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Abstract

Network data models are frequently used as a mecha-
nism to describe the connectivity between spatial features in
many emerging GIS applications (location-based services,
transportation design, navigational systems etc.) Connec-
tivity information is required for solving a wide range of
location based queries like finding the shortest path, ser-
vice areas discovery, allocation and distance matrix com-
putation. Nevertheless real life networks aredynamic in
nature since spatial features can be periodically modified.
Such updates may change the connectivity relations with the
other features and connectivity needs to be reestablished.
Existing approaches are not suitable for a dynamic envi-
ronment, since whenever a feature change occurs, the whole
network connectivity has to be reconstructed from scratch.
In this paper we propose an efficient algorithm whichin-
crementallymaintains connectivity within a dynamic net-
work. Our solution is based on the existing functionality
(tables, joins, sorting algorithms) provided by a standard
relational DBMS and has been implemented, tested and will
be shipped with the ESRI ArcGIS 10 product.

1 Introduction

Network data models have been proposed as an efficient
way to represent connectivity information among spatial
features in geographic information systems [13] [6] [12]
[9]. Connectivity information for such features is explicitly
represented by network elements that are found in an asso-
ciated logical network. Many of the proposed designs have
also been implemented in existing operational systems like
Arc/Info [14] and TransCAD [3] where the network model
is persisted inside a centralized database server. Using con-
nectivity information, these systems can then be utilized to
solve a wide range of problems, typical for the transporta-
tion networks like finding the shortest path between points
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of interest, finding optimal resource allocation and many
others.

In order to provide more accurate results and better ser-
vice to the end users, a network model has to meet a grow-
ing set of sophisticated (functional and system) require-
ments, needed for real world transportation systems mod-
eling. Some primary functional requirements for a robust
network data model are: (i) Ability to modelmulti-modal
transportation networks [20]. A multi-modal transportation
network is a network which includes more than one mode of
transportation (like freeways and railroads). In such trans-
portation systems, the users can change their transportation
mode (drive a car to the train station and then take a train)
but such changes can occur only in a set of connectivity
points shared by both transportation modes. (ii) Ability to
model differenthierarchical levels. The level hierarchy oc-
curs naturally in transportation systems: consider for ex-
ample the road network where the freeways are typically
associated with the highest hierarchy level followed by the
highways and the city streets. (iii) Ability to model (simple
two-part) turns and (more complex multi-part)maneuvers
[21]. The presence of such turns in the network can have
great impact on the movement inside the network [1]. (iv)
Ability to capture a big set of real lifeconstraints[7]. For
example, restrictions like one way streets and weight-height
limitations have to be reflected in the network model.

In addition to these functional requirements a network
data model has to meet also a set of standard system require-
ments for performance, multi-user support, interoperability
and scalability. To satisfy the system requirements the net-
work model has to be persisted inside a commercial rela-
tional database (using only the standard DBMS tools and
operators).

Nevertheless, a common weakness in previously pro-
posed network model designs is that they do not consider
dynamicmodifications in the network. Such modifications
occur often in many real life scenarios where spatial fea-
tures can be frequently modified (e.g., features are up-
dated, deleted or inserted). Even a single feature update
can change the connectivity relations among other features
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and connectivity needs to be reestablished. To address this
problem, all existing approaches reestablish the connectiv-
ity of thewholenetwork from scratch. While the correct re-
sult is finally produced, this process is very time consuming
(networks are typically very large e.g. 50 million linear fea-
tures in a continental wide transportation networks) and can
be prohibitive for many applications (for example, networks
supporting on-line navigation queries or location-based ser-
vices). A new and effective mechanism to maintain the cor-
rectness of the network model in dynamic environment is
thus needed.

In this paper we present anincrementalalgorithm for
maintaining the correctness of the connectivity information
in the presence of modifications. This algorithm has been
implemented on top of a relational database for ESRI’s Ar-
cGIS geographic information system.

