to load
resources automatically for any C/C++ defined UI components. In
fact, even within the Android framework, developers may define
new UI components (views). However, these customized views can
still be handled by RuntimeDroid, as long as the property-resource
mapping (MPR) for these views are supplemented.

In addition, Table 6 also reports the number of static views in
each appV and the number of string resources str . The numbers, to
certain extent, reflect the size the view hierarchy and the amount of
available resources for some common type of resource. As shown
later, these factors may affect the runtime cost of RuntimeDroid.
The last column of Table 6 indicates that a large ratio of activities
(86%) require resource reference localization, due to global-level
declarations of certain resources (see Section 4.2).

5.3 Issue Fixing
We manually examined each reported runtime change issue for
each app after applying RuntimeDroid. Both implementations
RuntimeDroid-Plugin and RuntimeDroid-Patch are able to
fix all the 197 runtime change issues, thanks to the adoption of
restarting-free runtime change handling. As discussed earlier (see
Section 3.2), activity restarting is the common contributor to the
triggering of a variety of runtime change issues. In addition, we
did not observe any new issues introduced by the RuntimeDroid,
thanks to the HotR and dynamic view hierarchy migration which
together preserve UI-resource consistency and the activity state.

Though RuntimeDroid provides a complete coverage of issue
fixing for Corpus-S, it may not fix all runtime change issues. This is
because not all runtime change issues are caused by activity restarting.
For example, Firefox browser displays context menus when long
clicking an website icon. However, after a rotation, the context
menu gets mispositioned in the screen. This is because after the
rotation, both the screen size and the position of icons are changed,
while the position setting of the menu is not updated accordingly.
Issues like this would still appear even the activity is not restarted.

Note that, alternatively, developers may opt to use data saving
and restoring mechanisms (H1.1) or object retaining techniques
(H1.2) (see Section 2.2) to fix the issues. However, these solutions

119

Restarting-Free Runtime Change Handling for Android Apps MobiSys ’18, June 10–15, 2018, Munich, Germany

Table 6: Results of applying RuntimeDroid to the activities in Android projects.
A: number of activities, As : number of activities successfully processed, str : number of string resources, V : number of static views,

