
BFC: High-Performance Distributed Big-File Cloud
Storage Based On Key-Value Store

Thanh Trung Nguyen∗, Tin Khac Vu†, Minh Hieu Nguyen∗
∗Information Technology Faculty

Le Quy Don Technical University, Ha Noi, Viet Nam
†VNG Research, Viet Nam

Email: thanhnt@vng.com.vn, tinvk@vng.com.vn, minhnh@mta.edu.vn

Abstract—Nowadays, cloud-based storage services are rapidly
growing and becoming an emerging trend in data storage field.
There are many problems when designing an efficient storage
engine for cloud-based systems with some requirements such as
big-file processing, lightweight meta-data, low latency, parallel
I/O, deduplication, distributed, high scalability. Key-value stores
played an important role and showed many advantages when
solving those problems. This paper presents about Big File
Cloud (BFC) with its algorithms and architecture to handle most
of problems in a big-file cloud storage system based on key-
value store. It is done by proposing low-complicated, fixed-size
meta-data design, which supports fast and highly-concurrent,
distributed file I/O, several algorithms for resumable upload,
download and simple data deduplication method for static data.
This research applied the advantages of ZDB - an in-house key-
value store which was optimized with auto-increment integer keys
for solving big-file storage problems efficiently. The results can
be used for building scalable distributed data cloud storage that
support big-file with size up to several terabytes.

Keywords—Cloud Storage, Key-Value, NoSQL, Big File, Dis-
tributed Storage

I. INTRODUCTION

Cloud-based storage services commonly serves millions
of users with storage capacity for each user can reach to several
gigabytes to terabytes of data. People use cloud storage for
the daily demands, for example backing-up data, sharing file
to their friends via social networks such as Facebook [3],
Zing Me [2]. Users also probably upload data from many
different types of devices such as computer, mobile phone
or tablet. After that, they can download or share them to
others. System load in a cloud storage is usually really heavy.
Thus, to guarantee a good quality of service for users, the
system has to face many difficult problems and requirements:
Serving intensity data service for a large number of users
without bottle-neck; Storing, retrieving and managing big-files
in the system efficiently; Parallel and resumable uploading and
downloading; Data deduplication to reduce the waste of storage
space caused by storing the same static data from different
users. In traditional file systems, there are many challenges
for service builder when managing a huge number of big-
file: How to scale system for the incredible growth of data;
How to distribute data in a large number of nodes; How to
replicate data for load-balancing and fault-tolerance; How to
cache frequently accessed data for fast I/O, etc. A common
method for solving these problems which is used in many
Distributed File Systems and Cloud Storages is splitting big file
to multiple smaller chunks, storing them on disks or distributed

nodes and then managing them using a meta-data system [1],
[8], [24], [4]. Storing chunks and meta-data efficiently and
designing a lightweight meta-data are significant problems that
cloud storage providers have to face. After a long time of
investigating, we realized that current cloud storage services
have a complex meta-data system, at least the size of meta-
data is linear to the file size for every file. Therefore, the space
complexity of these meta-data system is O(n) and it is not well
scalable for big-file. In this research, we propose new big-file
cloud storage architecture and a better solution to reduce the
space complexity of meta-data.

Key-Value stores have many advantages for storing data
in data-intensity services. They often outperform traditional
relational databases in the ability of heavy load and large-
scale systems. In recent years, key-value stores have an un-
precedented growth in both academic and industrial field. They
have low-latency response time and good scalability with small
and medium key-value pair size. Current key-value stores are
not designed for directly storing big-values, or big file in our
case. We executed several experiments in which we put whole
file-data to key-value store, the system did not have good
performance as usual for many reasons: firstly, the latency of
put/get operation for big-values is high, thus it affects other
concurrent operations of key-value store service and multiple
parallel accesses to different value reach limited. Secondly,
when the value is big, there is no more space to cache another
objects in main memory for fast access operations. Finally, it
is difficult to scale-out system when number of users and data
increase. This research is implemented to solve those problems
when storing big-values or big-file using key-value stores. It
brings many advantages of key-value store in data management
to design a cloud-storage system called Big File Cloud (BFC).

These are our contributions in this research:

– Propose a light-weight meta-data design for big file.
Every file has nearly the same size of meta-data.
BFC has O(1) space complexity of meta-data of a
file, while size of meta-data of a file in Dropbox[1],
HDFS[4] has space complexity of O(n) where n is
size of original file. See Fig 9

– Propose a logical contiguous chunk-id of chunk col-
lection of files. That make it easier to distribute data
and scale-out the storage system.

