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ABSTRACT

In recent decades, we observed the rapid growth of several
big data platforms. In this context, the complexity of dis-
tributed systems make it much harder to develop rigorous
cost models for query optimization problems. This paper
aims to address two problems of the query optimization pro-
cess: cost estimation and index selection. The cost estimation
problem predicts the best execution plan by measuring the
cost of alternative query plans. The index selection problem
determines the most suitable indexing method with a given
dataset. Both problems require the development of a complex
function that measures the cost or suitability of alternatives
to a specific dataset. Therefore, we employ deep learning to
solve those problems due to its capability of learning com-
plicated models. We first addressed a simple form of cost
estimation problem: selectivity estimation. Our preliminary
results show that our deep learning models work efficiently
with the accuracy of selectivity estimation up to 97%.
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1 PROBLEM AND MOTIVATION

First, given a query, the cost estimation problem predicts
the cost of alternative query plans in order to find the opti-
mized one. Traditional DBMS are mostly using cost-based
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optimizer(CBO) [4] to address this problem. Similarly, many
big data systems such as Hive or SparkSQL Catalyst also use
CBO in their query optimizer. The drawback of CBO is that
it is not easy to convert its abstract cost metrics to real per-
formance metrics such as number of I/O operations, elapsed
time, memory, network cost, etc. Therefore, due to the lack of
a proper cost model, it is mostly used as a rule-based query
optimizer instead. Recently, there are some works which
aim to predict query performance using machine learning
models[2, 3]. The main idea of those approaches is that they
extract important features of a query such as number of
join operators, number of nested subqueries, total number
of selection predicates. After that, they apply different ma-
chine learning models to find the relationship between those
features and performance metrics. One limitation is that
the feature extraction process is not only requiring expert’s
knowledge, but also has a chance to miss important hidden
features.

Second, the index selection problem find the best indexing
method for a dataset in order to optimize index performance:
indexing time, index quality. In general, database adminis-
trators manually choose the indexing method based on char-
acteristics of dataset’s distribution. For example, a hashtable
index should be the most suitable index if the given dataset
has an uniform distribution of keys. A bitmap index is better
than B-tree, hashtables if the dataset is highly compressed.
Overall, the manual approach is inefficient since it requires
much of human effort to extract data features from the given
dataset, and select the suitable index based on these features.

The common disadvantage of current approaches for query
optimization problems is that they need human effort to get
the data characteristics. On the contrary, the recent success
of deep learning [6] shows that it can learn the data insights
without an explicit guide from human. Thus, this brings up
an interesting question of whether we can apply deep learn-
ing techniques to address these problems? There are some
advantages of deep learning that may address the drawbacks
of previous works. First, deep learning models can be con-
structed by many hidden layers of nonlinear processing units
for feature extraction and transformation, which allows us to
learn the behavior of data without feature selection process.
Second, deep learning probably allows a better representa-
tion of data since we will not miss data hidden features.
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Figure 1: Query optimizer using deep learning
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2 BACKGROUND AND RELATED WORK

There are some previous works which aim to use machine
learning models to predict query performance. PQR[3] em-
ploys machine learning to predict execution time for chang-
ing query workload. However, this approach only focused on
the query elapsed time. To address this problem, the paper[2]
tried to build cost models with multiple performance metrics.
In particular, they use vectorized queries and performance
metrics as training data points for their models. This ap-
proach still has some drawbacks. First, it require a manual
feature extraction process. Second, it did not take the dataset
histogram into account, which also affects to the query’s per-
formance. Paper [7] takes database properties into account
for cardinality estimation problem. However, our approach
aims to go further to find optimal query plan.

For the index selection problem, the paper [5] aims to com-
pletely replace indexing component in database by machine
learning models. This approach is promising but it is difficult
to apply in reality since the current database systems has
decades of development, which is hard to completely replace
any component. In the other hand, the paper [1] proposes
a decision tree for data indexing based on skewness of the
data. However, this approach still need some initial param-
eters which is determined by human. On the contrary, our
approach aims to use deep learning as a black box to guide
current database systems optimize the data index component
using popular indexing techniques.

3 APPROACH AND UNIQUENESS

Given a SQL query, traditional DBMS employ cost-based op-
timizer(CBO) [4] to determine the most efficient execution
plan. However, there are many challenges to apply CBO in
the big data platforms. For example, the distributed envi-
ronment make it difficult to build a cost model with many
aspects: I/O cost, network cost, CPU and memory cost of
each node. To address the cost estimation problem, we build a
deep learning model for query optimizer as shown in Figure
1. The training data points includes query and performance
metrics (time, memory, I/O cost). The query is parsed to a
tree and the performance metrics will be the output of a
regression problem. Finally, we can use the trained model to
predict best execution plan. Using deep learning for query
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Figure 2: Predict number of query outputs using deep
learning

optimization also raise some challenges. For example, one
of the major limitations in deep learning is that both the
input and output are fixed size and unstructured. Thus it will
be challenging to use with the variable size and structured
query plans as data points.

The architecture of index selection system also follows the
concept of Figure 1. However, the training data points is the
dataset and the indexing performance (indexing time, index
quality) of different indexes (B-tree, hashtable index, bitmap
index, to name a few). Given a dataset, we construct its train-
ing data points as follows: first, we compute the histogram
matrix of the dataset, then convert it to a vector to feed to a
deep neural networks. Second, we use the sampling-based
indexing method [8] to compute the performance metrics
of different indexes. The training data points are feed to a
classification model, which predict the best index in terms
of indexing performance. In the end, we will have a model
which is able to predict the suitable index for any new given
dataset.

4 RESULTS AND CONTRIBUTIONS

Figure 2 shows a preliminary result of our query optimizer
using deep learning. We first solve a simple form of cost es-
timation problem: selectivity estimation. Given a dataset of
two tables with two different Gaussian distributions of a col-
umn values and a SELECT query with a specific predicate for
that column, how can we predict number of output records
for this query? To solve this problem, we constructed train-
ing data points by executing SELECT queries with different
predicate values, then use the trained model to predict num-
ber of output records for new queries. The results indicates
that we can predict the number of outputs for a query with
high accuracy of 97%. Since the number of outputs has a lin-
ear relation with query response time or other performance
metrics, we can further predict the query performance using
this model.
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