We introduce the notion of adirty area inside a network
data model which tracks feature edits. This concept have
been used previously in topologies [10]. A dirty area is a
region inside the network spatial extend where the network
features have been modified but the correctness of their con-
nectivity information has not been verified. The network
data model is assumed correct only when it is free of dirty
areas. A dirty area is incrementally reduced by a process
calledrebuilding. The rebuilding may happen over the en-
tire dirty area in the network, or it may affect only portions
of it. The end user specifies which portions of the dirty area
wants to be cleaned and the rebuild process analyzes and
re-establishes the connectivity information there. Allowing
users the ability to rebuild only portions of the dirty area is a
practical requirement in scenarios involving very big seam-
less networks. The user may clean only these portions of the
network extend which are of interest to a given application
or query, thus avoiding the costly total rebuild.

Effectively dirty areas can be viewed as a mechanism
to support transaction functionality over complex network
data (graphs etc.). The database starts with a consistent state
(i.e. without any dirty areas), then the updates are applied,
the dirty areas are cleaned and eventually the database re-
turns to a consistent state when all dirty areas are cleaned
(the ”end” of the transaction).

The rest of the paper is organized as follows: Section 2
provides a brief description of the network model including
logical structure and physical design. Section 3 discuses
the physical implementation. Section 4 provides in depth
description of our rebuilding algorithm. Section 5 discusses
experiences with the actual implementation of our solution
while section 6 concludes the paper.

2 Network Model Basics

We proceed with a brief description of the network
model introduced in [9]. The termfeaturein a GIS system

is used as a graphical representation of a real world object.
Line features are used to represent objects with line geom-
etry; for example, freeways, railways etc. Point features are
used when the location of an object is important (but not
the object’s exact shape); for example, street intersections
or railway stations. Anetwork modelis a graph used for
storing connectivity information about spatialfeatureswith
line or point geometry. Lines are represented asedges while
points are noted asjunctions. Edges and junctions do not
have shape attributes and are used to represent connectivity
information. They are also termed asnetwork elements.

While a spatial feature can be represented with multi-
ple network elements (for example, a line can be segmented
into multiple edges in the graph), a network element has
at most one spatial feature associated with it with the ap-
propriate geometry type. In particular, an edge element is
associated with exactly one line feature while a junction ele-
ment is associated with at most one point feature. Relations
between network elements represent connections between
their corresponding features. For example, consider two
line features intersecting at a given point. In the network
model this will be represented as one junction (associated
to the intersection) connected with four edges (each edge
associated with a line segment).

A network element is also described by a set of numer-
ical or boolean values callednetwork attributes. These
attributes are used to store properties of interest from the
real world object whose representation in the system is the
feature associated with this network element. For example,
consider an edge associated with a street segment; this edge
may have as attributes the length of the street segment, or,
the travel time across this segment, etc. Network attributes
typically provide the means for optimization (shortest path,
minimal travel time, etc.) during the analysis of the network
model. They are stored along with the network elements in
order to minimize the number of tables that have to be ac-
cessed and thus achieve better performance.

Because of their very large data size (e.g., tens of mil-
lions of features), network models are usually located in a
centralized server, persisted either in a RDBMS or in a file
system. The process of analysis is done on the client side
of the architecture by components callednetwork solvers.
Solvers implement a wide range of graph algorithms (like
finding shortest paths etc. [16] [18] [2] ) and obtain data
from the server utilizing specialized access methods (e.g.
forward star cursor [5] [17] [19] ).

Turns. In addition to the edge and junction elements, a
network can also represent real life movement constraints.
This is performed by special network elements calledturns.
A turn is anchored to a specific junction (the junction where
the turn starts) and controls the movement between two
edges (edge-In, edge-Out) connected to this junction. The
presence of turns can have great impact on the movement
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Figure 1. ER network model design

inside the network (and the analysis process) so the ability
to model this aspect is critical [1]. In our system, turns are
explicitly maintained in a relation (theturn table) that stores
the turn’s anchored junction, the edges associated with it
and a user specified penalty (the cost associated with travel-
ing on this turn). We choose this approach because it can be
easily optimized for the most commonly used client access
patterns [19].