– Bring the advantages of key-value store into big-file
data store which is not default supported for big-value.

978-1-4799-8676-7/15/$31.00 copyright 2015 IEEE
SNPD 2015, June 1-3 2015, Takamatsu, Japan

2

ZDB[16] is used for supporting sequential write, small
memory-index overhead.

These contributions are implemented and evaluated in Big File
Cloud (BFC) that serve storage for Zing Me Users. Disk Image
files of VNG’s CSM Boot diskless system are stored in Big
File Cloud.

II. BIG FILE CLOUD ARCHITECTURE

A. Architecture Overview

BFC System includes four layers: Application Layer, Stor-
age Logical Layer, Object Store Layer and Persistent Layer.
Each layer contains several coordinated components. They are
shown more details in Fig 2. Application Layer consists of
native software on desktop computers, mobile devices and
web-interface, which allow user to upload, download and share
their own files. This layer uses API provided by Storage
Logical Layer and applies several algorithms for downloading
and uploading process which are described in subsections
II-F and II-G. Storage Logical Layer consisted of many
queuing services and worker services, ID-Generator services
and all logical API for Cloud Storage System. This layer
implements business logic part in BFC. The most important
components of this layer are upload and download service. In
addition, this layer provides a high scalable service named
CloudAppsService which serves all client requests . When
the number of clients reaches a certain limited ones, we
can deploy CloudAppsService into more servers for scaling.
Clients do not directly request to CloudAppsService, but
through a dispatcher which provides public APIs for clients.
The dispatcher checks user session before forwarding the client
request to CloudAppsService. Moreover, the dispatcher also
checks the number of connections from a client, if there are
too many concurrent connections from a client, the dispatcher
can block that client’s requests. Storage Logical Layer stores
and retrieves data from Object Store Layer. Object Store Layer
is the most important layer which has responsibility for storing
and caching objects. This layer manages information of all
objects in the system including user data, file information data,
and especially meta-data. In BFC system, meta-data describes
a file and how it is organized as a list of small chunks.
We implemented some optimizations to make low-complicated

Fig. 1. BFC Architecture

Fig. 2. BFC Main Backend Components

meta-data. Object Store Layer contains many distributed back-
end services. Two important services of Object Store Layer
are FileInfoService and ChunkStoreService. FileInfoService
stores information of files. It is a key-value store mapping data
from fileID to FileInfo structure. ChunkStoreService stores
data chunks which are created by splitting from the original
files that user uploaded. The size of each chunk is fixed(the
last chunk of a file may have a smaller size). Splitting and
storing a large file as a list of chunks in distributed key-
value store bring a lot of benefits. First of all, it is easier
to store, distribute and replicate chunks in key-value stores.
Small chunks can be stored efficiently in a key-value store.
It is difficult to do this with a large file directly in local file
system. In addition, this supports uploading and downloading
file parallel and resumable.

All data on this layer are persisted to Persistent Layer based
on ZDB [16] key-value store. There are many ZDB instances
which are deployed as a distributed service and can be scaled
when data growing. Components in these layer are coordinated
and automatically configured using Zookeeper [13].

Fig 1 shows the overview of BFC Architecture.

B. Logical Data layout

Fig 3 shows the layout of big file data. Every file consists
of one or more fixed-size chunks. Each chunk has an unique
integer ID, and all of chunks which were generated from a file
have a contiguous range of chunk-id. This is a different point
to many other Cloud Service such as DropBox[8] which uses
SHA-2[19] of chunk as ID.

C. Chunk Storage

The basic element in the BFC cloud storage system is
chunk. A chunk is a data segment generated from a file. When
user upload a file, if the file size is bigger than the configured
size, it will be split into a collection of chunks. All chunks
which are generated from a file except the last chunk have

3

Fig. 3. Data layout of Big File in system

ChunkInfo

+chunkID: i64

+chunkSize: i64

+status: TChunkStatus

+data: binary

<<enum>>

TChunkStatus

+EDataNotSet: enum = 1

+EDataSet: enum = 2

ObjectCaching

ZDBService ZDBService ZDBService

Chunk ZDB instances

Zookeeper

ChunkStoreService

+getChunk(fid:i64): ChunkInfo

+putChunk(cid:i64,chunk:ChunkInfo): void

Key: ChunkID
Value: ChunkInfo

Persistent Data

Fig. 4. Chunk storage system

the same size (the last chunk of a file may have an equal or
smaller size). After that, the ID generator will generate id for
the file and the first chunk with auto-increment mechanism.
Next chunk in the chunks set will be assigned an ID gradually
increase until the final chunk. A FileInfo object is created
with information such as file-id, size of file, id of first chunk,
number of chunks and stored to ZDB. Similarly, the chunk will
be stored in key-value store as a record with key is id of chunk
and value is chunk data. Chunk storage is one of the most
significant technique of BFC. By using chunks to represent a
file, we can easily build a distributed file storage system service
with replication, load balancing, fault-tolerant and supporting
recovery. Fig 4 describes Chunk Storage System of BFC.