I : number of issues, If : number of fixed issues, Al : number of activities requiring resource reference localization
App Project A As str V I If Al # App Project A As str V I If Al
1 0xbb/otp-authenticator 2 1 14 7 2 2 1 37 jufickel/rdt 1 1 10 25 1 1 1
2 Amabyte/vtu-cs-lab-manual 5 5 3 26 1 1 3 38 julian-klode/dns66 3 3 27 21 1 1 3
3 AntennaPod/AntennaPod 19 19 115 109 5 5 14 39 knirirr/BeeCount 8 8 85 53 2 2 8
4 arnowelzel/periodical 5 5 61 141 2 2 4 40 kraigs-android/kraigsandroid 2 2 15 17 5 5 2
5 artemnikitin/tts-test-app 1 1 4 9 1 1 1 41 liato/android-bankdroid 12 12 69 97 3 3 9
6 awaken/sanity 28 28 147 8 9 9 18 42 LonamiWebs/Stringlate 10 10 117 73 5 5 9
7 balau/fakedawn 3 3 1 39 2 2 3 43 mikifus/padland 10 10 59 33 3 3 5
8 basil2style/getid 2 2 0 34 1 1 2 44 nathan-osman/chronosnap 2 2 16 16 1 1 2
9 benjaminaigner/aiproute 3 3 28 20 3 3 2 45 nbenm/ImapNote2 4 4 0 37 3 3 3
10 blanyal/Remindly 4 4 23 83 2 2 4 46 netmackan/ATimeTracker 5 5 70 21 15 15 4
11 blaztriglav/did-i 2 2 6 9 3 3 2 47 ojacquemart/vlilleChecker 5 4 9 41 1 1 1
12 cbeyls/fosdem-companion-android 8 8 21 24 5 5 7 48 olejon/mdapp 42 42 392 284 2 2 39
13 charbgr/Anagram-Solver 1 1 0 1 2 2 1 49 PaperAirplane.../GigaGet 4 4 13 44 1 1 4
14 charlieCollins/and-bookworm 10 10 113 81 4 4 9 50 peoxnen/GitHubPresenter 1 1 1 3 2 2 1
15 conchyliculture/wikipoff 8 8 58 79 2 2 7 51 phikal/ReGeX 4 4 33 54 3 3 4
16 DF1E/SimpleExplorer 4 4 6 14 1 1 3 52 phora/AeonDroid 5 5 0 44 4 4 2
17 enricocid/Color-picker-library 2 2 4 8 1 1 2 53 phora/AndroPTPB 6 6 0 43 1 1 4
18 erickok/transdroid-search 3 3 0 0 1 1 2 54 pilot51/voicenotify 2 2 41 5 1 1 1
19 EvanRespaut/Equate 2 2 18 3 2 2 2 55 quaap/Primary 11 11 52 67 4 4 10
20 farmerbb/Taskbar 24 24 65 22 3 3 9 56 RomanGolovanov/ametro 6 6 22 34 1 1 6
21 fr3ts0n/StageFever 2 2 1 3 1 1 2 57 rubenwardy/mtmods4android 7 7 54 51 1 1 6
22 gateship-one/malp 5 5 34 51 5 5 4 58 scoute-dich/PDFCreator 8 8 32 22 4 4 7
23 gateship-one/odyssey 4 4 67 25 4 4 3 59 scoute-dich/Sieben 32 32 677 112 2 2 30
24 gianluca-nitti/android-expr-eval 2 2 14 14 1 1 2 60 scoute-dich/Weather 8 8 108 33 3 3 8
25 google/google-authenticator-android 12 12 85 50 3 3 11 61 SecUSo/privacy-friendly-ruler 6 6 22 47 2 2 4
26 grmpl/StepandHeightcounter 2 2 20 5 2 2 2 62 shkcodes/Lyrically 2 2 11 21 2 2 2
27 grzegorznittner/chanu 22 22 114 105 2 2 9 63 SteamGifts/SteamGifts 11 10 20 33 3 3 7
28 hoihei/Silectric 5 5 9 38 2 2 5 64 tarunisrani/InstaHack 2 2 0 13 1 1 2
29 HoraApps/LeafPic 9 9 206 188 2 2 8 65 TeamNewPipe/NewPipe 13 13 39 74 6 6 7
30 HugoGresse/Anecdote 1 1 7 3 1 1 1 66 TobiasBielefeld/Simple-Solitaire 6 6 27 48 1 1 5
31 icasdri/Mather 2 2 5 5 1 1 2 67 ukanth/afwall 14 14 248 101 4 4 13
32 iSoron/uhabits 8 7 6 5 6 6 1 68 vIiRuS/Omnomagon 4 4 32 71 1 1 2
33 JamesFrost/SimpleDo 6 6 26 70 6 6 6 69 VREM.../WiFiAnalyzer 3 3 20 36 2 2 3
34 jiro-aqua/aGrep 6 6 31 25 3 3 5 70 wentam/DefCol 5 5 0 18 1 1 5
35 jparkie/Aizoban 4 4 26 21 1 1 4 71 xargsgrep/PortKnocker 5 5 24 15 4 4 4
36 jpriebe/hotdeath 3 3 5 5 5 5 3 72 zxing/zxing 9 9 41 50 4 4 6

often require significant efforts to manually refactor the app. For
example, ViewModel and LiveData require a redesign of the app
to separate the data from the activities. Moreover, they only help
address a subset of runtime change issues that are caused by the
unsaved data. There are also many problems due to other reasons,
which can still be triggered by activity restarting (e.g., menu closing,
dialog disappearing, GUI distorting, and asynchronous call caused
app crashes). Since the ViewModel and LiveData do not prevent
the activity from restarting, these issues will still occur.

