
Experimental Evaluation of Query Processing Techniques
over Multiversion XML Documents

Adam Woss
Computer Science

University of California, Riverside
awoss@cs.ucr.edu

Vassilis J. Tsotras
Computer Science

University of California, Riverside
tsotras@cs.ucr.edu

ABSTRACT
Various approaches have been recently proposed for stor-
ing the evolution of an XML document, thereby preserving
useful past information about the document and thus the
ability to query it. While the importance of maintaining
a document’s evolution has been recognized, relatively lit-
tle research has been done on how to adapt efficient XML
querying techniques in a multiversion environment. Such
methods would allow the user to efficiently perform struc-
tural queries over any past version or interval of versions
of the XML document. In this paper, we examine query
processing techniques on (linear) multiversion XML docu-
ments. Specifically, we propose efficient modifications to ex-
isting XML query processing algorithms and compare them
to more traditional approaches. Our experimental results
demonstrate the advantages of the modified algorithms.

1. INTRODUCTION
XML has emerged as the standard for publishing semi-struc-
tured data and exchanging it over the Internet. Interest-
ingly, the large majority of XML documents that are dissem-
inated undergo modifications (e.g additions, removals and
updates) over time [7]. These modifications, in effect, create
multiple versions of the XML document as time progresses.
In many cases maintaining the past versions is required as
it provides the ability to search over historical information.
Multiversion support for XML documents is also needed in
several applications, like software configuration, cooperative
authoring, web document warehouses etc. Consequently, de-
vising an effective solution to storing multiversion XML doc-
uments has attracted a good deal of research interest over
recent years [1][5][15]. Most approaches assume a linear ver-
sioning scheme: when a document is updated a new version
is created, emanating from the last version.

Nevertheless, relatively little research [19] has been per-
formed to adapt current efficient XML querying process-
ing techniques (in particular “holistic” ones like Twigstack
[10] and LCS-TRIM [14]) to query multiversion XML docu-

ments. Instead, existing techniques either focus on convert-
ing XML documents to relational temporal tables [5] (and
use SQL-like querying) or use edit scripts [1, 15] to recon-
struct the XML document for a given version.

When considering non-versioned data, holistic processing
methods have been shown to outperform the relational ap-
proach; it is thus possible that, if well adapted, they will
hold the same promise for versioned data as well. More-
over, the use of edit scripts for versioned XML is not opti-
mized towards complex structural queries that ask for part
of the document. More related is the work in [19] which
however has focused on simple path queries using an exten-
sion of Pathstack [10]. Here we built on that experience
and examine the more complex twig structural queries, us-
ing both a merge-join [10] and a subsequence matching [14]
approach. Twig support is important since twigs are con-
sidered as the building block for XML querying languages
(like XPath and XQuery): queries typically specify patterns
of selection predicates on multiple elements that have some
specified tree structure relationships.

2. BACKGROUND
An XML document is usually modeled as a rooted, ordered,
labeled tree. Each node in the tree corresponds to an ele-
ment or a value, and the edges represent immediate element-
sub element or element-value structural relationships. When
considering structural XML queries, one has to quickly de-
termine parent-child and ancestor-descendant relations for a
given set of tree nodes. This is achieved by using special la-
beling schemes that capture such relationships between node
pairs without having to traverse the path to each node. An
important feature of a numbering scheme for multiversioned
XML documents, is how the scheme adapts to changes. We
thus considered various such schemes that are described in
Section 2.1. Moreover, in Section 2.2 we discuss previous
approaches on maintaining and querying multiversion XML
documents.

2.1 Labeling Schemes
One of the first XML labeling schemes used an interval-
based [10] approach. Each node is typically represented
by the following tuple (DocId, LeftPos : RightPos, Level).
Here: (i) DocId is a unique identifier for the node’s docu-
ment; (ii) LeftPos and RightPos represent the preorder and
postorder traversal of the node in the tree. This interval
also contains the intervals of a node’s tree descendants; (iii)

1



Root 

A1 A2 A3 

B1 B2 B3 B4 B5 B6 

1 

1.3 1.5 1.1 

1.3.1 1.3.5 1.3.3 1.5.1 1.5.5 1.5.3 

Figure 1: ORDPATH labeling scheme

Level is the depth of the node. Given two tree nodes E1

and E2, with labels (D1, L1 : R1, L1) and (D2, L2 : R2, L2)
respectively, one can quickly determine if E2 and E1 rep-
resent an ancestor-descendant relationship if L1 < L2 and
R2 < R1. By also ensuring that L2 = L1 + 1 we can infer
that E1 and E2 are specifically a parent-child relationship.