D. Metadata

Typically, in the cloud storage system such as Dropbox [8],
CEPH [24], the size of meta-data will respectively increase
with the size of original file, it contains a list of elements,
each element contains information such as chunk size, hash
value of chunk. Length of the list is equal to the number of
chunk from file. So it becomes complicated when the file size
is big. BFC proposed a solution in which the size of meta-data
is independent of number of chunks with any size of file, both
a very small file or a huge file. The solution just stores the id
of first chunk, and the number of chunks which is generated by
original file. Because the id of chunk is increasingly assigned
from the first chunk, we can easily calculate the ith chunk id

Fig. 5. Metadata storage system

by the formula:

chunkid[i] = fileInfo.startChunkID + i (1)

Meta-data is mainly described in FileInfo structure consist of
following fields: fileName - the name of file; fileID: 8
bytes - unique identification of file in the whole system ;
sha256 : 32 bytes - hash value by using sha-256 algorithm
of file data; refF ileID: 8 bytes - id of file that have previous
existed in System and have the same sha256 - we treat these
files as one, refF ileID is valid if it is greater than zero;
startChunkID : 8 bytes - the identification of the first chunk
of file, the next chunk will have id as startChunkID+1 and
so on; numChunk: 8 bytes - the number of chunks of the
file; fileSize : 8 bytes - size of file in bytes; status: enum 1
bytes - the status of file, it has one in four values namely
EUploadingF ile - when chunk are uploading to server,
ECompletedF ile - when all chunk are uploaded to server
but it is not check as consistent, ECorruptedF ile - when
all chunk are uploaded to server but it is not consistent after
checking, EGoodCompleted - when all chunk are uploaded
to server and consistent checking completed with good result.
Thus the size of FileInfo object - the meta-data of a file will
be nearly the same for all file in the system, regardless of how
large or small the file size is (the only difference meta-data
of files is the length of fileName). By using this solution,
we created a lightweight meta-data design when building a big
file storage system. Fig 5 describes meta-data store system of
BFC.

E. Data distribution and replication

Because BFC is built based on ZDB - a distributed key-
value storage system. It is obvious that the meta-data of BFC
is stored distributed and can be replicated for fault-tolerance
and load-balancing. Store Services such as FileInfoService,
ChunkStoreService distribute data using consistent-hashing
which is proposed in[15]. Chain replication [23]is used to
replicate key-value data. Each type of store service has its
own distributed ZDB instances. Each ZDB instance has a
range [hlowerbound, hupperbound) which is used to determine
the range of key to store. If hash(key) is in the range, it
is stored in that instance. In BFC, file-id and chunk-id are
auto increment integer keys. We can use simple hash function

4

Fig. 6. Data partitioning and replication(from [16])

hash(key) = key for consistent hashing. It is very easy to
scale-out system in this case.

Fig 6 shows how data is distributed and replicated in the
BFC.

F. Uploading and deduplication algorithm

Fig 7 describes an algorithm for uploading big file to BFC.
Data deduplication is supported in BFC. There are many types
and methods of data deduplication [21] which can work both
on client-side or server-side. In BFC, we implemented it on
server-side. We use a simple method with key-value store and
SHA2 hash function to detect duplicate files in the whole
system in the flow of uploading. A comparison between BFC
and other cloud storage systems in deduplication is shown in
Table I in Section III

The upload flow on BFC cloud storage system has a little
different between mobile client and web interface. On mobile
client, after a file to upload is selected, we call it A, the client
computes the SHA hash value of content of this file. After
that, the client creates a basic information of file including
file name, file size, SHA value. This basic information will be
sent to server. At server-side, if data deduplication is enabled,
SHA value will be used to lookup associated fileID, if there
is a fileID in the system with the SHA-value we call it B,
this means that file A and file B are exactly the same. So we
simply refer file A to file B by assigning the id of file B to