5.4 Handling Efficiency Improvement
Besides fixing runtime change issues, a more general benefit of
applying RuntimeDroid is the improvement of runtime change
handling efficiency. Due to the invocation of lifecycle callbacks, the
conventional restarting-based runtime change handling is often
unnecessarily inefficient, not to mention the potential presence of
blocking operations in some of the lifecycle callbacks.

The first two columns of Table 7 show the runtime costs for
handling a runtime change before and after applying Runtime-
Droid. The data clearly shows that the runtime cost is dramatically
reduced, 9.5X on average. This is mainly due to the elimination of
activity restarting. In fact, for some apps with significant runtime
change delays, such as weather&clock [9](5-sec delay), weather
(#60, 3-sec delay), and GitHubPresenter (#50, 1-sec delay), the
delays would also be dropped to around 20 ms.

In addition, we compared the runtime memory consumption for
apps with and without applying RuntimeDroid, with the help of
Android Studio Memory Profiler [29]. The measurement injects
a series of runtime changes to the apps and collects the memory

Table 7: Handling efficiency and time cost
Runtime (ms) Plugin (ms)
before after 1st 2nd patch (ms)

mdapp 364 57 2291 360 161,598
Remindly 109 21 936 196 43,215
AlarmKlock 117 18 1376 168 12,867
Weather 157 22 1676 543 51,822
PDF Creator 360 10 852 148 94,866
Sieben 126 16 951 155 53,149
AndroPTPB 215 19 627 433 26,708
vlilleChecker 240 21 876 167 56,563
geomean 190 20 1,104 239 49,400

footprints over a session of 10 minutes, on the tested Nexus 5x
smartphone. The results show no observable differences.

5.5 Time and Space Costs
Time Costs. Table 7 reports different kinds of time costs related
to RuntimeDroid. The two columns under “Plugin” report the
time spent for refactoring the first and second activities using the
RuntimeDroid-Plugin. On average, the time costs are 1,104 ms
and 239 ms. The reason that the first activity takes longer time is
because it inserts the RActivity class and related utility classes for
the first time. Note that the utility classes can be shared among all
activities of an app. The “patch” column reports the time costs for
applying a patch to the whole app APK. This takes from 12 seconds
to 2 minutes. The dominate time in applying the patching is the
reverse engineering part performed by the Soot.

120

MobiSys ’18, June 10–15, 2018, Munich, Germany Umar Farooq and Zhijia Zhao

Table 8: Space cost of RuntimeDroid
Plugin (SLoC) Patch (bytes)

before after before after
mdapp 26,342 28,419 8,575,378 9,129,420
Remindly 6,966 7,820 1,317,186 1,530,807
AlarmKlock 2,838 3,610 113,037 141,893
Weather 10,949 12,208 3,850,671 4,058,323
PDF Creator 19,624 20,895 10,660,503 10,856,795
Sieben 20,518 22,123 3,945,791 4,203,960
AndroPTPB 3,405 5,127 564,722 596,647
vlilleChecker 12,083 12,843 2,323,633 2,616,449
geomean 9,929 11,463 2,014,635 2,212,115

Space Costs. Table 8 reports the space costs for eight apps from
Corpus-S. The second and third columns report the source lines
of code (SLoC) before and after applying RuntimeDroid-Plugin,
respectively. They do not include any library code or non-Java
code. On average, the SLoC increases by about 15%. In general, the
cost ratio decreases as the app size increases. This is because if
multiple activities share the same parent activity, only one copy of
RActivity is inserted. This amortizes the space cost as the more
activities with the same parent activity added.

The last two columns show the sizes of APK files before and after
applying RuntimeDroid-Patch. On average, the SLoC increases by
about increases by about 10%. For fair comparisons, we recompiled
the original apps with our compilation tool chain (see Section 4.4).

6 RELATEDWORK
This section summarizes and discusses existing research mostly
related to this work, including finding bugs in mobile apps, mobile
app refactoring, and API usage study.

