
25December 2018 | Volume 22, Issue 4 GetMobile

Ill
us

tr
at

io
n,

 is
to

ck
ph

ot
o.

co
m

[HIGHLIGHTS]

Umar Farooq and Zhijia Zhao Department of Computer Science and Engineering, University of California, Riverside

RUNTIMEDROID:
Restarting-Free Runtime Change
Handling for Android Apps

Editors: Nic Lane and Xia Zhou

GetMobile December 2018 | Volume 22, Issue 426

[HIGHLIGHTS]

When handled improperly, such simple
configuration changes can cause serious
runtime issues, from user data loss to app
crashes. In this work, we present, to our
best knowledge, the first formative study
on runtime change handling of real-world
Android apps. The study not only reveals
the current landscape of runtime change
handling, but also points out a common cause
of various runtime change issues – activity
restarting (an activity in Android represents
an interactive screen). Based on the findings,
we design and implement a restarting-
free runtime change handling solution –
RuntimeDroid, which automatically prevents
the activities from restarting, but ensuring
proper resource updating and user data
preservation. By avoiding activity restarting,
RuntimeDroid successfully fixed a set of 197
reported runtime change issues, meanwhile
reducing the runtime change handling
delays by 9.5X on average.

RUNTIME CHANGE
AND ITS HANDLING
Table 1 lists the runtime changes defined by
the Android API (Level 25). For example,
a device rotation will trigger both screen
orientation and screen size changes (since
Android 3.2) and window resizing in multi-
window mode will trigger screen size changes
(since Android 7). Besides screen-related
changes, there are also runtime changes
for cellular networks, keyboard availability,
language, font size, and layout direction.

During a runtime change, an app needs
to load resources for the new configuration.
For example, when the screen is rotated
from portrait to landscape, a different

layout designed for the landscape needs
to be loaded (if available), which may carry
UI elements with adjusted dimensions.
In general, developers can provide a wide
spectrum of resources, from strings and
colors to images and layouts, for different
device configurations. All these resources

FIGURE 1. Activity lifecycle.

 CHANGE DESCRIPTION

 mcc/mnc IMSI mobile country/
 network code

 locale Language

 touchscreen Touchscreen

 keyboard Keyboard type

 keyboardHidden Keyboard accessibility

 fontScale Font scaling factor

 uiMode User interface mode

 orientation Screen orientation

 screenSize Available screen size

 smallestScreenSize Physical screen size

 layoutDirection Layout Direction

TABLE 1. Runtime changes (API 25)

Portable devices, like smartphones and tablets, are often subject to higher frequency of
configuration changes, such as screen orientation changes, screen resizing, keyboard
attachments, and language switching. Since the changes can happen at runtime while users
interact with the devices, they are referred to as runtime changes. Recent studies have shown
that runtime changes happen regularly as users operate their apps. For example, on average,

users change the orientation of their devices every five minutes accumulatively over sessions of the same
app [1]. For multilingual or tablet users, changing the language setting or attaching an external keyboard
is often desired [2,3]. As newer versions of Android systems with multiwindow supports are adopted,
it is projected that runtime changes will happen more frequently. Each time a user drags the boundary
between two split windows, a runtime change would be triggered [4].

Excerpted from “RuntimeDroid: Restarting-Free Runtime Change Handling for Android Apps” from MobiSys 2018, Proceedings of the 16 th Annual
International Conference on Mobile Systems, Applications and Services with permission. https://dl.acm.org/citation.cfm?id=3210327 © ACM 2018

are grouped and placed in the folder /res
under the project root directory.

To effectively handle various runtime
changes and load needed resources accord-
ingly, Android offers two basic strategies:
restarting-based handling (default) and
customized handling. By default, Android
would first destroy the current activity, then
start a new activity with resources matched
to the new configuration. This process
typically involves transitions of all the lifecycle
stages of an activity, from Paused all the
way back to Resumed again (see Figure 1).
In many cases, an activity may carry the
user interaction state, such as a selected
article in a news app or the player score
of a game app. When the old activity gets
destroyed, its state is also wiped. To avoid
losing the user interaction state, developers
need to preserve state-critical data during
the activity restarting. The preservation
can be achieved by either saving/restoring
the activity state with APIs onSave/
RestoreInstanceState () or retaining the
data objects with some special Android
constructs (Fragments and LiveData).