Modeling Connectivity. Connectivity is described by
a set of rules specifying how the features, modeling real
world objects are connected to each other. A simple con-
nectivity model, calledend point connectivity, is based on
the spatial coincidence of the point features and the end-
points of the line features (that is, two lines are connected
only if their endpoints coincide). It works relatively well
for planar datasets where the line features do not cross each
other. However, for applications that deal with non-planar
data, another connectivity model has been introduced, the
mid-span connectivity model, where connections are estab-
lished based not only on the end-point collocation but also
on the spatial collocation on the mid-span vertexes along
the line features. Since both models are widely used, they
are supported by our algorithms.

3 Physical Implementation

We now discuss our physical implementation of a net-
work model within a relational database. Figure 1 shows
the normalized ER diagram of a typical network model de-
sign. Similar designs have been used in many research or
commercial implementations [11] [8] [15] [4]. In this ER
diagram, network elements are represented explicitly with
entity sets while the connectivity information is stored as
the from and to relationships between the edge and junc-
tion entity types. This representation of connectivity comes
naturally from the mathematical formalization of a graph
where an edge is defined as a binary relation on junctions.
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Figure 3. Actual junction table used

Translating this ER into a relational schema, would result in
creating an edge table with attributesfrom andto (the end-
points of an edge) which are foreign keys to the junction
table (i.e., refer to the junction ID column) (see Figure 2).

This approach however, has some disadvantages from a
performance point of view. The major one is revealed dur-
ing the process of network traversing when the solver algo-
rithms move inside the graph from one junction to another
following the connecting edges. Every time a junctionji

is explored, we need to discover the set of edges associ-
ated with that junction. This is done by issuing a separate
SQL query in the edge table checking whetherji appears
in the ”from” or ”to” attributes. This is very time con-
suming, given that the solver algorithms typically examine
many junctions.

Instead we use a different implementation for the
junction and turn tables. We represent the connectiv-
ity information as a set ofadjacency pairsof the form
〈edgeId, junctionId〉, stored inside the junction table (see
Figure 3). For example, junctionj1 is connected through
edgee1 to junction j2, etc. This approach is tailored to-
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Table 1. Frequency distribution on junction degrees for different datasets.
Degree 1 2 3 4 5 6 7 8

Count 147,860 43,737 375,340 145,400 2,689 234 11 1
Percent 20.7% 6.1% 52.5% 20.3% 0.4% 0.03% 0.01% 0.001%
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Figure 4. Turn table example

wards navigation as it is designed to answer the most com-
mon type of adjacency queries during the network analysis
process. That is, all connections to given junctionji ap-
pear in the record of this junction. The junction table uses
fixed-length records for direct access purposes; this implies
a fixed number of adjacency pairs per record (see figure 3).
Through an empirical evaluation over several real datasets
(see table 1) it was found that 99.5% of the junctions have
four or less adjacent junctions; hence we fixed the number
of adjacency pairs in the junction table to four. If a junc-
tion requires more than 4 adjacency pairs a special overflow
table is created.

Similarly, in a typical network traversal process, the
graph is traversed from junction to junction. It is thus ad-
vantageous, at each junction to know all the turns (and their
penalties) anchored at this junction. This has influenced the
way we implement the turn table (see figure 4). If there are
any turns anchored at a junctionji, the turn table will have a
record with primary keyji which also contains all the turns
anchored onji. Information about a turn is stored in the
form of aturn triplet 〈turnId, edge−InId, edge−OutId〉.
Again from empirical evaluation, we have set a fixed length
of five turns per junction.

