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ABSTRACT
This paper introduces the open-source Beast system for scalable
exploratory data science on big spatio-temporal data. Beast is based
on well-established research and has been released to assist the
research community with analyzing big spatio-temporal data. Beast
provides a set of extensible components that naturally integrate
with Spark to build exploratory data science pipelines. Beast can
install in less than a minute on an existing Spark cluster and pro-
vides a wide array of features including loading vector and raster
data represented in standard file formats, synthetic data generation
for benchmarking, load-balanced spatial partitioning, data sum-
marization, interactive visualization, and more. Beast builds on
several research projects; its goal is to make all this research widely
available to researchers in one integrative and coherent system.
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1 INTRODUCTION
There has been an increasing interest in releasing public data by
governments, non-governmental organizations, and industry. The
goal is to assist students, researchers, and data scientists in various
domains to advance their research in their corresponding domain.
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At least 60% of this data is geospatial and most of it has a time
component [34]. Therefore, there is a pressing need to interactively
ingest, explore and utilize this data in data science applications.

To illustrate how users typically use these open data reposito-
ries, suppose that a researcher decides to work on a data science
project that studies the effect of demographics and homelessness
on crime. The researcher will first navigate to ‘Data.gov’ and search
for: ‘crime’, ‘police’, ‘demographics’, and ‘homeless’ which yield
nearly 600, 750, 2000, and 130 datasets, respectively. Now, the next
step is to interactively explore these thousands of datasets, which are
available in various formats, to further narrow down the search to a
few that serve the purpose of the research. This exploration process
includes data loading, filtering, aggregation, join, and visualization.
By looking into existing big spatial data systems, they either focus
on big volume data [5, 20, 54, 83, 86] or big velocity data [26, 55, 73],
while in the example above, the user has a problem with the big
variety in the data.

Existing systems fall short in satisfying user requirements for
spatio-temporal data exploration due to four limitations. First, due
to the complexity of geospatial data file formats, these systems
support only a limited number of them and users still need to
run a sequential conversion process that becomes a bottleneck.
Existing file formats were designed for traditional file system, thus,
providing a distributed data loader and parser is a challenging task.
Second, any distributed system needs an efficient load balancer that
can partition the data among processing nodes while taking into
account its multidimensional aspect. Third, existing systems focus
on processing one dataset at a time while data exploration tasks
need the concurrent processing and exploration of many datasets.
Fourth, users need to explore the raw data and results through a
visual-based interface that displays data on an interactive map.

This paper introduces Beast, an end-to-end big-data framework
for exploratory analytics on spatio-temporal data. Beast provides a
unique design that aim at providing exploratory queries on large
scale spatio-temporal data. 1) Beast ships with a set of distributed
loaders and writers for various binary and textual formats for both
vector data, e.g., Shapefile and GeoJSON, and raster data, e.g., Geo-
TIFF and HDF. These loaders can also decompress the data on-
the-fly to minimize the need of an external preprocessing step.
Addtionally, Beast adds a parallel data generator for testing and
benchmarking with reproducibility in mind. 2) It provides memory
and disk-based partitioning framework for multidimensional data
to speed up data loading and query processing [75, 76, 78]. 3) It en-
compasses an optimized set of operations, e.g., range selection and
join framework for multidimensional data to support the efficient
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Figure 1: Architectural overview of Beast

exploration of multiple datasets [24, 69, 71, 72]. 4) Beast provides a
scalable interactive visualization for exploring big data [27–30].

While some of the components of Beast have been published
individually in earlier work [13, 24, 27–30, 42, 66–72, 75–79, 88],
this paper focuses on three specific components that have not been
explained in earlier work, distributed data loading and writing,
spatial data generator, and scalable query and join framework. This
paper also describes how Beast is integrated into Spark to build one
cohesive system1.

In the rest of this paper, Section 2 gives an overview of the
system components. Section 3 describes the interfaces that Beast
provides followed by details of system components in Sections 5-9.
Section 10 gives an experimental evaluation. The related work is
described in Section 11. Finally, Section 12 concludes the paper.

2 OVERVIEW
Figure 1 gives an architectural overview of Beast which consists
of five main components. First, to support in-situ data processing,
Beast provides a set of parallel loaders and writers for popular file
formats such as Shapefile, CSV, GeoJSON, and GeoTIFF. This compo-
nent also provides scalable spatial data generators for stress testing
and benchmarking. Second, the spatial partitioner and load balancer
component provides a set of spatial partitioning techniques which
can group spatially relevant records into partitions while balancing
the load across the executor nodes. The partitioned data can be
written to disk in any of the standard file formats to be reused
by Beast or any other system. Third, to support interactivity, the
interactive query processor offers a set of data synopses to facilitate
approximate query processing, e.g., sample, point histogram, Euler
histogram, and Bloom filter. It also uses these synopses to build
some approximate algorithms such as clustering and selectivity esti-
mation. Fourth, the scalable join framework is crucial for big variety
data since it allows users to integrate multiple datasets together.
Beast provides a set of distributed join algorithm with various opti-
mizations to handle big spatial data efficiently and uses a rule-based
optimizer to choose the most appropriate algorithm. Finally, the

1Available as open source at https://bitbucket.org/bdlabucr/beast

exploratory map interface helps users in visually exploring the input
data or the query results on an interactive map interface.