6.1 Finding Bugs for Mobile Apps
There exist a large body of work in detecting bugs for mobile apps.
AppDoctor [43] injects a sequence of events into an app execution.
One of these events is rotate, a type of runtime changes. Though
mentioning the potential issues during restarting, this work does
not offer a systematic solution. Zaeem and others [59] present a
mobile app testing tool by deriving test cases from GUI models
and interactions. The tool compares the GUI states before and after
the interactions, including screen rotation, pausing and resuming,
killing and restarting and back key event. Their reported issues
include the ones triggered by screen rotations. Adamsen and others
[32] inject neutral event sequences, such as pause-resume, pause-
stop-restart and pause-stop-destroy-create to test apps.

Shan and others [57] propose static and dynamic analysis to
discover the Kill and Restart (KR) errors for smartphone apps. This
work focuses on discovering and verifying KR errors. In comparison,
our work focuses on runtime changes that could trigger KR errors.
Also, our work offers a general fixing solution to these issues.

Amalfitano and others [33] study the orientation changes and
classes of issues due to orientation changes. They use record &
replay technique to match the GUIs after a double-orientation event.
They identify several classes of GUI state lost issues, such as Dialog,
menu, and view state loss. These findings overlap with some of
findings of our work, as orientation is a type of runtime change.
Similar to the prior work, it does not provide fixing solutions.

Existingwork on app analysis, verification and refactoringmainly
focus on other types of issues, including detecting race condition
and energy bugs using dynamic analysis [41, 42, 49], uncovering
bugs with network and location data [46], detecting performance
bugs [34, 36, 47, 48, 50] and memory leaks [58].

6.2 API Usage and Mobile App Refactoring
There are also empirical studies on programming languages and
libraries usages [37–40, 44, 52]. Buse and others [37] introduce an
automatic technique for mining and synthesizing documents for
program interfaces. Kavaler and others [45] investigate Android
APIs questions on Stackoverflow [6]. Unlike prior work, this work
studies the APIs and practices of runtime change handling.

Bavota and other [35] study the refactoring activities and their
impacts, including the potential of refactoring-induced faults. In
addition to functional refactoring, there is a trend in refactoring for
non-functional qualities, like refactoring built-in locks with more
flexible alternatives [56], refactoring global state with thread-local
state [55], refactoring the concurrent programming constructs [51],
and refactoring for energy efficiency [54]. Unlike the objectives
of prior work, this work aims for a refactoring-based solution for
addressing issues in runtime change mishandling.

7 CONCLUSION
Unlike traditional desktop applications, mobile apps experience
more frequent runtime changes. When handled inappropriately,
such simple runtime changes may cause critical issues. In this work,
we present, to our best knowledge, the first formative study on the
runtime change handling for Android apps. The study not only
reveals the current landscape of runtime change handling, but also
identifies a common cause for a variety of runtime change issues
– activity restarting. With this insight, it introduces a restarting-
free runtime change handling solution, named RuntimeDroid,
which can load resources without restarting the activity. It achieves
with this with an online resource loading module called HotR. More
critically, it can preserve prior UI changes with a novel dynamic
view hierarchy migration technique.

For easy adoption, this work provides two implementations,
RuntimeDroid-Plugin and RuntimeDroid-Patch, to cover both
in-development and post-development uses for Android apps. The
evaluation shows that RuntimeDroid can successfully refactor
503/507 activities and fix 197/197 real-world runtime change issues,
meanwhile reducing the handling delays by 9.5X on average.

ACKNOWLEDGMENTS
We thank all anonymous reviewers for their constructive comments.
We also thank our shepherd Dr. Landon Cox for his guidance and
valuable suggestions during the preparation of the final version.