4 Connectivity Maintenance

We view the maintenance of the network connectivity
as a two phase process: (i) the initial establishment of
connectivity where the connectivity graph is derived from
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Figure 5. Connectivity model for multi-modal networks

the features participating in the network through a process
calledgeometric analysis, and, (ii) its incremental rebuild-
ing where the connectivity information in the graph is kept
persistent with the modifications which occur in the feature
space. The rebuilding is done through a process of analysis
in both, the connectivity graph and feature space. During
this process the connectivity established in the previous it-
eration is reused as much as possible.

The applications which will benefit form the presence of
the incremental connectivity maintenance functionality are
the ones where the features involved in the network model
are modified frequently. The network model however is ex-
pected to maintain the correctness of the connectivity infor-
mation about the features despite these frequent modifica-
tions.

Moreover, during this process we have to consider an-
other important aspect of the connectivity model which is
the ability to representmulti-modalnetworks. An exam-
ple of a multi-modal network appears in transportation sys-
tems, where various transportation modes (roads, bus lines
etc.) are linked together. To satisfy this requirement we
useconnectivity groups[9] where each connectivity group
represents the set of features associated with a given mode
of transportation. For example, in a transportation system
with two modes (e.g. road network and railway system)
there will be two connectivity groups of features. The con-
nectivity is established locally for each group using either
the end-point or the mid-span connectivity model (see Fig-
ure 5). To create connections between the two connectivity
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Algorithm 1 Initial Build
Require: F : The set of all features participating in the model
Ensure: Network model with established connectivity

1: SetV ertexTable← ∅, vtprev = 0;
2: for each featurefi in F do
3: V = GetFeatureVertexes(fi);
4: for each vertexvi in V do
5: Insert IntoV ertexTable values (vi.x,vi.y,fi.id);
6: end for;
7: end for;
8: SortByXY(V ertexTable);
9: while GetConnectivityGroup(ConnGroup) == true do

10: ji = CreateJunction(ConnGroup.x,ConnGroup.y);
11: for each vertexvi in ConnGroup do
12: UpdateV ertexTable set jid =ji.id;
13: end for;
14: end while;
15: SortByFeatureId(V ertexTable);
16: for each recordvti in V ertexTable do
17: if vti.fid = vtprev.fid then
18: CreateEdgeBetweenJunctions(vti.jid,vtprev.jid);
19: vtprev = vti;
20: end for;

Table 2. Vertex table description
Column Description

x The x coordinate of the vertex
y The y coordinate of the vertex
fid Feature identifier
jid Junction identifier

groups we allow point features to participate in more than
one connectivity group. In our example if a point feature
(e.g railway station) participates in both connectivity groups
it will connect them together in its role as a junction element
in the graph (Figure 5).

4.1 Initial Establishment of Connectivity

The algorithm for initial establishment of connectivity
takes as input all the features (e.g. all representations of
real world objects) in the system. The pseudo code of the
algorithm is shown on Figure 1.

The first step in the algorithm is to extract information
about the vertexes of all features participating in the net-
work (lines 1-7). The extracted vertex coordinates and
the feature identifier are stored in a temporary table called
V ertexTable (see table 2).

The next step is to sort the content of the vertex table by
coordinate values in order to group the coincident vertexes
together (line 8) and extract and analyze each group of co-
incident vertexes according to the connectivity model spec-
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ified by the user (line 9). For each discovered connectivity
group a new junction element is created whose identifier is
stored in the columnjid in the vertex table for all vertexes
participating in that connectivity group (lines 10-13). The
content of the vertex table then is resorted by feature iden-
tifier so that the vertexes for each line feature are grouped
together (line 15). The vertex table is scanned sequentially
and for each pair of adjacent vertexes on the same line fea-
ture a new edge is created (lines 16-20).

4.2 The Incremental Approach

We proceed with the description of the incremental re-
building algorithm and the infrastructure needed to support
it ( i.e. dirty areas). Finlay we discuss how turn features a
rebuild (using the notion of dirty object).