Users can interact with all components of Beast through vari-
ous interfaces. The web interface provides a graphical interface for
some features in Beast such as the map visualization, data retrieval,
and conversion. UCR-Star [30] is a an example of a web applica-
tion built using this web interface. The command-line interface
(CLI) gives quick access to some common features in Beast such as
data conversion, indexing, and visualization. The interactive shell
extends the Spark Scala shell with all features of Beast. It allows
developers to try out the features of Beast or write short code snip-
pets. In this paper, all samples shown in yellow boxes are complete
code examples that can run in the Beast interactive shell. Finally, the
SQL and RDD APIs are built on the corresponding APIs in Spark
and helps developers who want to integrate Beast component into
their own Scala or Java programs.

3 INTERFACES
There are five main interfaces to work with Beast the RDD API for
Scala and Java, SQL API, interactive shell, command-line interface
(CLI), and a web interface. The lowest-level is the RDD interface
which developers can use in their Java or Scala project. The SQL in-
terface extends SparkSQL with geometric data types and functions
for relational operations and it provides interoperability with the
RDD API. The interactive shell interface extends the Spark shell for
quick access of all Beast functions in Scala without having to worry
about writing a complete program. All code examples given in this
paper can directly run in the interactive shell. The command-line
interface (CLI) provides quick access to some common functions
such as data conversion, indexing, and visualization, without hav-
ing to write a single line of code. Finally, the RESTful interface
provides a limited access to certain functions in Beast that need to
be accessed from the web such as web map visualization.

The only required prerequisite for Beast is a running Spark sys-
tem. The RDD and SQL APIs are installed by adding Beast Maven
coordinates in the project configuration file. Beast provides aMaven
template that generates a sample project that is readily integrated
with Beast. The interactive shell and CLI are installed by download-
ing and extracting the Beast binary package which takes only a few
seconds to download and install and does not require a restart of
Spark. Finally, the REST interface is started by running the ‘server’
command from the CLI interface.

4 SPATIAL DATA TYPES
This section describes the new data types and classes that are in-
troduced in Beast to enable geospatial data exploration. Our goal
is to have a highly-compatible design that allows users to run ex-
ploratory queries that combine both spatial and non-spatial data
and operations. Other systems, e.g., Apache Sedona, use a wrap-
per approach that creates new constructs that wrap around Spark
classes. For example, the SpatialRDD in Sedona is a wrapper around
four separate RDDs in addition to some statistics of the data. While
this design allows queries to run more efficiently by caching mul-
tiple versions of the data, it makes SpatialRDD incompatible with
existing RDD functions in Spark. Therefore, it does not well support
exploratory queries that combine multiple operations and datasets.

https://bitbucket.org/bdlabucr/beast


The design of Beast maximizes compatibility with Spark core by
extending existing classes rather than introducing new ones. For
example, SpatialRDD in Beast is just an alias for RDD[IFeature]
which makes it compatible with all existing RDD transformations
and actions. This part describe the data types defined in Beast.

IFeature: is a geometric feature that combines a geometry,
e.g., point, line, or polygon, with zero or more non-geometry at-
tributes, e.g., unique ID or name. For compatibility with the Spatial
Dataframe API, IFeature extends the Row interface.

SpatialPartitioner: is an extension of Spark partitioner that
assigns a geometric feature to a partition based on its minimum
bounding box (MBB).

SpatialRDD=RDD[IFeature]: SpatialRDD is an alias for
RDD[IFeature]. It defines an RDD that contains geometric features.
A SpatialRDD can optionally include a SpatialPartitioner that de-
fines the MBB of each partition.

ITile: is the smallest unit of a raster layer, e.g., satellite data. It
represents a two-dimensional array of values and a mapping to
associated geo-location to these values.

RasterRDD=RDD[ITile]: is an RDD that contains a set of tiles.
All tiles in an RDD collectively define a raster layer.

5 SPARK LOADERS ANDWRITERS
Beast ships with Spark-compliant loaders and writers for most
common spatial formats for both vector and raster. The goal is to
provide in-situ processing for a wide range of data formats that
helps scientists in exploring publicly available data without pre-
processing. All data loaders are accessible from the Spark context
instance. The following example reads a GeoJSON file.2

val buildings: SpatialRDD = sc.geojsonFile("buildings.geojson")

Beast decompresses most formats on the fly to avoid a sep-
arate decompression step. Vector and raster files are loaded as
SpatialRDD or RasterDD, respectively. The spatial loader is de-
fined as a top-level RDD, i.e., one that does not depend on other
RDDs, and produces the initial set of geometric features. Once the
RDD is created, it can be used as a regular RDD in Spark.

GeoJSON Parser: In the following part, we explain the design
of the GeoJSON parser which is one of the challenging data formats
that is fully integrated in Beast. To the best of our knowledge, Beast
is the only system that can process any valid GeoJSON file on Spark.
Other systems, e.g., Sedona, can process a GeoJSON file only if the
header is omitted and records are organized as one per line; these
conditions do not generally hold on publicly available data.