However, interval-based labeling is not well suited when fre-
quent updates are made to the document. When a new
node is added to a document tree, the exact range which
should be used for the LeftPos and RightPos is unknown,
thus it becomes necessary to re-label the entire XML doc-
ument. Such relabeling is not a practical option when con-
sidering multiversioned documents since updates are often;
moreover, such relabeling could also affect any already built
indexes that use the labeling scheme.

The prefix labeling scheme [7], uses the prefix of a label
to determine if an ancestor-descendant relationship exists.
Prefix labeling requires no re-labeling if the order of the
XML tree is not of concern, but if order is of importance,
re-labeling will be required. Also, as the document grows in
size there is a significant storage overhead associated with
the prefix labels. Furthermore, the comparison of prefixes
to establish structural relationships is less efficient then the
integer comparisons used by the interval-based approach.

Prime numbers have been used in [17] to maintain tree order
without any re-labeling. Nodes are numbered by the prod-
uct of the “parent-label” (inherited from the parent node)
and the “self label” (assigned by the labeling scheme). A
new prime number is assigned as the “self-label” of a newly
inserted node. Although prime labeling supports updates,
the size of labels will become large as subsequent inserts re-
quire unique “self-labels”. Moreover, re-calculation is both
necessary and costly in order to determine structural rela-
tionships.

Lastly, we considered ORDPATH [12] which is a Dewey vari-
ant [9]. ORDPATH is a hierarchical scheme which improves
upon the prefix methods. It reserves even and negative val-
ues for subsequent inserts into the XML tree, which in turn
allows for order to be maintained without re-labeling. For
example, in Figure 1, if a new node were to be inserted be-
tween nodes ‘A2’ and ‘A3’ it would be given the ORDPATH
label ‘1.4.1’. This method of inserting is called “careting in”
and if it is applied frequently it could increase the length
of labels significantly. However, [12] showed that excessive
“careting in” is rare in practice. Based on its practicality
and updatability, we decided to implement our multiversion
solutions using the ORDPATH numbering.

2.2 Maintaining Evolving XML Data

Temporal (relational) databases have been proposed [2] for
maintaining evolving data. When considering XML and
semistructured data, one approach is to transform the data
into relations and then use a temporal database approach.
This however requires (sometimes complex) extensions to
both the database and SQL. Instead, we focus on more
XML-conscious approaches (i.e. “native”) designed specifi-
cally for archiving changes undergone by XML documents.

The approach in [1] maintains a change-centric representa-
tion of the XML data, by focusing on the changes themselves
via the use of deltas or edit scripts. It relies on its ability
to track XML nodes through time using persistent identi-
fiers called XIDs. These XIDs are contained in the deltas,
which allow them to easily recreate the document for a given
version by scanning deltas and applying the changes to the
mapped nodes. Although this approach easily and efficiently
maintains all the changes made to a XML document, it may
not be as efficient for structural XML querying because: (i)
the XIDs are essentially a very primitive labeling scheme
and as such do not provide any insight into ancestry rela-
tionships, (ii) there is a significant cost that may be incurred
with having to reconstruct the document using deltas.

Another approach relies on clustering the history of each
node on the node itself by maintaining a set of version-
stamps [11]. This can efficiently support the retrieval of
any specific version as well as provide the past history of
a given tree node. However, much like the delta approach,
it cannot efficiently support structural queries since it can-
not check structural relationships between nodes without
traversing the tree. Moreover, it does not maintain order
among document nodes.

The referenced-based version model [15] aims to solve the
limitations of edit-based approaches. In particular, a sep-
arate view is created for every version, but there are ref-
erences that point to the maximum unchanged subtree in
the previous version. In other words, the unchanged ele-
ments are shared among the subsequent views. [15] shows
that the reference-based model has both improved storage
and retrieval cost compared to more traditional approaches.
However, the management of the views could lead to in-
creased overhead as more and more versions are created;
moreover, this approach was optimized towards full subtree
version reconstruction.