27December 2018 | Volume 22, Issue 4 GetMobile

[HIGHLIGHTS]

Instead of letting the activity restart,
developers may choose to directly
program the runtime change handling
(customized handling). To do so, developers
need to set the runtime change flag
android:configChanges for self-handling
changes in the app configuration file (i.e.,
AndroidManifest.xml). Once flagged, a
runtime change will no longer trigger any
activity restarting. Instead, it will invoke
onConfigurationChanged () callback.
By overriding this callback, developers can
manually load alternative resources for
the new configuration. However, manual
resource loading is complex to implement,
given the diversity of resource types (16
types in API 27) and their broad uses.

LANDSCAPE OF RUNTIME
CHANGE HANDLING
To find the common practices of runtime
change handling in real-world Android apps,
we collected a set of 3,567 popular Android
apps from Github (based on the number of
stars) with a total of 16,160 activities, referred
to as Corpus-L. To facilitate the study, we
developed an automatic code analysis tool –
RuntimeAnalyzer. For each app in the corpus,
RuntimeAnalyzer parses its source code and
collects the runtime change handling strategy
for each registered activity.

The study results reveal that the most
common runtime changes concerned by
developers are screen orientation change
(32.0%), keyboard availability change
(26.8%), and screen size change (22.9%).
As to the handling strategy, 92.4% of the
16,160 activities choose restarting-based
handling, which covers 92.3% of the
3,567 apps. This is mainly due to its lower
barriers to program than the customized
handling, which requires the understanding

of resource loading mechanisms. Among
the activities with restarting-based
handling, only 13.9% leverage the callback
saveInstanceState () to preserve the data
and 15.4% adopt object retaining. That
means a large portion of the activities
(68.3%) provide no mechanisms for data
preserving at all. Among the activities that
choose the customized handling, only
about one third (31.7%) actually override
the callback onConfigurationChanged ().
The results indicate that a large ratio of
Android apps might not be well prepared
for the activity restarting, thus making
them vulnerable to various runtime change
issues, as we show next. In addition, the
study shows that a small ratio of activities
(15.5%) are set with a fixed orientation.
However, this setting can only avoid
orientation-related activity restarting, at
the cost of restricted user experiences.

RISE OF RUNTIME
CHANGE ISSUES
Our preliminary examination of 765 reposi-
tories from Github shows that 342 of them
(44.7%) had at least one issue due to runtime
change mishandling. To characterize the
issues and identify their causes, we performed
a focused study on a set of 197 runtime
change issues from 72 Android apps (referred
to as Corpus-S). Half of the apps are also
hosted on Google Play Store [5], including
a few highly popular ones, such as Barcode
Scanner [6] (100M+ installs). All the issues
are reported in the Github issue tracking
system. Based on their manifestation, we
categorize them into four basic types.

(i) Lost State: This is the most common type
of issue. Examples include losing user inputs,
scrolling positions, or opened dialogs.

When an activity is destroyed, its associated
UI elements are also removed together
along with their attributes, like text,
selection, and position. For some built-in UI
elements, the system will save and restore
certain attributes (e.g., text in EditText).
However, this may not cover all the UI
states, not to mention the Non-UI data.
Furthermore, the study shows that despite
the saving and restoring, the data might be
reset during activity restarting (e.g., by an
initialization callback onCreate ()).

(ii) Malfunctioning UI: In the setting view
of Vlille Checker [7], an app for self-service
biking, runtime changes result in two layers
of GUIs overlapped with each other. In this
particular case, when a runtime change
occurs, a new activity is started with a new
Fragment attached. Meanwhile, the old
Fragment is still retained by the system,
overlapped with the new one. In general, the
malfunctioning UI issues are often caused
by the improper handling of UI elements
during the activity restarting.

(iii) App Crash: The most severe types are
app crashes. When an app crash happens,
a message “Unfortunately your app has
stopped” pops up on the screen. They are
often triggered by the misuse of asynchronous
function calls (e.g., AsyncTask) with
restarting-based handling. Basically, an

FIGURE 2. Resource construction. RUNTIMEDROID
CAN LOAD
RESOURCES
WITHOUT
RESTARTING
THE ACTIVITY

GetMobile December 2018 | Volume 22, Issue 428

AsyncTask instance was created before a
runtime change. When it finishes after the
runtime change, it cannot find the objects
in the destroyed activity, thus throwing a
NullPointer exception.

(iv) Poor Responsiveness: Some mobile
apps exhibit slowness during a runtime
change, but users tend to not report them as
“issues.” Essentially, the delay is caused by
some blocking operations (e.g., file/network
accesses) in the lifecycle callbacks. When the
screen is rotated, the activity gets restarted
and the screen becomes irresponsive until
the blocking operations finish.