The main challenge in GeoJSON files is when a big file is parti-
tioned across executors. In this case, there are two main issues that
are not yet solved by other systems. First, how to correctly parse
records that cross partition boundaries. Second, how to correctly
parse GeoJSON data when the parser does not start from the be-
ginning. Figure 2 gives an example of these challenges. The given
file is split into two partitions as indicated. In this case, a regular
parser will fail to read the first partition since it does not contain a
complete Feature object. It will also fail to parse the second partition
since it starts with a string which is not a valid JSON syntax.

2Input/Output: https://bitbucket.org/bdlabucr/beast/src/master/doc/input-output.md

{
"type" : "FeatureCollection",
"features" : [ {
"type" : "Feature",
"geometry" : {
"type" :

--- Partition boundary ----
"Point",
"coordinates" : [ -117.4, 34.0 ]

}
}, {
"type" : "Feature",
"geometry" : {
"type" : "Point",
"coordinates" : [ 120.0, 30.4 ]

}
} ]

}

Figure 2: GeoJSON parsing example

To solve the problem of records that span two partitions, we
define an anchor point for each record as the position of the start
object ‘{’ character. Then, we make a rule that the partition that
contains the anchor point is responsible of reading the record even
if it spans the next partition. Since the anchor point can only fall in
one partition, this ensures that each record is read exactly once.

To solve the problem of starting the JSON parser at any point,
we create a new component termed silent JSON parser, which acts a
stream parser that emits one token at a time. Unlike existing parsers,
the silent parser absorbs any parsing errors and restarts the parser
at the next token. For example, when the silent parser works on the
second partition in the example above, it will encounter many errors
until it reaches the first start object token. Then, it will correctly
parse the second object. It will again find an error when it reaches
the end array and end object tokens which close the array and the
object that started in the first partition. However, this will not result
in missing any GeoJSON features in the file.

We further extend our GeoJSON parser to work with block-based
compressed files, i.e., the file consists of a sequence of independently
compressed blocks. Since the block boundaries are not known, we
will have the same issues of blocks that span multiple partitions
and the decompressor not able to start at the middle. To solve these
problems, we follow a similar approach to the one above. First, we
define an anchor point for each block to be its first byte to ensure
that we process each block exactly once. Additionally, when the
decompressor starts from the middle of the file, it reads and ignores
the invalid bytes until it reaches a special character that marks the
block boundary at which it starts the decompression and parsing.

Data Writing: Similar to data loading, Beast can write any Spa-
tialRDD in many standard file formats such as GeoJSON, KML, and
Shapefile. This allows Beast to easily integrate with most exist-
ing spatial data systems. Spatial writing is implemented in Beast
as a new Spark action that runs in parallel and writes each RDD
partition to a separate file.

The following code reads a file in CSV format and writes it
back as a Shapefile, which illustrates how Beast acts as a scalable
converter of geospatial files.

sc.readCSVPoint("input.csv", "x", "y", ',').saveAsShapefile("output.shp")

https://bitbucket.org/bdlabucr/beast/src/master/doc/input-output.md


To the best of our knowledge, the above single line of code is
the most scalable data converter available out there for geospatial
files which reads, decompresses, converts, and writes the output in
parallel.

Integration with SparkSQL:. Any SpatialRDD can be converted
to a dataframe to run with SparkSQL. Beast adds a set of standard
functions similar to the ones used popular geospatial packages, e.g.,
PostGIS and Oracle Spatial. Similarly, a dataframe that contains
a geometry can be converted to a SpatialRDD. For example, the
following code loads a Shapefile, converts it to a DataFrame, calcu-
lates the area of each geometry using SQL, and finally, writes the
result back as GeoJSON.

val counties: SpatialRDD = sc.shapefile("us_counties")
counties.toDataFrame(spark).createOrReplaceTempView("counties")
val counties_areas = spark.sql(
"SELECT NAME, g, ST_Area(g) FROM counties")

counties_areas.toSpatialRDD.saveAsGeoJSON("us_counties_areas")

6 PARALLEL SPATIAL DATA GENERATOR
To assist with benchmarking and promote the reproducibility of
results, Beast extends the award-winning spatial data generator
Spider [42, 79] for parallel generation of multidimensional data.
The data is generated in parallel as a SpatialRDD which makes it
scalable and ready to integrate with other Spark RDDs. For example,
the following code loads a set of polygons, and use their minimum
bounding rectangle (MBR) to generate points and join them with
the polygons. Users can easily change the size or distribution of
the data to test the behavior of the program.3

val polygons: SpatialRDD = sc.shapefile("us_counties")
val randomPoints: SpatialRDD = sc.generateSpatialData.

mbr(polygons.summary).uniform(1000000)
val sjResult = polygons.spatialJoin(randomPoints)

Figure 3 depicts the six data distributions currently supported
by Beast [79]. The original generator that we base our work on is
implemented as a single-machine script in Python and Ruby which
limits its scalability.

To parallelize the data generation process, we have to overcome
three limitations in Spark. First, Spark requires every task to be de-
terministic so that the failed tasks could be resubmitted to complete.
Second, different tasks should generate different set of random data
while still being deterministic. Third, and specifically for the parcel
distribution, the generator is inherently sequential and cannot be
directly parallelized.