The work in [16] addresses simple path expression queries
(i.e., the special case where an element cannot appear in
the subtree of an element with the same tag) in a multi-
version XML document as combinations of partial version
retrieval queries. [19] addresses path expression queries on
a multiversion XML document using a region-based num-
bering scheme. Nevertheless, none of these approaches is
optimized for general structural (twig) XML queries in a
multiversion XML environment.

3. MULTIVERSION TWIG QUERIES
When considering the traditional non-versioned environment,
finding all occurrences of a twig pattern is a fundamental op-
eration for XML query processing. Original methods have
focused on decomposing the query into multiple predicates
and then merging the results; this may create false positives

2



that need to be eliminated in a second phase. Instead, re-
cent work has focused on “holistic” processing techniques:
a global matching of the query pattern is performed. Holis-
tic matching has been shown to be superior in performance
[10][14][13][6]. Holistic techniques can be broadly catego-
rized into two differing approaches [8]. The first relies on
merge-joins [10] while the second on subsequence matching
[14, 13, 6].

Among the holistic methods, we consider further two repre-
sentatives, namely, Twigstack [10] and LCS-TRIM [14], as
they are currently the most efficient approaches in each of
the two categories. Twigstack [10] creates a list Tq (called
element list) that stores all nodes (elements) in the XML
document of the same tag q. Such appearances of q are kept
in Tq sorted by their LeftPos. When a twig query is pro-
cessed, only the lists of tags that appear in the twig query
are accessed. Also, each query node q is associated with a
stack Sq. These stacks enable the compact encoding of (a
possible larger number) intermediate partial results found
while processing the element lists. Using the interval-based
numbering scheme, the structural constraints are converted
to joins. The algorithm can guarantee worst-case perfor-
mance linear to the query input and the size of the query
result. Moreover, the algorithm works for both sorted and
unsorted twigs.

The LCS-TRIM [14] transforms both the XML document
and the twig query into sequences (using Prufer encoding
[13]) and then uses a dynamic programming approach to
find the longest common subsequences (LCS) and thus all
matches of the query. Equally instrumental to its perfor-
mance is the novel structure-matching algorithm used to
prune false positive matches. LCS-TRIM, however, is not
particularly well suited for unordered matching as the se-
quences are constructed from tree traversals and thus, pre-
serve order. Enumerating the set of all possible sequences
of a query is at worst exponential in size. However twig
queries are typically small and hence processing all possible
variations of an unordered query will not be expensive in
practice.

We now focus on extending these holistic matching algo-
rithms to operate on multiversion XML documents. The
major challenge is that current holistic techniques were de-
veloped with a static XML data model in mind. We propose
two approaches that adapt the LCS-TRIM and Twigstack
algorithms for use on multiversion XML documents. They
both facilitate a multiversion B-tree index (MVBT [4]) that
allows efficient access to the needed past versions (of the el-
ement lists, or the document sequence). We also consider
a third approach that applies LCS-TRIM on a temporally
clustered XML document. The design and implementation
of the updated, multiversion query processing techniques is
described next.

3.1 MVBT-Twigstack
As the name suggests, this algorithm modifies the original
Twigstack [10] algorithm to facilitate a MVBT index on each
element list. This MVBT effectively provides access to any
past version of a given element list. The reduction of the
multiversion XML problem to the use of MVBTs follows.
Consider an XML document at version 1. Assume that it

 

B 

Root 

D C A 

[1.1, 1, 5, A] 

[1.5, 1, 5, B] 

[1.3, 5, *, C] 

[1.7, 5, *, D] 

[1.5, 1, 5] 

[1.5.1, 1, 5] 

[1.7, 2, *] 

[1.9, 4, *] 

[1.1, 1, *] 

[1.3, 1, 5] 

[1.3.1, 4, 5] 

[1.4.1, 5, *] 

[1.1, 1, *] 

[1.4.1, 5, *] 

 

[1.7, 2, *] 

[1.9, 4, *] 

 