Fig. 7. Uploading Algorithm of Application

Fig. 8. Downloading Algorithm of Application

refF ileID property of file A - a property to describe that a
file is referenced to another file. The basic information will
be sent back to client , and the upload flow complete, there
is no more wasteful upload. In the case there is no fileID
associated with SHA-value of file A or data deduplication is
disabled, the system will create some of new properties for the
file information including the id of file, the id of first chunk
using IDGenerator and number of chunk calculated by file size
and chunk size. The client will use this information to upload
file content to the server. Then, all chunks will be uploaded to
the server. This process can be executed in parallel to maximize
speed. Every chunk will be stored in the storage system as a
key-value pair, with the key is the id of chunk, and the value
is data content of the chunk. When all chunk are uploaded to
the system, there is a procedure to verify uploaded data such
as verifying the equation of SHA-value calculated by client
and SHA-value of file created by uploaded chunk in server.
If everything is good, the status of field of FileInfo is set to
EGoodCompleted.
In web-interface client upload process, the client always up-
loads the file to server and saves it in a temporary directory.
Then the server computes SHA hash value of the uploaded file.
If there is any file in the system which has the same SHA value
with it. Server will refer the uploaded file with this file and
remove the file at temporary directory. Otherwise, A worker
service called FileAdder will upload file to the system using
similar algorithm of the mobile application client.

G. Downloading algorithm

Mobile clients of BFC have download algorithms described
in Fig 8. Firstly, the client sends the id of file that will be
downloaded to the server. The dispatcher server will check
the session and number of connection from the client. If
they are valid, the dispatcher sends download request to the
CloudAppsService server, then it will lookup the file informa-
tion in the FileInfoService which stores meta-data information
with file-ID as a key. If FileInfo is existed with the requested
file-ID, this information will be sent back to the client. The
most important information of the file from FileInfo structure
includes: first id of chunk (chunkIdStart), number of chunk
(chunkNumber), size of chunk (chunkSize) and size of File
(fileSize). The client uses these information to schedule the
download process.

After that, the mobile client downloads chunks of
files from ChunkStoreService via CloudAppDispatcher and
CloudAppService, chunks with range ID from chunkIdStart
to chunkIdStart+numberChunk−1 are concurrently down-

5

loaded in several threads, each chunk has a size of chunkSize,
except last chunk. Native application will pre-allocate file in
local filesystem with file-size specified in fileSize field of
FileInfo. Every downloaded chunk will be save directly to its
position in this file. When all chunks are fully downloaded
successful, the download process is completed.

H. Secure Data Transfer Protocol

Data confidentiality is one of strict requirements of cloud
storage system. To ensure quality of service, a light-weight
and fast network protocol for transfer data is also required. For
web-interface and restful APIs, we support http secure protocol
(https) to protect the connection from catching packets in all
operations. In both desktop and mobile native applications,
BFC Data transfered over Internet between client and server
are encrypted using AES[9] algorithms with simple key ex-
change between client and server. We also use UDT [12] -
an UDP-based protocol to use network bandwidth efficiently.
This is detail of simple key exchange method:

– When an user login via https restful API, client receive
Session-ID, User-ID, Secret-AES key, Public Key-
Index. Secret-AES key is secret between client and
server, it can be generated by client or server and
stored on server as a key-list. It is used to encrypt
chunks for transferring between client and server.

– In every operation such as uploading or downloading
chunks, the data is encrypted using secret-AES key
and transferred via network using UDT or TCP as
client selected. Public Key-index is binded with en-
crypted packets for peer to determine secret AES key
to decrypt received packets.

III. COMPARISON WITH OTHER PERSONAL CLOUD

STORAGES

In a paper of Idilio Drago et al [7], many personal
cloud storages were benchmarked in a black-box evaluation
method. The test cases in [7] used files with size: 10kB,
100kB, 1MB to compare Dropbox, SkyDrive, Cloud Drive,
Google Drive and Wuala. In this research, we deployed an
instance of BFC system in Amazon EC2 to compare with
Dropbox which uses Amazon EC2 and Amazon S3. Clients
of both BFC and Dropbox run from VietNam. According to
paper [8] about some aspects inside Dropbox, we compared
BFC’s metadata with Dropbox. Then, we did experiments
for comparing deduplication ability of BFC and other cloud
storages such as Google Drive, Dropbox, OneDrive.