4.2.1 Dirty Areas

In order to track the feature modifications we employ the
concept ofdirty areas. A dirty area corresponds to the
spatial region within the network where features have been
modified and the connectivity model for them has not been
re-established. To simplify the computation of the dirty area
we define it as a union of the envelopes (e.g. the bounding
box around the feature geometry) of the features which have
been modified. All dirty areas are stored in a special table
calleddirty area table.

In the initial state, the network model has no features, the
underlying network has no elements, and the dirty area is
empty. When edits are made to the features or new features
are loaded, the dirty area is modified (or new dirty area is
created in case of a new feature) to encompass the extend of
the feature envelope. Consider the example shown in Figure
6. The left side shows the initial state of the feature space
and the network (below). The network correctly represents
the connectivity information about the features in the fea-
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ture space. The right side depicts the feature space and the
network model after a modification (a new featuref7 has
been added). However this change has not been propagated
to the network model and as a result the model becomes
stale and does not describe the connectivity in the feature
space correctly (the new line featuref7 has not been re-
flected in the model). To keep track of the modifications
which occur in the feature space and which are not propa-
gated to the network model a dirty area is created around
featuref7 covering the whole feature.

A dirty area (shown as shaded region) is reduced by the
process of rebuilding. The rebuilding may occur over a set
of dirty areas (figure 7 scenario 1), or it may happen over
single dirty area (scenario 2), or it may even involve only
parts of dirty area (scenario 3).

The users have the ability to specifyrebuild region- a
spatial extend inside the dirty area which has to be rebuild.
When the rebuilding process covers just a subset of the dirty
area we have apartial rebuild. The portions of the dirty area
which are not covered by the rebuild region are referred as
gray region. When the rebuild process ends, the extend of
the rebuild region will be removed from the original dirty
area. The network model is assumed correct and up to date
when there are no dirty areas.

4.2.2 The Rebuild Algorithm

For simplicity we first describe the rebuilding algorithm
when there are no line features that intersect both the re-
building region and the gray region. The extension of the
algorithm to handle partial line features is discussed later in
this section.

As with the initial connectivity establishment algorithm,
the incremental rebuild constructs a vertex information ta-
ble and uses it to create the junction and edge elements in-
side the network model. We can view the network model as
containing historical connectivity information for the points
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Table 3. Vertex table description
Node Features connected to this node

1 f2, f7

2 f2, f3, f6

3 f3, f5, f7

and lines intersecting the rebuilding region established be-
fore the modifications in the feature space. The goal of the
rebuild algorithm is to replace that historical information
with the current connectivity data.

The input to the algorithm is the set of line features that
intersect the rebuilding region. This can be provided by a
simple spatial query in the feature space. To illustrate the
algorithm we use the simple example shown on figure 6.
For simplicity we assume that the rebuild region is identical
with the dirty area shown with gray on figure 6. The features
which intersect with the rebuild region are line featuresf2,
f3, f5, f7 and point featuref6. The first step of the algo-
rithm (lines 2-8) computes the connectivity nodes inside the
rebuild region. This is done in a way similar to the initial es-
tablishment of connectivity, but now the rebuild algorithm
only looks at the line vertexes which belong to the rebuild
region and which are stored in the vertex table (it is possible
that only parts of the line feature are covered by the rebuild
region). All other vertexes are ignored. In our example, we
have three connectivity nodes as shown in table 3.

In the second step of the algorithm (lines 9-19), both the
features and the network elements are analyzed. For each
line feature in the rebuilding region, the algorithm deletes
the associated edge elements from the network model. The
junction elements connected to those edge elements are an-
alyzed to determine if they satisfy at least one condition
from the set ofsaving conditionsexplained below. If none
of these conditions is satisfied, then the junction is deleted.