To overcome the first two limitations, we define a new type of
RDD in Beast called RandomSpatialRDD which consists of parti-
tions of type RandomSpatialPartition. When the RandomSpatial-
RDD is constructed, a fixed seed 𝑠 is generated (or provided by the
user), and is attached to the RDD for the lifetime of the application.
This seed defines the random number generator used to generate
all data in this RDD. To make sure that each partition generates
different data, each task that processes a partition initializes its own
random number generator with seed 𝑠 + 𝑖 where 𝑖 is the partition

3https://bitbucket.org/bdlabucr/beast/src/master/doc/spatial-data-generator.md

(a) Uniform (b) Diagonal (c) Gaussian (d) Sierpinski (e) Bit (f) Parcel

Figure 3: Examples of supported spatial distributions [79].
Readers can explore them at https://spider.cs.ucr.edu

index. This ensures that each task is still deterministic since both 𝑠
and 𝑖 are fixed for each task while being different.

Accommodating the parcel generator is the third challenge that
we need to address. The parcel generator works by recursively
splitting the input space either vertically or horizontally until a
desired number of records is reached. This process is inherently
sequential. To untangle this problem, we remodel this generator as
a tree traversal algorithm where the root is the original input space
and the leaf nodes are the generated records. Then, we transform
the parcel generator from a depth-first search (DFS) traversal to
breadth-first search (BFS). When the RDD is initialized, we run
the BFS generator to generate 𝑛 boxes that defines the partition
boundaries. Then, each partition will start with one of these boxes
and continue the splitting process in parallel. This requires us to
adjust the number of records generated in each partition to ensure
that the correct number of records is generated.

7 PARTITIONING AND LOAD BALANCING
Any big data framework needs to partition the data over multiple
machines. Beast provides a set of spatial partitioners that can take
any SpatialRDD and produce a spatially partitioned RDD. The main
difference between a regular SpaitalRDD and a spatially partitioned
RDD is the existence of a SpatialPartitioner that is associated with
the RDD. The SpatialPartitioner keeps track of the minimum bound-
ing box (MBB) of each partition in the RDD. As shown later, this
information is used to speed up spatial query processing. The fol-
lowing code shows how to partition a dataset using the R*-Grove
partitioner4.

import edu.ucr.cs.bdlab.beast.indexing.RSGrovePartitioner
val partitioned: RDD[IFeature] = sc.shapefile("points.shp").
spatialPartition(classOf[RSGrovePartitioner])

Additionally, a spatially partitioned RDD can be saved to disk in
any standard file format and loaded later along with its partitioning
information.

// Save a partitioned RDD to disk
partitioned.saveAsShapefile("partitioned_data")
// To load the data back in another Spark application
val loadedPartitioned = sc.shapefile("partitioned_data")

Unlike other systems that store partitioned data as object files
that are only readable by the same Spark application, Beast stores
the data in any standard file format which makes it readable by all
supported applications.

4https://bitbucket.org/bdlabucr/beast/src/master/doc/partitioning-indexing.md
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Figure 4: STR provides less than 90% block utilization while
most R*-Grove partitions are more than 95% utilized

partitioning techniques in Beast can work with arbitrarily many
dimensions which allows developers to use with spatio-temporal
data. Existing big spatial data system use the sample-based parti-
tioning method which was introduced in SpatialHadoop [20] which
works in three phases. Phase 1 picks a random sample of the input
dataset to infer its distribution. Phase 2 partitions the space into
𝑛 partitions with roughly equal number of sample points. Phase 3
scans the input dataset in parallel and assigns records to partitions
based on their location. The second phase is critical to the quality of
final spatial partitions. Most existing techniques use a bulk loading
mechanism to construct an index such as STR [44], Quad-tree [63],
or Kd-Tree. Although these partitioning techniques have been inte-
grated into many big spatial data systems, they are all holding one
or more of the following three limitations. First, some spatial index
structures (STR, Kd-tree) prefer load balance than spatial quality,
e.g., total area or total margin of partitions [19]. Hence, they could
produce very thin or wide partitions as shown in Figure 4, which
is not good for spatial query processing. Second, some index struc-
tures (R-tree, Kd-tree, and Quad-tree) produce underutilized leaf
nodes in order to occupy the future inserts. This is not optimal for
distributed file systems such as HDFS, where it expects each block
to be fully occupied to reduce the number of blocks. Third, all of
existing index structures do not take the record’s size into account.
As a result, they can produce highly unbalanced partitions in term
of storage size if the input datasets contains variable-size records,
even though they might be balanced in terms of number of records.

Beast provides an efficient spatial partitioning technique, called
R*-Grove [76, 78], that overcomes these limitations. First, it uti-
lizes the R*-tree optimization methods [11] to produce high quality
spatial partitions. Second, it produces full block and balanced parti-
tions, by creating a new constraint of the node’s size in the node
splitting process. In short, it requires a lower bound on the ratio
of the smallest and largest partition, e.g., 95%, so that the final par-
titions should occupy at least 95% of a full HDFS block (i.e., 128
MB). Third, if the input dataset contains variable-size records, R*-
Grove combines the sample points with a histogram of data size
so that each sample point is assigned a weight. These weights will
be referred in the node splitting process to guarantee the storage
size of every partition always falls into a desired range. To the best
of our knowledge, R*-Grove is the first static partitioning method
that supports load balancing for spatial datasets with variable-size
records. It does not require the query workload’s awareness in
order to balance partitions as existing systems [1, 7, 8, 16]. Figure 4
shows the square-like partitions with high block utilization, which
are produced by R*-Grove. This promises a better query processing
performance than the STR-based partitions.