A. Metadata comparison

Dropbox[8] is a cloud-based storage system that allows
users to store documents, photos, videos and other files. Drop-
box is available on Web interface, and many types of client
softwares on desktop and mobile operating systems. The client
supports synchronization and sharing between devices with
personal storage. Dropbox were primarily written in Python.
The native client uses third parties libraries such as wxWidgets,
Cocoa, librsync. The basic object in the Dropbox system is a
chunk of 4MB data. If a file is larger than this configured size,
it will be split in several of basic objects. Each basic object is

Fig. 9. Metadata comparison of BFC and DropBox

TABLE I. DEDUPLICATION COMPARISON

Deduplication Dropbox OneDrive Google Drive BFC

Single user yes no no yes

Multi-user no no no yes

an independent element, which is identified by a SHA256 value
and stored in Amazon Simple Storage Service (S3). Metadata
of each file in Dropbox contains a list of SHA256 of its chunks
[1], [8]. Therefore, its size is linear to the size of file. For big-
file, it has a big metadata caused by many of chunks and a
long list of SHA256 values from them. In our research BFC
has a fixed-size metadata of each file, so it is easier to store
and scale storage system for big file. It reduces the amount
of data for exchanging metadata between clients and servers.
The comparison is shown in Fig 9.

B. Deduplication

This comparison was done to study the deduplication
ability of BFC and other cloud storages: Dropbox, OneDrive
and Google Drive. We used WireShark [6] to capture net-
work flow of cloud storage client application. To estimate
the deduplication ability, we did following test cases: (1) A
file is multiply uploaded to different folders by a User; (2)
A file is multiply uploaded by different users. The result
in Table I showed that Dropbox supports deduplication per
user accounts, it could be done in client applications. BFC
support a global deduplication mechanism, it saves the network
traffic and internal storage space when many users store the
same file content. Google Drive and OneDrive do not support
deduplication.

IV. RELATED WORKS

LevelDB [10] is an open source key-value store devel-
oped by Google Fellows Jeffrey Dean and Sanjay Ghemawat,
originated from BigTable [5]. LevelDB implements LSM-tree
[17] and consists of two MemTable and set of SSTables on
disk in multiple levels. When a key-value pair is written,
it firstly is appended to commit log file, then it is inserted
into a sorted structure called MemTable. When MemTable’s
size reaches its limit capacity, it will become a read-only
Immutable MemTable. Then a new MemTable is created to
handle new updates. Immutable MemTable is converted to a
level-0 SSTable on disk by a background thread. SSTables
which reach the level’s limit size, will be merged to create a
higher level SSTable. We already evaluated LevelDB in our

6

prior work [16] and the results show that LevelDB is very fast
for small key-value pairs and data set. When data growing
time-by-time and with large key-value pairs, LevelDB become
slow for both writing and reading.

Zing-database (ZDB) [16] is a high performance key-
value store that is optimized for auto increment Integer-key.
It has a shared-memory flat index for fast looking-up position
of key-value entries in data files. ZDB supports sequential
writes, random read. ZDB is served in ZDBService using thrift
protocol and distribute data using consistent-hash method. In
BFC, both file-id and chunk-id are auto increment integer keys,
so it is very good to use ZDB to store data. The advantage
of ZDB is lightweight memory index and performance for big
data. When data grow it still has a low-latency for read and
write operation. Many other researches try to optimize famous
data structures such as B+tree [14] on SSD, HDD or hybrid
storage device. It is also useful for building key-value stores
on these data structures. With the design and architecture of
BFC, the chunkId of a file has a contiguous integer range,
ZDB is still the most effective to store chunk data.

Distributed Storage Systems (DSS) are storage systems
designed to operate on network environment including Lo-
cal Area Network(LAN) and the Internet. In DSS, data is
distributed to many servers with ability to serve millions of
users [18]. DSS can be used to provide backup and retrieve
data functions. BFC fully supports these functions. DSS also
provide services as a general purpose file system such as NFS
[20] or other Distributed File System (DFS) such as GFS [11].
BFC is a persistent non-volatile cloud storage, so it can provide
this function in Linux by using FUSE[22] and BFC client
protocol. Applications store data on BFC can take advantages
of its high performance and parallel processing ability.

V. CONCLUSION

BFC designed a simple meta-data to create a high perfor-
mance Cloud Storage based on ZDB key-value store. Every file
in the system has a same size of meta-data regardless of file-
size. Every big-file stored in BFC is split into multiple fixed-
size chunks (may except the last chunk of file). The chunks of
a file have a contiguous ID range, thus it is easy to distribute
data and scale-out storage system, especially when using ZDB.
This research also brings the advantages of key-value store
into big-file data store which is not default supported for
big-value. ZDB[16] is used for supporting sequential write,
small memory-index overhead. The data deduplication method
of BFC uses SHA-2 hash function and a key-value store to
fast detect data-duplication on server-side. It is useful to save
storage space and network bandwidth when many users upload
the same static data. In the future, we will continue to research
and improve our ideas for storing big data structure in larger
domain of applications, especially in the ”Internet of things”
trend.