Figure 2: MVBT on element list

is numbered using the preorder/postorder traversal. Based
on its LeftPos, each node q of the tree is assigned to an ele-
ment list Tq. Conceptually, list Tq at version 1 is an ordered
set of LeftPos numbers. To address a twig query for ver-
sion 1, Twigstack needs to access Tq as is in version 1, in
increasing LeftPos order. Now consider the same document
at version 2. Assume that version 2 is created from version
1 by adding some new nodes in the XML document tree and
deleting some others. All the node additions (or deletions)
are translated into adding (resp. deleting) their positions in
the appropriate element lists. Since the ORDPATH number-
ing guarantees that the existing nodes do not change their
numbering (i.e. LeftPos) the addition of a new node is sim-
ply adding a LeftPos number in the appropriate list while
maintaining order. Assume that the LeftPos order in a given
element list is maintained by a B-tree. Then the evolution of
this element list over subsequent versions can be maintained
by making this B-tree partially persistent, i.e., a MVBT [4].
Consider a B-tree that went through an evolution of n ver-
sions and assume (for simplicity) that each version makes a
constant number of updates. Then reconstructing the i-th
version of the B-tree takes time O(logbn + s/b), where s is
the size of the B-tree in version i and b is the page size in
records; moreover the MVBT uses space O(n/b) [4].

Using MVBTs for implementing the multiversion element
lists provides the following advantages: (i) efficient access to
the elements of a given version in increasing LeftPos order,
and, (ii) coupled with ORDPATH labeling dynamic updates
can be processed on the most current version of the list.

The MVBT-Twigstack algorithm still needs to process the
nodes in the input element lists, but it no longer needs to se-
quentially scan the list from version 1. Instead, if the query
is about version i, the starting position for each element list
at version i is found by traversing the list’s MVBT, which
effectively prunes any irrelevant nodes (that were valid for
older or later versions than version i). Consider Figure 2
which depicts a (small) MVBT over an element list. Each
list record contains the ORDPATH number and a version in-
terval; for example, record (1.1, 1, *) in page A, corresponds
to an element that has ORDPATH 1.1, and was inserted in
the list at version 1 (the ‘* implies this record is still valid).
Similarly, element with ORDPATH 1.5 in page B was in-
serted in version 1 and deleted in version 5. When a leaf
page reaches a given threshold the active nodes are copied
to a new page, which is why some of the nodes found in
pages A and B are also shown in pages C and D (details
appear in [4]. The index records (as in the Root node) also
contain pointers to children nodes. A query asking for the
list at version 6 would direct the search from the Root to

3



 

[Inventory,1-*] 

[Item,1-*] [Item,2-*] 

[Count,1-3] 

[Count, 4-5] 

[Count, 6-*] 

[Price, 1-3] 

[Price, 4-7] 

[Price, 8-*] 

[Description, 1-*] [Price, 2-6] 

[Price, 7-*] 

[Description, 2-*] 

[label, range] 

Figure 3: XML data model used with TLCS

pages C and D, thereby skipping any irrelevant data nodes
in pages A and B. Much like the optimized TwigstackXB
[10] we also maintain a pointer to the active page in our
MVBT. This pointer allows us to advance to the next page
or drill down further into the tree, effectively allowing us to
adjust the level of granularity at which we skip records not
included in the query.

3.2 MVBT-LCS
Our second approach modifies LCS-TRIM [14] to incorpo-
rate an MVBT. Instead of organizing tags into their corre-
sponding element lists, the LCS-TRIM approach uses sub-
sequence matching over the whole XML document Prufer
sequence, which is created by a preorder traversal of the
document, in LeftPos order. Hence another way to support
multiversion twig queries is to efficiently maintain the ver-
sions of the XML document Prufer sequence.

Because of the ORDPATH numbering, a node addition in
the XML document is added in a specific place in the or-
dered sequence. Thus the document evolution is reduced to
maintaining the ordered sequence evolution. An MVBT can
be used, allowing for efficient access to only the needed ver-
sions of the document sequence. Effectively, this allows for
the pruning of non-relevant nodes (i.e., from other versions)
without examining them first. After the MVBT has been
traversed and the nodes of the sequence as of a given ver-
sion are found, the modified longest common subsequence
algorithm can be applied against the query subsequence.