6



 

f2 

f4 

f5 

f1 

f3 
f7 

e6 

e8 

e4 

e10 

e1 

j3 

j1 j2 

j6 

f6 

j4 

Step 3 Creation of the new 
junctions 

Step 4 Creation of the new 
edges 

j3 

f6 

f2 

f4 

f5 

f1 

f3 
f7 

e4 e1 

j1 j2 

j3 j6 

j7 j7 

e7 e9 

Point Feature Junction Dirty Area 

Line Feature Edge Conn. Node 

j4 

Figure 9. Step 3 and 4 of the incremental rebuild algo-
rithm

The saving conditions are used to determine junction ele-
ments that are:

• Junctions outside the dirty area.These junctions be-
long to edges which are partially covered by the rebuild
region. They are saved and reused later as connection
points through which the rebuild portion of the net-
work is snitched together with the rest of the model.

• Junctions which have point feature associated.
Since every point feature has a junction associated in
the network model such junctions are saved for later
reuse. There is no scenario where this junction can be-
come obsolete. It might happen though that we have to
update the junction properties like the x and y coordi-
nates.

If a junction is saved for later reuse, the connectivity infor-
mation for it is stored in thesaved junction table.

In our example we have edgese2, e3 ande5 associated
with line featuresf2, f3 andf5 which intersect the rebuild
region. Those edge elements are removed from the network.
The junctions connected to those edges (j2, j3, j4 andj5)
are analyzed to determine if they satisfy one of the saving
conditions. Junctionsj2 andj4 are outside of the rebuild
region and thus satisfy the first saving condition and will be
used later for resnatching. Junctionj3 has a point feature
associated with it and therefore satisfies the second saving
condition. Junctionj5 does not satisfy any of the saving
conditions and is thus deleted. The connectivity information
stored for the saved junctions is shown on table 4.

The third step in the rebuild algorithm (lines 20-28) in-
volves creation of the new junction elements inside the re-
build area. For each connectivity node computed in the first
step, there should be a junction element in the network.
Care should be taken as some of the processed point fea-
tures participating in a connectivity node (more specifically

Table 4. Saved junction table
Jct. j2 j2 j2 j3 j3 j4 j4

Ft. f1 f2 f4 f2 f3 f4 f5

those which were present in the previous iteration) may al-
ready have an associated junction element. Instead of cre-
ating new junctions, we reuse the saved junction elements.
The connectivity information for the newly created junc-
tions is added to the connectivity information for the saved
junctions in thejunction table. In our example, connec-
tivity nodes 1 and 3 do not include any point feature so we
have to create new junction elementsj6 and j7 for them.
Connectivity node 2, however, includes a point featuref6

which has a associated junctionj3 and there is no need to
create a new one.

The last step (lines 29-34) is the recreation of the edge
elements in the rebuild region. For this purpose we use the
information for the newly created junctions inside the re-
build region and the saved junctions from step 2 in the saved
junction table (those are the junctions used for resnatching
with the rest of the network). The information in this ta-
ble is sorted using the feature id as a primary key so that
the junctions that belong to the same feature are grouped
together (see table 5). The sorted table is then scanned and
for each pair of junctions that belong to the same feature a
new edge is created.

The description of the algorithm up to this point covers
the basic scenario where there are no features which inter-
sect both: the rebuild region and the gray region (so called
”partial” line features). Nevertheless a point feature can-
not intersect both the rebuild and the gray regions since the
regions are nonoverlaping. The problem with those line fea-
tures is that we cannot save the junction at the feature end-
point outside the rebuild region for resnatching if it is in a
gray region since this is an indication that the end point has
not been processed and junction element may not exist for
it.

The incremental rebuild algorithm is thus extended to
handle the case where there are ”partial” line features. For
each line feature that intersects the rebuilding region, in-
formation about its endpoints in the gray region is added
to the set of connectivity nodes computed in the first step
of the algorithm. During this process we ignore all other
feature geometries that may be present there. As a result
the connectivity node for this end point may be inaccurate.
However, the node is in the part of the dirty area remaining
after the current rebuild, and we will correct the inaccuracy
with a subsequent rebuild there.