REFERENCES
[1] 2016. Alarm Klock. https://play.google.com/store/apps/details?id=com.

angrydoughnuts.android.alarmclock. (2016). Accessed: 2016-04-22.
[2] 2016. Github. https://github.com/. (2016). Accessed: 2016-04-22.
[3] 2016. ImapNote 2. https://github.com/nbenm/ImapNote2. (2016). Accessed:

2016-04-22.
[4] 2016. Multi-Window Support. https://developer.android.com/guide/topics/ui/

multi-window.html. (2016). Accessed: 2017-11-12.
[5] 2016. Resource Types. https://developer.android.com/guide/topics/resources/

available-resources.html. (2016). Accessed: 2017-11-12.
[6] 2016. StackOverflow. https://stackoverflow.com/. (2016). Accessed: 2016-04-22.

121

https://play.google.com/store/apps/details?id=com.angrydoughnuts.android.alarmclock
https://play.google.com/store/apps/details?id=com.angrydoughnuts.android.alarmclock
https://github.com/
https://github.com/nbenm/ImapNote2
https://developer.android.com/guide/topics/ui/multi-window.html
https://developer.android.com/guide/topics/ui/multi-window.html
https://developer.android.com/guide/topics/resources/available-resources.html
https://developer.android.com/guide/topics/resources/available-resources.html
https://stackoverflow.com/

Restarting-Free Runtime Change Handling for Android Apps MobiSys ’18, June 10–15, 2018, Munich, Germany

[7] 2016. Using a Hardware Keyboard With an Android Device.
https://www.nytimes.com/2016/03/29/technology/personaltech/
using-a-hardware-keyboard-with-an-android-device.html. (2016). Ac-
cessed: 2017-11-12.

[8] 2016. Vlille Checker. https://play.google.com/store/apps/details?id=com.vlille.
checker. (2016). Accessed: 2016-04-22.

[9] 2016. Weather & Clock Widget for Android. https://play.google.com/store/apps/
details?id=com.devexpert.weather. (2016). Accessed: 2016-04-22.

[10] 2017. Android Bundle. https://developer.android.com/reference/android/os/
Bundle.html. (2017). Accessed: 2017-12-01.

[11] 2017. Android SharedPreferences. https://developer.android.com/reference/
android/content/SharedPreferences.html. (2017). Accessed: 2017-12-01.

[12] 2017. Android SharedPreferences Editor. https://developer.android.com/
reference/android/content/SharedPreferences.Editor.html. (2017). Accessed:
2017-12-01.

[13] 2017. Android SQLite Database. https://developer.android.com/reference/
android/database/sqlite/SQLiteDatabase.html. (2017). Accessed: 2017-12-01.

[14] 2017. jarsigner - JAR Signing and Verification Tool. http://docs.oracle.com/javase/
6/docs/technotes/tools/windows/jarsigner.html. (2017). Accessed: 2016-04-22.

[15] 2017. Soot: a Java Optimization Framework. https://www.sable.mcgill.ca/soot/.
(2017). Accessed: 2017-12-01.

[16] 2017. Supporting Different Languages and Cultures. https://developer.android.
com/training/basics/supporting-devices/languages.html. (2017). Accessed: 2017-
11-12.

[17] 2017. A tool for reverse engineering Android apk files. http://ibotpeaches.github.
io/Apktool/. (2017). Accessed: 2016-04-22.

[18] 2017. zipalign: an archive alignment tool. https://developer.android.com/studio/
command-line/zipalign.html. (2017). Accessed: 2017-12-01.

[19] 2018. Android Architecture Components. https://developer.android.com/topic/
libraries/architecture/. (2018). Accessed: 2018-04-22.

[20] 2018. Barcode Scanner. https://play.google.com/store/apps/details?id=com.
google.zxing.client.android. (2018). Accessed: 2018-04-22.

[21] 2018. The Google I/O 2017 Android App. https://github.com/google/iosched.
(2018). Accessed: 2018-04-22.

[22] 2018. Google Play Store. https://play.google.com/store?hl=en. (2018). Accessed:
2018-04-22.

[23] 2018. K-9 Mail âĂŞ Advanced Email for Android. https://github.com/k9mail/k-9/.
(2018). Accessed: 2018-04-22.

