CS 141: Intermediate Data Structures and Algorithms

Discussion - Week 2, Winter 2018
TA information

- First/last name: Tin Vu
- E-mail: tvu032@ucr.edu (Please add the prefix [CS141] in your email’s subject).
- Office hours: WCH 110

Thursday 1:00 PM - 3:00 PM
What should we do in discussion class?

● Review lecture’s content.
● Discuss about assignment.
● Do additional works.

...

Do you have any other recommendation?
Analysis of Algorithms

❖ Analyzing Algorithms
 ➢ Algorithm correctness.
 ➢ Algorithm performance:
 ● Runtime analysis.
 ● Space analysis.
Growth of Functions

\[g(n) \]

\[f(n) \]
O-notation

\[f(n) = O(g(n)) \]

\[\exists c > 0, n_0 > 0 \]

\[0 \leq f(n) \leq cg(n) \]

\[n \geq n_0 \]

\(g(n) \) is an asymptotic upper-bound for \(f(n) \)
Ω-notation

\[f(n) = \Omega(g(n)) \]

\[\exists c > 0, n_0 > 0 \]
\[0 \leq cg(n) \leq f(n) \]
\[n \geq n_0 \]

\(g(n) \) is an asymptotic lower-bound for \(f(n) \)
Θ-notation

\[f(n) = \Theta(g(n)) \]

\[\exists c_1, c_2 > 0, n_0 > 0 \]

\[0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \]

\[n \geq n_0 \]

\[g(n) \] is an asymptotic tight-bound for \(f(n) \)
\(f(n) = o(g(n)) \)

- \(\forall c > 0 \)
- \(\exists n_0 > 0 \)
- \(0 \leq f(n) \leq cg(n) \)
- \(n \geq n_0 \)

\(g(n) \) is a non-tight asymptotic upper-bound for \(f(n) \).
\(f(n) = \omega(g(n)) \)

\(\forall c > 0 \)
\(\exists n_0 > 0 \)
\(0 \leq cg(n) \leq f(n) \)
\(n \geq n_0 \)

\(g(n) \) is a non-tight asymptotic lower-bound for \(f(n) \)
Discussion question

Is the following statement true or false?

\[2^n = \Theta(3^n) \]
Simple Rules

- We can omit constants
- We can omit lower order terms
 - $\Theta(an^2 + bn + c)$ becomes $\Theta(n^2)$
 - $\Theta(c_1)$ and $\Theta(c_2)$ become $\Theta(1)$
 - $\Theta(\log_{k_1} n)$ and $\Theta(\log_{k_2} n)$ become $\Theta(\log n)$
 - $\Theta(\log(n^k))$ becomes $\Theta(\log n)$
- $\log^{k_1} n = o(n^{k_2})$ for any positive constants k_1 and k_2
Popular Classes of Functions

Constant: \(f(n) = \Theta(1) \)

Logarithmic: \(f(n) = \Theta(\lg(n)) \)

Sublinear: \(f(n) = o(n) \)

Linear: \(f(n) = \Theta(n) \)

Super-linear: \(f(n) = \omega(n) \)

Quadratic: \(f(n) = \Theta(n^2) \)

Polynomial: \(f(n) = \Theta(n^k); \ k \) is a constant

Exponential: \(f(n) = \Theta(k^n); \ k \) is a constant
Comparing Two Functions

\[\lim_{n \to \infty} \frac{f(n)}{g(n)} \]

- 0: \[f(n) = o(g(n)) \]
- \(c > 0 \): \[f(n) = \Theta(g(n)) \]
- \(\infty \): \[f(n) = \omega(g(n)) \]
Discussion question

Solve a part of problem 4 - assignment 1.