An example is shown in Figure 10 where a new feature
f3 is added to the network model and creates a dirty area.
Only a portion of this area is rebuild (the darker region) and
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Algorithm 2 Incremental Build
Require: F : The set of line features in the rebuild region
Ensure: Network model with correct connectivity

1: SetV ertexTable← ∅, vtprev = 0;
2: for each featurefi in F do
3: V = GetFeatureVertexes(fi);
4: for each vertexvi in V do
5: if vi in rebuildregion then
6: Insert IntoV ertexTable values (vi.x,vi.y,fi.id);
7: end for;
8: end for;
9: for each line featurefi in F do

10: E = GetAssociatedEdges(fi);
11: for each vertexei in E do
12: |{∇om = GetFromJnct(ei);
13: |to = GetToJnct(ei);
14: if jfrom can be savedthen
15: Insert Into V ertexTable values

(vi.x,vi.y,fi.id,jfrom.id);
16: if jto can be savedthen
17: Insert Into V ertexTable values

(vi.x,vi.y,fi.id,jto.id);
18: end for;
19: end for;
20: SortByXY(V ertexTable);
21: while GetConnectivityGroup(ConnGroup) == true do
22: if ConnGroup has junctionthen
23: continue;
24: ji = CreateJunction(ConnGroup.x,ConnGroup.y);
25: for each vertexvi in ConnGroup do
26: UpdateV ertexTable set jid =ji.id;
27: end for;
28: end while;
29: SortByFeatureId(V ertexTable);
30: for each recordvti in V ertexTable do
31: if vti.fid = vtprev.fid then
32: CreateEdgeBetweenJunctions(vti.jid,vtprev.jid);
33: vtprev = vti;
34: end for;

only the new featuref3 intersects with this rebuild region.
During the first step of the algorithm both end points of fea-
turef3 are considered as connectivity nodes though none of
them is actually inside the rebuild region. The other features
participating in these connectivity nodes (featuresf1 and
f2) are not analyzed. The information about the connectiv-
ity nodes at the endpoints of the featuref3 is not complete
(we miss the fact that there are junctions associated with
these connectivity points). We thus create extra junctions
j5 andj6 and the edgee3 will be disconnected forme1 and
e2. However all these side effects will be fixed in a later it-
eration of the rebuild algorithm when the dirty areas around
the end points of featuref3 are cleaned.

 

Step 3 Creation of the new 
junctions 

Step 4 Creation of the new 
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Line Feature Edge Rebuild Region 
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Figure 10. Partial rebuild

Table 5. Sorted junction table

Jct. j2 j7 j3 j3 j5 j4 j6 j4 j6 j7

Ft. f2 f2 f2 f3 f3 f5 f5 f5 f7 f7

4.2.3 Rebuilding Turn Features

We now discuss how the turn features participating in the
network are rebuild. The problem comes from the fact that
the turn features (or objects like relationships and so on)
are defined as a relation between two or more line features
and typically do not have geometrical properties. In our
implementation of the network model the information about
the turns is stored in a separate turn table with references to
the line feature table.

The lack of spatial properties makes it difficult to deter-
mine if a turn feature is inside a rebuild region or not. It
is possible to find the line features inside the rebuild region
and check for each one of them if it participates in a turn
feature. However this will require: (1) a query with spatial
range predicate (to find the line features in the rebuild area)
and (2) numerical join for each column in the turn table
containing line features identifiers (to find turns associated
with given line feature). This will be inefficient because
of the multiple join operators involved and the fact that in
the existing geodatabase engines the execution of a spatial
predicate and a numerical join are not pipelined.

Instead we propose to extend the dirty area concept to
cover network elements without geometrical properties. We
thus introduce the notion ofdirty object. We define a
dirty object to be an object without geometrical properties
whose modifications has not been propagated to the net-
work. When an object is modified we store its identifier in
a dirty object table. During the rebuild process we attempt
to recreate all objects in the Dirty Table into the Network.
If we succeed, we remove the recreated dirty object from
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the table. If we fail, we keep it there till it is successfully
recreated. For the specific task of rebuilding turn features,
we mark turn as a dirty when (i) the turn feature is directly
modified (Insert, Update, Delete) or (ii) the associated line
features are modified (Update, Delete) or (iii) the associated
network turn element is deleted (This may happen during
the rebuild process).