Deep learning-based spatial partitioning: Along with R*-Grove,
Beast still supports other popular partitioning techniques such as
Grid, STR, and Kd-tree. The best partitioner depends on the dataset
characteristics, distribution, and query requirements. However, it is
a challenging problem to anticipate the best partitioning technique
given the high variability in spatio-temporal datasets. To overcome
this problem, we propose a deep learning based system [75] that au-
tomatically selects a suitable partitioning technique that promises
the best optimization metric. The system runs in two main phases:
training and inference. The offline training phase builds a training
dataset using our spatial data generator [42, 79]. Each dataset is
partitioned using all partitioners and the best one is chosen to train
a classification model. In the inference phase, the trained model is
used to predict the best partitioning technique for the given input
dataset. This system helps users to automatically choose the appro-
priate partitioning technique without any heuristic experience of
spatial data partitioning.

8 SPATIAL RDD OPERATIONS
This section focuses on three operations that are very important
for data exploration, range query, spatial join, and zonal statistics.

8.1 Range Query
The range query operation filters geometric features that intersect
a multidimensional box and returns an RDD of matching filters as
in the example below.

val partitionedData = sc.shapefile("partitioned_points")
val areaOfInterest = sc.shapefile("us_counties")
.filter(_.getAs[String]("NAME") == "Los Angeles").first
val result = partitionedData.rangeQuery(areaOfInterest)

In standard Spark, this method is implemented using a filter opera-
tion which scans the entire file. Beast utilizes spatial partitioning
of RDDs to run this query more efficiently by early pruning of
partitions that are outside the query range. This is done through
the use of PartitionPruningRDD which compares the bounding
box of each partition to the query range before running the filter
operation. If the data is not spatially partitioned, Beast falls back to
the standard Spark implementation which scans the entire file.

8.2 Spatial Join
The spatial join operation takes two input datasets 𝑅 and 𝑆 that
contain geometric features and a spatial predicate \ . It outputs a
dataset of pairs of features (𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆) that \ (𝑟, 𝑠) is true. For
example, it can take a GPS traces as points and ZIP code bound-
aries and associates each point with the containing ZIP code. The
following code snippet shows an example that counts the number
of GPS points in each ZIP code5.

import scala.collection.Map
val zipCodes = sc.shapefile("zcta5")
val gpsPoints = sc.spatialFile("gps_tracks", "gpx")
val sjResult: RDD[(IFeature, IFeature)] =

zipCodes.spatialJoin(gpsPoints)
val pointsPerZIP: Map[IFeature, Long] = sjResult.countByKey()

5https://bitbucket.org/bdlabucr/beast/src/master/doc/spatial-join.md
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Spatial join optimization techniques can be broadly categorized
under filter optimization and refinement optimization. The filter
optimization aims at reducing the number of predicate tests while
refinement optimization reduces the cost of each predicate test.
The following part highlights the main optimization techniques
employed by Beast.

Spatial Dependency:A Spark dependency defines how the par-
titions in one child RDD depend on the partitions of multiple parent
RDDs. In Beast, we define a new dependency called Spatial Depen-
dency which is created mainly for the spatial join operation. Spatial
dependency relates one child RDD, the represents the spatial join
result, to two spatially-partitioned parent RDDs, the represent the
two inputs. It defines it in a way such that one partition in the child
RDD depends on two partitions in the two parent RDDs that spa-
tially intersect. This dependency is used to create a new RDD, called
SpatialIntersectionRDD, which takes two spatially partitioned
RDDs and produce a new RDD where each partition represents a
pair of overlapping input partitions. The SpatialIntersectionRDD
is used to implement the following three spatial join algorithms
which are all categorized as filter optimizations.

Index-based join resembles the R-tree join algorithm [37] and
is applicable only when both RDDs are spatially partitioned. It first
uses the SpatialIntersectionRDD to find pairs of overlapping par-
titions. Then, it performs a plane-sweep join algorithm between
every pair of partitions. Finally, it uses the reference point dupli-
cate avoidance technique [17] only if both input datasets contain
replicated geometries. The following code snippet gives a sketch of
how this algorithm is impelemented in Beast.

def indexBasedJoin(r1: SpatialRDD, r2: SpatialRDD) = {
require(r1.isSpatiallyPartitioned)
require(r2.isSpatiallyPartitioned)
val matchingPartitions = new SpatialIntersectionRDD(r1, r2)
matchingPartitions.flatMap(joinedPartition =>
planesweep(joinedPartition._1, joinedPartition._2)
)
}

The first two lines verify that the two inputs are partitioned.
Then, it uses the SpatialIndersectionRDD to produce a new RDD
that contains pairs of partitions. Finally, it passes the contents of
each partition, which is two sets of records, to the planesweep
function which runs a local spatial join algorithm between the two
sets of features.