[24] 2018. Loop - Habit Tracker. https://play.google.com/store/apps/details?id=org.
isoron.uhabits. (2018). Accessed: 2018-04-22.

[25] 2018. Material design file manager for Android. https://github.com/TeamAmaze/
AmazeFileManager. (2018). Accessed: 2018-04-22.

[26] 2018. Material Design Music Player. https://github.com/naman14/Timber. (2018).
Accessed: 2018-04-22.

[27] 2018. Smartphone market share. http://www.idc.com/promo/
smartphone-market-share/. (2018). Accessed: 2018-04-11.

[28] 2018. Telegram for Android source. https://github.com/DrKLO/Telegram. (2018).
Accessed: 2018-04-22.

[29] 2018. View the Java Heap and Memory Allocations with Memory Profiler. https:
//developer.android.com/studio/profile/memory-profiler. (2018). Accessed: 2018-
04-29.

[30] 2018. WiFiAnalyzer. https://play.google.com/store/apps/details?id=com.vrem.
wifianalyzer. (2018). Accessed: 2018-04-22.

[31] 2018. WordPress for Android. https://github.com/wordpress-mobile/
WordPress-Android. (2018). Accessed: 2018-04-22.

[32] Christoffer Quist Adamsen, Gianluca Mezzetti, and Anders Møller. 2015. System-
atic execution of android test suites in adverse conditions. In Proceedings of the
2015 International Symposium on Software Testing and Analysis. ACM, 83–93.

[33] Domenico Amalfitano, Vincenzo Riccio, Ana C. R. Paiva, and Anna Rita Fasolino.
2018. Why does the orientation change mess up my Android application? From
GUI failures to code faults. Softw. Test., Verif. Reliab. 28, 1 (2018).

[34] Niaz Arijo, Reiko Heckel, Mirco Tribastone, and Stephen Gilmore. 2011. Modu-
lar performance modelling for mobile applications. In ACM SIGSOFT Software
Engineering Notes, Vol. 36. ACM, 329–334.

[35] Gabriele Bavota, Bernardino De Carluccio, Andrea De Lucia, Massimiliano
Di Penta, Rocco Oliveto, and Orazio Strollo. 2012. When does a refactoring induce
bugs? an empirical study. In Source Code Analysis and Manipulation (SCAM), 2012
IEEE 12th International Working Conference on. IEEE, 104–113.

[36] Luca Berardinelli, Vittorio Cortellessa, and Antinisca Di Marco. 2010. Perfor-
mance modeling and analysis of context-aware mobile software systems. Funda-
mental Approaches to Software Engineering (2010), 353–367.

[37] Raymond PL Buse and Westley Weimer. 2012. Synthesizing API usage examples.
In Proceedings of the 34th International Conference on Software Engineering. IEEE
Press, 782–792.

[38] Oscar Callaú, Romain Robbes, Éric Tanter, and David Röthlisberger. 2013. How
(and why) developers use the dynamic features of programming languages: the
case of smalltalk. Empirical Software Engineering 18, 6 (2013), 1156–1194.

[39] Robert Dyer, Hridesh Rajan, HoanAnhNguyen, and TienNNguyen. 2014. Mining
billions of AST nodes to study actual and potential usage of Java language features.

In Proceedings of the 36th International Conference on Software Engineering. ACM,
779–790.

[40] Mark Grechanik, Collin McMillan, Luca DeFerrari, Marco Comi, Stefano Crespi,
Denys Poshyvanyk, Chen Fu, Qing Xie, and Carlo Ghezzi. 2010. An empirical
investigation into a large-scale Java open source code repository. In Proceedings
of ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement. ACM, 11.

[41] Chun-Hung Hsiao, Jie Yu, Satish Narayanasamy, Ziyun Kong, Cristiano L Pereira,
Gilles A Pokam, Peter M Chen, and Jason Flinn. 2014. Race detection for event-
driven mobile applications. ACM SIGPLAN Notices 49, 6 (2014), 326–336.