3.3 Temporal LCS
A characteristic of the MVBT is that it provides efficient
access to a particular version (whether this is an element
list or the document sequence). Another organization of
temporal data is to cluster object versions together, simi-
lar to the approach in [11]. This would not work well with
Twigstack since it requires the element lists in order. Never-
theless, it could be used with LCS, in an approach we term
as Temporal LCS (TLCS). Here each node in the XML docu-
ment tree maintains a version interval which represents the
versions for which this node was considered valid. Figure
3 is an example of the version-stamp based tree used for
TLCS. Unlike the MVBT-LCS approach there is no way to
efficiently construct the sequence as of a given version (as
required by LCS-TRIM). Such computation adds an extra
pre-processing step incorporated into TLCS to eliminate ir-
relevant nodes.

4. EXPERIMENTAL EVALUATION
We proceed with the experimental evaluation of our modi-
fied algorithms: MVBT-Twigstack, MVBT-LCS and TLCS.
As a baseline for our experiments we also include two straight-

ID Query Expression

Q1 //item id[//location=“United States”][//payment=“Credit Card”]

Q2 //region=“europe”/item id[//quantity=“5”][//payment=“Cash”]

Q3 //item id[//name][//payment][//description][//quantity][//location]

Q4 //item id[//mail/date=“10/10/2000”][//payment=“Credit Card”]

Q5 //item id/description[//shipping]

Table 1: Twig queries for XMark data set

0

500

1000

1500

2000

2500

3000

3500

4000

4 20 36 52 68 84 100

Versions

S
iz
e
 (
M
B
)

Snapshot

Log-Based

MVBT-Twigstack

TLCS

MVBT-LCS

Figure 4: Storage Cost

forward approaches, termed as “log-based” and “snapshot”.
The log-based approach simply adds the various changes oc-
curring in a document, stamped by the version id when they
occurred. This approach presents the smallest space con-
sumption (linear to the number of updates). The snapshot
approach stores the document tree as it is on each version; it
thus uses large space (quadratic to the number of updates)
but provides the fastest access to a particular version of the
document.

All the experiments were run on a 2GHz Intel Core Duo with
4GB of main memory. We used the XMark [18] benchmark
to generate the synthetic data sets for our experiments. The
Xmark generator models data from that of an online auc-
tion, however, the data set generated was not a multiversion
document. A python script was used to simulate new ver-
sions by applying a batch of inserts, removes and updates
to the tree. In particular, the data set generated has a size
of 500MB and just over 6 million tree nodes. A total of 100
document versions were created. Between versions about
5% of the current version was modified (by inserts, deletes,
updates).

Table 1 represents the XPath queries used in the experi-
ments. Each query is appended by a single version or an
interval of consecutive versions so as to access the multiver-
sion XML document. In particular, we considered a “small”
version interval of five consecutive versions and a “large”
interval of twenty consecutive versions. As for the query
characteristics, both Q1 and Q5 are basic twig queries with
low selectivity, while Q3 and Q4 contain a higher fan-out
and depth causing slower runtimes.

4.1 Storage Cost
Figure 4 depicts the space usage as the XML document
evolves over time. The log-based approach uses the mini-
mal space, since there is no extra overhead associated with
storing changes. Although the snapshot approach is able
to retrieve a specific document version quickly, its space
consumption as the number of document versions increase,
clearly makes this approach impractical. TLCS, MVBT-

4



0.01

0.1

1

10

100

Q1 Q2 Q3 Q4 Q5

Query ID

T
im
e
 (
s
e
c
)

Snapshot Log-Based TLCS MVBT-TwigStack MVBT-LCS

Figure 5: Ordered: Single Version

0.01

0.1

1

10

100

Q1 Q2 Q3 Q4 Q5

Query ID

T
im
e
 (
s
e
c
)

Snapshot Log-Based TLCS MVBT-TwigStack MVBT-LCS

Figure 6: Ordered: Version Interval = 5

LCS, and MVBT-Twigstack maintain space that grows lin-

early with the total number of changes made in the evolu-
tion.

4.2 Query Time
We distinguish between ordered and unordered matches.
The subsequence based methods need to run all possible
orderings of an unordered twig query so as to find all un-
ordered matches.