On one hand, runtime change issues
exhibit a variety of consequences. On the
other hand, they often share a common
condition – the adoption of the restarting-
based handling. So, a natural question
raises: “Can we avoid the activity restarting,
while still loading resources as needed?”

RUNTIMEDROID
To address the challenges in runtime change
handling, we introduce a restarting-free
solution – RuntimeDroid. At a high level,
it consists of an online resource loading
module – HotR and a dynamic view
hierarchy migration technique.

As mentioned earlier, to prevent activities
from restarting during runtime changes,
developers can choose the customized
handling. However, this requires developers
to manually load resources for the new
configurations, which is challenging for
many Android developers due to the
complexities in the types of resource and the
dynamic nature of UI elements.

Next, we present an automatic online
resource loading module – HotR, which
is able to load resources for the new
configuration while the current activity
remains live. Moreover, it does not depend
on the app logic.

First, for each configuration, HotR
constructs a resource HashMap with an
entry for each declared resource. The key of
this HashMap is the (serialized) “content”
of a resource and the value is the resource
ID. For example, the resources of two
configurations in Figure 2 will be compiled
into the two resource HashMaps: RHport
and RHland.

When a runtime change occurs, HotR
calculates the differences between the

resource HashMap of the old configuration
RHold and the new one RHnew, that is, RHdiff
= RHnew - RHold. If RHdiff is non-empty,
then HotR would consider the existence of
alternative resources, hence triggering the
resource loading.

To perform resource loading, HotR
distinguishes two cases: resource loading
for static UI elements and resource loading
for dynamic UI elements. The static UI
elements are pre-defined in the layout XML
file. To load their resources, HotR leverages
the setContentView () API, which not
only loads the new layout and the UI
elements declared in the layout, but also the
needed resources for their properties. For
dynamic UI elements, which include the
UI elements added or deleted during the
user interaction and the ones with user-
changeable properties, the resource loading
becomes more complicated. We address this
complexity with a dynamic view hierarchy
migration technique. The high-level idea is
illustrated by Figure 3.

The UI elements on the screen form
a tree structure, called view hierarchy. To
systematically update resources for the
dynamic UI elements without wiping off
the user interaction state, we leverage three
versions of view hierarchy: (i) old static
view hierarchy - the one generated from
layout XML file of the old configuration,
(ii) old dynamic view hierarchy - the actual
one before the runtime change, and (iii) new
static view hierarchy - the one generated from
the layout XML file of the new configuration.
The basic strategy is to use the new static view
hierarchy as the template and update it based
on the differences between the two old view
hierarchies (i.e., user state). The result is the
new dynamic view hierarchy - the one that the
user is expected to observe after the runtime
change (see Figure 3).

In addition, there are two complexities
worth mentioning. One is mapping the
resources to the properties of UI elements.
We address this with a pre-defined mapping
called property-resource mapping, which
is constructed based on the programming
conventions (e.g., the text property is mapped
to a string resource). The other complexity is
that there might be references to the resources
in the app logic code (written in Java). For
example, the following statement accesses a
string resource from a Java method, String
hello = getString(R.string.hello); When

the alternative resources are loaded, we
need to make sure that the corresponding
references point to the newly loaded
resources, instead of the old ones. We discuss
this complexity and the solution in [8].

IMPLEMENTATION AND
EVALUATION
For easy adoption, we developed two
versions of RuntimeDroid: An Android
Studio refactoring plugin – RuntimeDroid-
Plugin and a binary patching tool –
RuntimeDroid-Patch. The former can
be used during the app development,
while the latter works for compiled
Android APK packages, enabled by a
set of reverse engineering techniques.
Both implementations follow a modular
design with a customized activity class
RActivity, from which the existing
activities in an app can extend. For
example, a developer-defined activity A
extending from another activity B will be
refactored as Figure 4. Here, some common
cases of B include built-in activities, like
Activity, AppCompatActivity, and
FragmentActivity. Inside RActivity,
we implement HotR with the dynamic
view hierarchy migration technique
mainly by overriding the callback
onConfigurationChanged ().

We evaluated RuntimeDroid with
the Corpus-S, which consists of 72
Android apps with 507 activities and 197
runtime change issues. The evaluation
results show that RuntimeDroid-Plugin
successfully refactored 503 activities, with
4 activities failed due to the lack of source
code (declared in third-party libraries).
In comparison, RuntimeDroid-Patch
refactored all the 507 activities thanks to
its ability of reverse engineering. Note
that, despite the success of processing

[HIGHLIGHTS]

old static view hierarchy

29December 2018 | Volume 22, Issue 4 GetMobile

REFERENCES
[1] Alireza Sahami Shirazi, Niels Henze, Tilman

Dingler, Kai Kunze, and Albrecht Schmidt. 2013.
“Upright or sideways? Analysis of smartphone
postures in the wild.” In Proceedings of the 15th

International Conference on Human-computer
Interaction with Mobile Devices and Services.
ACM, 362–371.