[42] Cuixiong Hu and Iulian Neamtiu. 2011. Automating GUI testing for Android
applications. In Proceedings of the 6th International Workshop on Automation of
Software Test. ACM, 77–83.

[43] Gang Hu, Xinhao Yuan, Yang Tang, and Junfeng Yang. 2014. Efficiently, effectively
detecting mobile app bugs with appdoctor. In Proceedings of the Ninth European
Conference on Computer Systems. ACM, 18.

[44] Siim Karus and Harald Gall. 2011. A study of language usage evolution in open
source software. In Proceedings of the 8th Working Conference on Mining Software
Repositories. ACM, 13–22.

[45] David Kavaler, Daryl Posnett, Clint Gibler, Hao Chen, Premkumar T Devanbu,
and Vladimir Filkov. 2013. Using and Asking: APIs Used in the Android Market
and Asked about in StackOverflow.. In SocInfo. Springer, 405–418.

[46] Chieh-Jan Mike Liang, Nicholas D Lane, Niels Brouwers, Li Zhang, Börje F
Karlsson, Hao Liu, Yan Liu, Jun Tang, Xiang Shan, Ranveer Chandra, et al. 2014.
Caiipa: Automated large-scale mobile app testing through contextual fuzzing. In
Proceedings of the 20th annual international conference on Mobile computing and
networking. ACM, 519–530.

[47] Max Lillack, Christian Kästner, and Eric Bodden. 2014. Tracking load-time con-
figuration options. In Proceedings of the 29th ACM/IEEE international conference
on Automated software engineering. ACM, 445–456.

[48] Yepang Liu, Chang Xu, and Shing-Chi Cheung. 2014. Characterizing and detect-
ing performance bugs for smartphone applications. In Proceedings of the 36th
International Conference on Software Engineering. ACM, 1013–1024.

[49] Pallavi Maiya, Aditya Kanade, and Rupak Majumdar. 2014. Race detection for
android applications. In ACM SIGPLAN Notices, Vol. 49. ACM, 316–325.

[50] Henry Muccini, Antonio Di Francesco, and Patrizio Esposito. 2012. Software
testing of mobile applications: Challenges and future research directions. In
Proceedings of the 7th International Workshop on Automation of Software Test.
IEEE Press, 29–35.

[51] Semih Okur, David L Hartveld, Danny Dig, and Arie van Deursen. 2014. A
study and toolkit for asynchronous programming in C. In Proceedings of the 36th
International Conference on Software Engineering. ACM, 1117–1127.

[52] Chris Parnin, Christian Bird, and Emerson Murphy-Hill. 2013. Adoption and use
of Java generics. Empirical Software Engineering 18, 6 (2013), 1047–1089.

[53] Alireza Sahami Shirazi, Niels Henze, Tilman Dingler, Kai Kunze, and Albrecht
Schmidt. 2013. Upright or sideways?: analysis of smartphone postures in the wild.
In Proceedings of the 15th international conference on Human-computer interaction
with mobile devices and services. ACM, 362–371.

[54] Cagri Sahin, Lori Pollock, and James Clause. 2014. How do code refactorings
affect energy usage?. In Proceedings of the 8th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement. ACM, 36.

[55] Max Schäfer, Julian Dolby, Manu Sridharan, Emina Torlak, and Frank Tip. 2010.
Correct refactoring of concurrent java code. ECOOP 2010–Object-Oriented Pro-
gramming (2010), 225–249.

[56] Max Schafer, Manu Sridharan, Julian Dolby, and Frank Tip. 2011. Refactoring
Java programs for flexible locking. In Software Engineering (ICSE), 2011 33rd
International Conference on. IEEE, 71–80.

[57] Zhiyong Shan, Tanzirul Azim, and Iulian Neamtiu. 2016. Finding resume and
restart errors in Android applications. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications. ACM, 864–880.