4.2.1 Ordered Matches
Figures 5-7 illustrate the execution time (note the logarith-
mic scale) of Q1 − Q5 for the three version ranges, respec-
tively. The single and interval (5 or 20 consecutive) ver-
sions were chosen randomly within the document’s evolu-
tion. The Snapshot approach could be implemented using
either LCS or Twigstack. In these figures we report the
Twigstack implementation (effectively, for each version, the
snapshot of each element list is stored and accessed by the
original Twigstack algorithm). For a single version query,
the Snapshot approach performs well. However, as the ver-

0.01

0.1

1

10

100

Q1 Q2 Q3 Q4 Q5

Query ID

T
im
e
 (
s
e
c
)

Snapshot Log-Based TLCS MVBT-TwigStack MVBT-LCS

Figure 7: Ordered: Version Interval = 20

sion range increases the performance quickly degrades; this
is because results from each document version are first col-
lected and then merged. While the Log-Based method pro-
vided the minimal amount of storage space, its query run-
times are too expensive regardless of version range. This is
attributed to the overhead incurred when having to recreate
the document for a given version.

TLCS is consistently worse than both the MVBT-Twigstack
and MVBT-LCS approaches. This is because the MVBT-
based approaches focus the algorithms to the nodes valid for
the version(s) in the query. Instead, the TLCS has to parse
the overall document sequence (including nodes that are not
related to the query version(s)) before it creates the docu-
ment sequence needed for the query. The TLCS process-
ing time is unaffected by the size of the version range since
the processing is effectively the same. In contrast, MVBT-
Twigstack and MVBT-LCS processing increases as the ver-
sion range increases since the number of nodes accessed by
either MVBT-Twigstack or MVBT-LCS also increases.

Among the MVBT based approaches, the performance of
MVBT-LCS is faster than MVBT-Twigstack. This obser-
vation is similar to what has been reported for ordered twig
queries in the non-versioned environment [14]. Among the
various queries, MVBT-LCS shows the smaller runtime for
queries Q1 and Q5; this is to be expected since these queries
have the lowest selectivity.

The support of versions through the use of the MVBT has a
relatively small overhead on the traditional query processing
algorithms. This can be seen in Figure 5, when comparing
the Snapshot approach with MVBT-Twigstack for a single
version query. The Snapshot approach used Twigstack on
the stored version of the document, while MVBT-Twigstack
has the overhead of using the MVBT. We observed the same
when comparing LCS-TRIM with MVBT-LCS for a single
version [3].

0.01

0.1

1

10

Q1 Q2 Q3 Q4 Q5

Query ID

T
im
e
 (
s
e
c
)

TLCS MVBT-TwigStack MVBT-LCS

Figure 8: Unordered: Single Version

4.2.2 Unordered Matches
Figures 8-10 depict the execution times of Q1 − Q5 when
unordered matches are desired. For simplicity the graphs
show only the TLCS, MVBT-Twigstack and MVBT-LCS.
The MVBT-Twigstack behavior is similar with the ordered
case, since the Twigstack approach can easily do both or-
dered and unordered matchings. Instead, the LCS based
approaches create an ordered sequence for each twig query.
As a result, all configurations of a query must be processed
for finding the unordered matchings (more twigs need to be

5



processed per query). As expected the runtime of the LCS
approaches increases.

0.01

0.1

1

10

Q1 Q2 Q3 Q4 Q5

Query ID

T
im
e
 (
s
e
c
)

TLCS MVBT-TwigStack MVBT-LCS

Figure 9: Unordered: Version Interval = 5

0.01

0.1

1

10

100

Q1 Q2 Q3 Q4 Q5

Query ID

T
im
e
 (
s
e
c
)

TLCS MVBT-TwigStack MVBT-LCS

Figure 10: Unordered: Version Interval = 20

Nevertheless, the MVBT-LCS approach is still shown to be
more efficient than all the other approaches with the ex-
ception of query Q3, where MVBT-LCS is slightly slower
than MVBT-Twigstack. In particular, Q3 has many struc-
tural relationships, which create a large number of sequences
needed to process unordered matches. In contrast, MBVT-
Twigstack sequentially scans over the element labels effec-
tively checking all possible combinations of a query in just
one pass.

4.2.3 Average Runtime
We finally report the average query performance (over all
queries) for each of the proposed algorithms, for ranges up to
50 versions. Figure 11, shows the average runtime of ordered
matches. All algorithms show linearly increased runtime as
the version interval increases (since more nodes need to be
processed). Overall, the MVBT-LCS approach showed the
most robust performance. The unordered queries showed
similar behavior (full results reported in [3]).