Repartition Join (RJ) is another filter optimization algorithm
that is based on the seeded tree join algorithm [48]. When only
one dataset is partitioned, it repartitions the other dataset to match
the partitioned dataset. Then, it performs the plane-sweep join
algorithm for each pair of matching partitions. Finally, it employs
the duplicate avoidance technique if needed. The following code
snippet explains how it is implemented.

def repJoin(r1: SpatialRDD, r2: SpatialRDD) = {
val r2Partitioned = r2.spatialPartition(r1.partitioner)
new SpatialIntersectionRDD(r1, r2Partitioned)
.flatMap(joinedPartition =>
planesweep(joinedPartition._1, joinedPartition._2)
)

}

Quad Split

Figure 5: Quad split optimization for spatial join. Gaps in the
broken geometry are added for illustration.

The algorithm simply partitions the second dataset to match the par-
titioner of the first dataset. Then, it uses the SpaitalIntersectionRDD
to combine the matching partitions and join them.

Partition based spatial merge (PBSM) [59] join algorithm is
usedwhen non of the input datasets is partitioned. First, it partitions
the input space into disjoint cells. Then, it replicates each record in
both datasets to all overlapping cells. After that, it runs the plane-
sweep algorithm on the records in each cell. Finally, it removes
duplicates using the reference point technique. While the original
PBSM algorithm uses a uniform grid to partition the space, Beast
can utilize the R*-Grove partitioning technique which balances the
load when the data is highly skewed. The following code snippet
explains how PBSM is implemented in Beast.

def pbsm(r1: SpatialRDD, r2: SpatialRDD) = {
val intersectionMBR = r1.summary.intersection(r2.summary)
val partitioner =
new GridPartitioner(intersectionMBR, 1000, 1000)
val r1Partitioned = r1.spatialPartition(partitioner)
val r2Partitioned = r2.spatialPartition(partitioner)
new SpatialIntersectionRDD(r1Partitioned, r2Partitioned)
.flatMap(joinedPartition =>
planesweep(joinedPartition._1, joinedPartition._2)
)

}

The first three lines compute the intersection area between the
two input datasets and use it to create a grid partitioner. Then, it
partitions both datasets using the common partitioner. Finally, it
uses the SpatialIntersectionRDD to combine matching partitions
and join them.

For refinement optimization, Beast uses the quad-split approach
as illustrated in Figure 5. It recursively breaks down a complex
geometry into four quadrants until the number of points in each
piece falls below some threshold, e.g., 100 points per geometry. This
approach is applied when the average number of points per geome-
try is higher than a threshold of 100. The refinement optimization
can be combined with any of the above three algorithms.

8.3 Zonal Statistics
Zonal statistics is a grouped aggregate operation that takes as
input a polygon dataset and a raster dataset. It computes four
aggregate functions over the values of the pixel that lie inside
each polygon, namely, min, max, sum, and count. This opera-
tion becomes very expensive when operating on high-resolution
raster and vector data. We recently proposed a Hadoop-based dis-
tributed implementation [71] that can partition both vector and



(a) Single-level (b) Multilevel

Figure 6: Visualization techniques in Beast. Explore hun-
dreds of visualizations at https://star.cs.ucr.edu

raster data and process them efficiently. Porting this algorithm to
Beast is a work-in-progress but initial experiments show up-to
an order of magnitude speedup over the Hadoop implementation.
For more details on how to run zonal statistics in Beast, check
https://bitbucket.org/bdlabucr/beast/wiki/raptor.

9 EXPLORATORY MAP INTERFACE
Domain scientists heavily rely on visualization for exploring query
results and for sharing their findings. Map visualization can be
broadly categorized into two types, client-side rendering and server-
side rendering. In client-side rendering, the database system pro-
cesses the data regularly and produces a small-size result that
the browser can render using JavaScript. Most systems support
this type of visualization since it does not require any special fea-
tures [15, 31, 38, 64, 65, 81, 84, 84] but it is not generally scalable.

In server-side rendering, the database server creates the image
and the browser just displays it on the screen which gives an op-
portunity to handle big data efficiently [23, 45, 56, 60, 85, 87]. This
can be further categorized as single-level visualization or multilevel
visualization. Single-level visualization produces a single image
with a fixed resolution, e.g., 2, 000 × 2, 000 pixels. The output can
be included in a report or displayed on the screen as shown in Fig-
ure 6(a). The following code shows how to generate a single-level
image in Beast.

sc.shapefile("us_counties").plotImage(2000, 2000, "counties.png")

The level-of-details of single-level images is limited by its reso-
lution. To allow users to zoom in and see more details, multilevel
images can be used as they consist of hundreds of millions of tiles
that can be fetched and arranged on the screen depending on the
region currently displayed on the map. Figure 6(b) shows the fi-
nal displayed visualization where tile boundaries are completely
transparent to the end user. The main challenge is how to manage
those billions of tiles [57]. Existing systems either create and ma-
terialize all tiles [23, 87] or cache the data in memory and render
tiles on the fly [85]. Both techniques consume too much resources
that limit their scalability. Beast overcomes this problem by inte-
grating a new adaptive visualization index, termed AID* [27, 28],
which materializes a minimal number of tiles to ensure an inter-
active response and generates other tiles on-the-fly using a disk-
based index. AID* has been successfully deployed in UCR-Star
[https://star.cs.ucr.edu] [29, 30] which currently serves hundreds
of datasets with terabytes in size. AID* is very conservative on

Name Size # records format
All Nodes 97 GB 2.7 billion CSV
All Objects 92 GB 264 million WKT
MS Buildings 27 GB 125 million GeoJSON
Roads 9 GB 18 million Shapefile

Table 1: Datasets used in experiments
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Figure 7: Data scanning throughput

resource consumption that UCR-Star is hosted on a single-machine
and consumes less than a gigabyte of memory.