VI. ACKNOWLEDGMENTS

This work was funded by the Research Fund RF@K12,
Faculty of Information Technology, Le Quy Don Technical
University.

CSM Boot diskless and Zing Me social network of VNG
Corporation supported infrastructure and its data for this
research’s analysis and experiments.

REFERENCES

[1] Dropbox tech blog. https://tech.dropbox.com/. Accessed October 28,
2014.

[2] Zing me. http://me.zing.vn. Accessed October 28, 2014.

[3] Facebook. http://facebook.com, 2014.

[4] D. Borthakur. Hdfs architecture guide. HADOOP APACHE PROJECT
http://hadoop. apache. org/common/docs/current/hdfs design. pdf, 2008.

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A
distributed storage system for structured data. ACM Transactions on
Computer Systems (TOCS), 26(2):4, 2008.

[6] L. Chappell and G. Combs. Wireshark network analysis: the official
Wireshark certified network analyst study guide. Protocol Analysis
Institute, Chappell University, 2010.

[7] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and A. Pras. Benchmarking
personal cloud storage. In Proceedings of the 2013 conference on
Internet measurement conference, pages 205–212. ACM, 2013.

[8] I. Drago, M. Mellia, M. M Munafo, A. Sperotto, R. Sadre, and A. Pras.
Inside dropbox: understanding personal cloud storage services. In
Proceedings of the 2012 ACM conference on Internet measurement
conference, pages 481–494. ACM, 2012.

[9] P. FIPS. 197: the official aes standard. Figure2: Working scheme with
four LFSRs and their IV generation LFSR1 LFSR, 2, 2001.

[10] S. Ghemawat and J. Dean. Leveldb is a fast key-value storage library
written at google that provides an ordered mapping from string keys to
string values. https://github.com/google/leveldb. Accessed November
2, 2014.

[11] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system.
In ACM SIGOPS Operating Systems Review, volume 37, pages 29–43.
ACM, 2003.

[12] Y. Gu and R. L. Grossman. Udt: Udp-based data transfer for high-speed
wide area networks. Computer Networks, 51(7):1777–1799, 2007.

[13] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: wait-free
coordination for internet-scale systems. In Proceedings of the 2010
USENIX conference on USENIX annual technical conference, volume 8,
pages 11–11, 2010.

[14] P. Jin, P. Yang, and L. Yue. Optimizing b+-tree for hybrid storage
systems. Distributed and Parallel Databases, pages 1–27, 2014.

[15] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina,
K. Iwamoto, B. Kim, L. Matkins, and Y. Yerushalmi. Web caching
with consistent hashing. Computer Networks, 31(11):1203–1213, 1999.

[16] T. Nguyen and M. Nguyen. Zing database: high-performance key-value
store for large-scale storage service. Vietnam Journal of Computer
Science, pages 1–11, 2014.

[17] P. ONeil, E. Cheng, D. Gawlick, and E. ONeil. The log-structured
merge-tree (lsm-tree). Acta Informatica, 33(4):351–385, 1996.

[18] M. Placek and R. Buyya. A taxonomy of distributed storage systems.
Reporte técnico, Universidad de Melbourne, Laboratorio de sistemas
distribuidos y cómputo grid, 2006.

[19] F. PUB. Secure hash standard (shs). 2012.

[20] S. Shepler, M. Eisler, D. Robinson, B. Callaghan, R. Thurlow,
D. Noveck, and C. Beame. Network file system (nfs) version 4 protocol.
Network, 2003.

[21] J. Stanek, A. Sorniotti, E. Androulaki, and L. Kencl. A secure data
deduplication scheme for cloud storage. 2014.

[22] M. Szeredi et al. Fuse: Filesystem in userspace. Accessed on, 2010.

[23] R. van Renesse and F. B. Schneider. Chain replication for supporting
high throughput and availability. In OSDI, volume 4, pages 91–104,
2004.

[24] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn.
Ceph: A scalable, high-performance distributed file system. In Pro-
ceedings of the 7th Symposium on Operating Systems Design and
Implementation, OSDI ’06, pages 307–320, Berkeley, CA, USA, 2006.
USENIX Association.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