5. CONCLUSIONS
As XML usage increases, so does the need to preserve and
query the historical information of a document. Previous
work on multiversion XML queries has either concentrated
on modeling or simple path queries. In this paper, we exam-
ined how to process complex structural queries (twigs) over
multiversion documents. We considered three approaches
influenced by the current state-of-the-art techniques for static
XML documents. This entailed identifying an appropriate
labeling scheme that was both: (i) dynamic (i.e., it would
not require tree re-labeling), and (ii) would integrate well
with multiversion indexing. Our experimental results show

0

0.5

1

1.5

2

2.5

3

1 5 20 50

Version Interval

A
v
e
ra
g
e
 T
im
e
 (
s
e
c
)

TLCS MVBT-TwigStack MVBT-LCS

Figure 11: Avg. Time: Ordered Matching Queries

that the MVBT-LCS outperforms the other approaches. When
unordered matches are needed and the twig query has high
fan-out (thus resulting into many ordered twigs) the MVBT-
Twigstack is a competitor. Overall, the proposed methods
show low overhead for supporting multiple versions while
using linear space on the number of updates.

6. REFERENCES
[1] A. Marian, S. Abiteboul, G. Cobena, and L. Mignet.

Change-Centric Management of Versions in an XML
Warehouse. In Proc. of VLDB, 2001.

[2] A. U. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev,
and R. Snodgrass. Temporal databases: theory, design, and
implementation. 1993.

[3] A. Woss. Query Processing Techniques Over Multiversion
XML Documents. Masters thesis, UC Riverside, 2009.

[4] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P.
Widmayer. An Asymptotically Optimal Multiversion
B-tree. The VLDB Journal, 5(4):264–275, 1996.

[5] F. Wang, C. Zaniolo, X. Zhou, and H. J. Moon. Managing
Multiversion Documents and Historical Databases: a
Unified Solution Based on XML. In Proc. of WebDB, 2005.

[6] H. Wang, S. Park, W. Fan, and P. S. Yu. ViST: a dynamic
index method for querying XML data by tree structures. In
Proc. of ACM SIGMOD, 2003.

[7] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld.
Updating XML. In Proc. of ACM SIGMOD, 2001.

[8] M. Moro, Z. Vagena, V.J. Tsotras. Tree-Pattern Queries on
a Light-weight XML Processor. In Proc. of VLDB, 2005.

[9] Melvil Dewey. Dewey Decimal Classification and Relative
Index 19th edition. Albany, NY, 1979.

[10] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig
joins: optimal XML pattern matching. In Proc. of ACM
SIGMOD, 2002.

[11] P. Buneman, S. Khanna, K. Tajima, and W-C. Tan.
Archiving scientific data. In Proc. of ACM SIGMOD, 2002.

[12] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and N.
Westbury. ORDPATHs: insert-friendly XML node labels.
In Proc. of ACM SIGMOD, 2004.

[13] P. Rao, and B. Moon. PRIX: Indexing And Querying XML
Using Prufer Sequences. Data Engineering, International
Conference on, 0, 2004.

[14] S. Tatikonda, S. Parthasarathy, and M. Goyder.
LCS-TRIM: dynamic programming meets XML indexing
and querying. In Proc. of VLDB, 2007.

[15] S-Y. Chien, V. J. Tsotras, and C. Zaniolo. Efficient
Management of Multiversion Documents by Object
Referencing. In Proc. of VLDB, 2001.

[16] S.-Y. Chien, V.J. Tsotras, C. Zaniolo and D. Zhang.
Efficient Complex Query Support for Multiversion XML
Documents. In Proc. of the EDBT Conf., 2002.

[17] X. Wu, M. L. Lee, and W. Hsu. A Prime Number Labeling
Scheme for Dynamic Ordered XML Trees. In Proc. of the
20th International Conference on Data Engineering, 2004.

[18] XMark. The XML benchmark project.
http://www.xml-benchmark.org.

[19] Z. Vagena, and V. J. Tsotras. Path-expression Queries over
Multiversion XML Documents. In Proc. of WebDB, 2003.

6