[58] Dacong Yan, Shengqian Yang, and Atanas Rountev. 2013. Systematic testing
for resource leaks in Android applications. In Software Reliability Engineering
(ISSRE), 2013 IEEE 24th International Symposium on. IEEE, 411–420.

[59] Razieh Nokhbeh Zaeem, Mukul R Prasad, and Sarfraz Khurshid. 2014. Automated
generation of oracles for testing user-interaction features of mobile apps. In
Software Testing, Verification and Validation (ICST), 2014 IEEE Seventh International
Conference on. IEEE, 183–192.

122

https://www.nytimes.com/2016/03/29/technology/personaltech/using-a-hardware-keyboard-with-an-android-device.html
https://www.nytimes.com/2016/03/29/technology/personaltech/using-a-hardware-keyboard-with-an-android-device.html
https://play.google.com/store/apps/details?id=com.vlille.checker
https://play.google.com/store/apps/details?id=com.vlille.checker
https://play.google.com/store/apps/details?id=com.devexpert.weather
https://play.google.com/store/apps/details?id=com.devexpert.weather
https://developer.android.com/reference/android/os/Bundle.html
https://developer.android.com/reference/android/os/Bundle.html
https://developer.android.com/reference/android/content/SharedPreferences.html
https://developer.android.com/reference/android/content/SharedPreferences.html
https://developer.android.com/reference/android/content/SharedPreferences.Editor.html
https://developer.android.com/reference/android/content/SharedPreferences.Editor.html
https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
http://docs.oracle.com/javase/6/docs/technotes/tools/windows/jarsigner.html
http://docs.oracle.com/javase/6/docs/technotes/tools/windows/jarsigner.html
https://www.sable.mcgill.ca/soot/
https://developer.android.com/training/basics/supporting-devices/languages.html
https://developer.android.com/training/basics/supporting-devices/languages.html
http://ibotpeaches.github.io/Apktool/
http://ibotpeaches.github.io/Apktool/
https://developer.android.com/studio/command-line/zipalign.html
https://developer.android.com/studio/command-line/zipalign.html
https://developer.android.com/topic/libraries/architecture/
https://developer.android.com/topic/libraries/architecture/
https://play.google.com/store/apps/details?id=com.google.zxing.client.android
https://play.google.com/store/apps/details?id=com.google.zxing.client.android
https://github.com/google/iosched
https://play.google.com/store?hl=en
https://github.com/k9mail/k-9/
https://play.google.com/store/apps/details?id=org.isoron.uhabits
https://play.google.com/store/apps/details?id=org.isoron.uhabits
https://github.com/TeamAmaze/AmazeFileManager
https://github.com/TeamAmaze/AmazeFileManager
https://github.com/naman14/Timber
http://www.idc.com/promo/smartphone-market-share/
http://www.idc.com/promo/smartphone-market-share/
https://github.com/DrKLO/Telegram
https://developer.android.com/studio/profile/memory-profiler
https://developer.android.com/studio/profile/memory-profiler
https://play.google.com/store/apps/details?id=com.vrem.wifianalyzer
https://play.google.com/store/apps/details?id=com.vrem.wifianalyzer
https://github.com/wordpress-mobile/WordPress-Android
https://github.com/wordpress-mobile/WordPress-Android

	Abstract
	1 Introduction
	2 Background
	2.1 App Programming Model
	2.2 Runtime Change Handling

	3 Formative Study
	3.1 RQ1: Landscape
	3.2 RQ2: Common Issues and Causes

	4 RuntimeDroid
	4.1 Challenges
	4.2 HotR
	4.3 Dynamic View Hierarchy Migration
	4.4 Implementations

	5 Evaluation
	5.1 Methodology
	5.2 Applicability
	5.3 Issue Fixing
	5.4 Handling Efficiency Improvement
	5.5 Time and Space Costs

	6 Related Work
	6.1 Finding Bugs for Mobile Apps
	6.2 API Usage and Mobile App Refactoring

	7 Conclusion
	Acknowledgments
	References