The following code snippet generates a multilevel visualization
for a spatial dataset with up-to 10 zoom levels. This will produce a
directory that contains the generated tiles and an HTML file that
displays them on an interactive map6.

sc.shapefile("us_counties").
plotPyramid("counties−multilevel", 10, opts = "mercator" −> true)

10 EXPERIMENTS
This section provides an experimental evaluation of Beast 0.9.1
in comparison to Sedona 1.0-incubating (formerly GeoSpark) and
AsterixDB 0.9.5 [6]. The experiments run on a cluster with one head
node and 12 worker nodes. The head node has Intel(R) Xeon(R)
CPU 𝐸5 − 2609 v4@ 1.70GHz processor, 128 of GB RAM, 2 TB of
HDD, and 2×8-core processors running CentOS and Oracle Java
1.8.0_131. The worker nodes have Intel(R) Xeon(R) CPU E5-2603 v4
@1.70GHz processor, 64 GB of RAM, 10 TB of HDD, and 2×6-core
processors running CentOS and Oracle Java 1.8.0_31-b04. All the
datasets we use in this paper are publicly available on UCR-Star [30].
Table 1 summarizes the datasets that we use in this section.

10.1 Data scanning
As Beast focuses on in-situ processing, this first experiment shows
the performance of scanning and parsing data in various file for-
mats. For CSV, WKT, ad Shapefiles, we run on both decompressed
and compressed versions. Figure 7 shows the ingestion throughput.
In this experiment, we load the dataset and run a count operation
6https://bitbucket.org/bdlabucr/beast/src/master/doc/visualization.md

https://star.cs.ucr.edu
https://bitbucket.org/bdlabucr/beast/wiki/raptor
https://star.cs.ucr.edu
https://bitbucket.org/bdlabucr/beast/src/master/doc/visualization.md
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Figure 8: Partitioning and indexing performance

to measure the throughput in terms of millions of points per second.
All systems are scalable but Beast stands out with its performance
and supported file formats. It is interesting to see that the through-
put with Shapefile almost doubles when the input file is compressed
due to the smaller file size and the efficient decompression. This is
not the case with compressed text files which are compressed using
the bzip2 which is more expensive to decompress. AsterixDB does
not support Shapefile or GeoJSON input formats. While Sedona
does support these two formats, it requires each record to appear
in a separate line in GeoJSON files which is not the case with the
MS Buildings dataset. For Shapefile, it can only read one file at a
time while the roads dataset contains thousands of files. For the
rest of the experiments, we convert the non-supported formats so
that we can run all experiments.

10.2 Data partitioning and indexing
This experiments measures the performance of the partitioning
and indexing steps of Beast, Sedona, and AsterixDB. Beast uses
R*-Grove partitioner and R*-tree to index each partition. Sedona
uses Quad-tree partitioner and R-tree as a local index. AsterixDB
supports only a hash partitioner on the primary key and R-tree
local index. While the indexing step is not always required, it is
usually recommended to get the best performance.

To control the input size, we split the all-objects dataset into
six batches of 16 GB each. Figure 8(a) shows that all systems are
scalable but Beast is consistently faster. Figure 8(b) reveals the
block utilization of different partitioning techniques calculated as
the ratio between the partition size and block capacity as defined
in [78]. The higher the block utilization, the better the load balance.
R*-Grove is a clear winner when compared to other techniques,
since it is the only method that takes the record’s write size into
account in its partition’s boundaries computation step.

10.3 Spatial join operation
Figure 9 shows the performance of the spatial join operation be-
tween Roads and MS Buildings datasets. To vary the input size, we
split both datasets by state into five batches as shown in Figure 9(a).
The total number of points in both inputs increase from 200 million
to a little over one billion and we measure the throughput in terms

(a) Five batches of spatial join
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Figure 10: Zonal Statistics

of millions of points per second. We did not include the results of
AsterixDB since it does not yet have a scalable spatial join query
plan. For both Beast and Sedona, we measure the overall running
time including data loading, partitioning, indexing, and processing.
In Sedona, we use quad-tree partitioning and R-tree indexing. In
Beast we use PBSM since the inputs are not indexed. Beast is sig-
nificantly faster than Sedona due to the spatial join optimizations
and the load balanced partitioning.

Figure 10 shows the performance of the zonal statistics operation
as compared to Google Earth Engine (GEE) [32] and GeoTrellis [43]
for two big raster datasets, US Aster and Treecover, with up-to
a trillion pixels. This experiment clearly shows up-to two orders
of magnitude speedup over the baselines with some systems, e.g.,
GeoTrellis, failing to finish the process. Interested readers can refer
to [71] for more details.