[2] Using a Hardware Keyboard with an Android
Device. https://www.nytimes.com/2016/03/29/
technology/personaltech/using-a-hardware-
keyboard-with-an-android-device.html (2017).
Accessed: 2017-11-12.

[3] Supporting Different Languages and Cultures.
https://developer.android.com/training/basics/
supporting-devices/languages.html (2017).
Accessed: 2017-11-12.

[4] Multi-Window Support. https://developer.
android.com/guide/topics/ui/multi-window.html
(2017). Accessed: 2017-11-12.

[5] Google Play Store. https://play.google.com/
store?hl=en (2018). Accessed: 2018-04-22.

[6] Barcode Scanner. https://play.google.com/store/
apps/details?id=com.google.zxing.client.android
(2018). Accessed: 2018-04-22.

[7] Vlille Checker. https://play.google.com/store/
apps/details?id=com.vlille.checker (2018).
Accessed: 2018-04-22.

[8] Umar Farooq and Zhijia Zhao. 2018.
RuntimeDroid: “Restarting-free runtime change
handling for Android apps.” In Proceedings of the
16th ACM International Conference on Mobile
Systems, Applications, and Services. ACM, 110–122.

all the activities in Corpus-S, there are a
few special cases where RuntimeDroid
fails to refactor. These include activities
without setContentView() API, such as
ListActivity and PreferenceActivity, and
activities that are not written in Java (i.e.,
NativeActivity).

More importantly, our evaluation also
shows that, by applying RuntimeDroid
to the 72 problematic apps, all the 197
reported runtime issues get fixed, thanks
to the adoption of restarting-free runtime
change handling. Note that, according to
our formative study, not all runtime change
issues are caused by activity restarting.
For example, in Firefox browser, after
a screen rotation, its context menu gets
mispositioned in the screen. This is because
the screen size and the icon position are
both changed, while the position of the
menu is not updated accordingly. Issues like
this would still appear even if the activity is
not restarted.

Besides issue fixing, our evaluation
also shows the performance benefits of
applying RuntimeDroid. By avoiding
activity restarting, we observe that the
runtime change handling cost is reduced
by 9.5X on average. On the other hand,

RuntimeDroid may introduce space costs
due to the refactoring. However, based
on our measurements, the cost is about
15% on average and the ratio decreases as
the package size increases. The time for
applying RuntimeDroid-Plugin ranges from
hundreds of milliseconds to 1 second and
the time for applying RuntimeDroid-Patch
ranges from 12 seconds to 2 minutes.

CONCLUSION
This work, to our best knowledge, presents
the first formative study on the runtime
change handling for Android apps. The
study reveals the current landscape of
runtime change handling and a common
cause of runtime change issues – activity
restarting. With this insight, it introduces
a restarting-free runtime change handling
solution, named RuntimeDroid, which
can load resources without restarting
the activity. It achieves this with an
online resource loading module HotR
and a novel dynamic view hierarchy
migration technique. For easy adoption,
this work provides two implementations,

RuntimeDroid-Plugin and RuntimeDroid-
Patch, to cover both in-development
and post-development uses. Finally, the
evaluation confirms the effectiveness and
efficiency of RuntimeDroid by refactoring
and fixing a set of 197 real-world runtime
change issues. n

Umar Farooq is a PhD candidate in the
Computer Science and Engineering
Department at University of California,
Riverside. His research interests lie broadly
in mobile systems and applications, with a
focus on designing and applying program
analysis and refactoring techniques to address
real-world issues in mobile systems and
applications. He is a recipient of Best Paper
Runner-up Award at MobiSys 2018.

Zhijia Zhao is an assistant professor of
Computer Science and Engineering at
University of California, Riverside. Prior to
joining UCR, he received his PhD from the
College of William and Mary in 2015. His
research focuses on programming system
supports for parallel computing and mobile
computing. He is a recipient of an NSF CAREER
Award, a Regents Faculty Fellowship, and a
Hellman Fellowship.

[HIGHLIGHTS]

FIGURE 3. Illustration of dynamic view hierarchy migration.

FIGURE 4. Code refactoring by RuntimeDroid.

old dynamic view hierarchy new dynamic view hierarchynew static view hierarchy