10.4 Visualization
This experiment studies the scalability of the multilevel visualiza-
tion algorithm for all-nodes dataset. We compare AID* in Beast [27]
to SedonaViz [85], HadoopViz [23], and a commercial system,
termed System A, when they generate all required tiles in a desired
range of zoom levels. In Figure 11(a), as we increase the number of
zoom levels, AID* becomes two orders of magnitude faster since
it produces only the expensive tiles while the baselines generate
all tiles in the range of zoom levels. This is further clarified in Fig-
ure 11(b) which shows that the generated index size of AID* up-to
three orders of magnitude smaller than baselines and it stabilizes
after level 12 since all additional tiles in deeper levels are skipped.
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Table 2: Summary of related work

Feature Beast Sedona[86] AsterixDB[6] GeoMesa[26] BBoxDB[54]
Data access (I=Input, O=Output)
CSV/WKT I/O I/O I/O I/O I/O
Shapefile I/O I* – I/O I/O
KML/KMZ O – – – –
GeoJSON I/O I/O* I/O* I/O I/O
GPX I – – I I
GeoTIFF I/O – – I –
HDF+ I I – – –
Generators ✓ – – – –
Summarization
Sample ✓ ✓ ✓ ✓ –
Histogram ✓ ✓ ✓ ✓ –
Bloom Filter ✓ – ✓† ✓ ✓†
Partitioning and indexing
Partitioning ✓ ✓ – – ✓
Local indexing ✓ ✓ ✓ ✓ ✓
Dimensions Multi 2 3 3 Multi
Join Optimizations
Filter ✓ ✓ ✓ ✓ ✓
Refinement ✓ – – – –
Visualization
Client-side ✓ ✓ ✓ ✓ ✓
Single-level ✓ ✓ – – –
Multilevel ✓ ✓§ – – –
* Limitations on the file format apply
+ Hierarchical Data Format
† Bloom filter supported for non-spatial data only
§ Limited scalability with zoom levels

11 RELATEDWORK
Table 2 summarizes the relatedwork in big spatial data processing to
some of the available systems. To highlight some parts in the table,
we mention that Beast is the most comprehensive system in terms
of input and output formats. It is the only system that provides a
distributed spatial data generator. It is also one of a few systems
that provide multidimensional data types and indexing which helps
with spatio-temporal data. In addition, it provides both filter and
refinement spatial join techniques to efficiently handle big variety
data. Finally, it provides a scalable multilevel visualization index
that is deployed in a live system (UCR-Star) that hosts hundreds of
datasets with terabytes of size.

Interactive exploratory analytics on non-spatial data: There has
been a large body of work to support interactive exploration on
non-spatial data from industry [31, 56, 61, 80] and academia [3, 4,
12, 41]. Other systems focus on the visual exploration aspect [15,
33, 36, 47, 49, 65]. These systems proved to be very powerful and
expressed the power of the interactive exploration method but none
of them focused on spatio-temporal data, queries, and visualization.
They only provide a limited set of geospatial functionality such as

rendering the results on amap or perform specific spatial operations
such as point-in-polygon queries. Beast provide end-to-end support
for spatial data including data loading, partitioning, load balancing,
join, and visualization.

Spatial data visualization: First, there is a lot of research on non-
map visualization using bar charts, pie charts, and the like [15, 18,
39, 40, 46, 47, 80–82] which are different from the map visualiza-
tion that Beast supports. Switching to map visualization, existing
work focus on either client-side rendering or server-side rendering.
Client-side rendering works only on small data, so the server needs
to reduce the data size using sampling, aggregation or selection
before visualization [15, 31, 38, 64, 65, 81, 84, 84]. Server-side render-
ing [22, 23, 50, 60, 85, 87] can support large-scale data visualization.
However, it consumes a lot of resources on the server to either
prerender millions of images or cache data in memory to maintain
interactivity of the visualized data. Beast focuses on server-side
rendering to support big data, but it uses an adaptive approach that
minimizes the resource usage on the server which allows it to scale
to thousands of datasets and terabytes of data.

Big spatial data: The work in big spatial data is more than
can be covered in detail in this paper [2, 5, 7–10, 20, 35, 51–
55, 62, 73, 74, 83, 86]. However, these systems either focus on batch
processing [20, 25, 53–55, 73, 83, 86] to handle big volume data, or
stream processing [1, 8, 14, 16, 51] to handle big velocity data. Beast
focuses on big variety data by providing an end-to-end framework
for in-situ data exploration that can work with input files in a vari-
ety of formats. It uses data summarization to provide interactive
query processing, various scalable spatial join algorithms for data
integration, and map-based exploratory interface for exploring the
results. We refer interested readers to these recent surveys [21, 58].

12 CONCLUSION
This paper introduces Beast, a Spark-based system for exploratory
data science on spatio-temporal data with big variety. Beast is
designed with maximum compatibility with Spark core to ease
in-situ processing and exploratory queries. Beast extends Spark
RDD class to provide SpatialRDD functions, spatial partitioning,
and spatial dependencies between RDDs. For in-situ processing
Beast supports efficient readers for a wide array of geospatial file
formats for both vector and raster data. Additionally, Beast provides
a scalable data generator for benchmarking and testing. Beast also
adds a partitioning and indexing framework for parallelization
and load balancing. In addition, Beast provides an efficient spatial
join query processor to combine multiple datasets together. Finally,
Beast contains a visual exploratory interface that allows users to
visualize big data on a map. Experiments with large scale data
show a clear evidence of the scalability and usefulness of Beast.
We believe that Beast will be of a great help to researchers and
developers in the data science field.
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