5 Implementation Experiences

In this section we discuss our experience with imple-
menting ant testing the algorithms maintaining the connec-
tivity inside a multimodal dynamic network. The proposed
algorithms have been implemented and shipped with the
ESRI ArcGIS.

We first present a performance evaluation of both the
initial build and the incremental rebuild algorithms for es-
tablishing several different sized networks; the results are
shown in Table 6. Here the initial algorithm is used to build
a network with the specified size while the incremental re-
build algorithm is used to establish the connectivity for the
same dataset by artificially creating a dirty area which cov-
ers thewholefeature space. Hence, this experiment serves
as a worst case scenario for the incremental rebuild algo-
rithm (in practice dirty areas are small percentage of the
whole space).

Clearly the initial build algorithm is much faster (about
ten times) than the incremental build algorithm for build-
ing the whole network. The main reason is that in the ini-
tial build algorithm only the feature space is analyzed while
during the incremental rebuilding we analyze both the fea-
ture space and the logical network storing the connectivity.
For each edge in the incrementally rebuild region we have
an extra query which retrieves the associated edge as well as
the endpoint junctions for this edge element. Furthermore
the junction elements are analyzed to determine the number
of edges associated to them (see algorithm 2 for details).
This requires another forward star query for each junction.

In the general case (i.e., when the dirty area is part of
the whole spatial extent) the initial build algorithm can also
take advantage of sequential scanning over the feature ta-
bles retrieving the rows one by one. In the incremental re-
build algorithm however we analyze only the features that
intersect with the rebuild region. Thus we have to perform a
range query over the feature space. To improve the perfor-
mance of this operation we utilize a tree-based spatial index
for the incremental algorithm.

However having the incremental rebuild functionality is
extremely useful in great number of practical scenarios.
This is due to the fact that the amortized cost of maintaining
an incrementally rebuildable network in practice is far less
than an ordinary network that must be periodically rebuilt
from scratch. Typically the user modifications are clustered
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Figure 11. The total cost of maintaining connectivity

in the spatial domain. They also involve relatively small
number of features. On average a regular rebuild operation
which involves 20 or less modified features takes around
one second to complete. Figure 11 depicts the total cost of
maintaining connectivity using three different approaches,
under an increasing number of rebuilds. We used the Du-
rango dataset described in table 6 for this experiment.

The first approach uses only the initial build algorithm
to establish and maintain the connectivity. Hence this rep-
resents how current systems will reestablish connectivity
by rebuilding the whole network from scratch. Thus the
time this algorithm takes is linear to the number of rebuilds.
The second approach uses only the incremental rebuild al-
gorithm for both the establishment and the maintenance of
the network (that is, the incremental algorithm was used to
establish even the initial connectivity, similarly to Table 6).
Observe that the incremental approach is practically inde-
pendent of the number of rebuilds (given that in this ex-
periment the dirty areas are relatively small, as it is usually
the case in practice). The third approach is a combination
which uses the initial build algorithm to establish the con-
nectivity and then uses the incremental rebuild for network
maintenance (this corresponds to the way our system is im-
plemented). Clearly the last approach is the most advanta-
geous one combining, the fast initial network establishment
with the fast incremental maintenance.

We also examined how the incremental algorithm be-
haves as the size of the dirty area increases. The Durango
dataset was again used. Table 7 shows the results. Here
the dirty area is expressed as a percentage of the total net-
work spatial extend. Even though typically the dirty areas
cover less than 1% of the spatial extent, in this experiment
we created artificial modifications to cover up to 15% of
that space. As it can be seen, the advantages of the in-
cremental rebuild algorithm are present even for large cov-
ers (typically around 10-15%). We experimented both with
localized as well as scattered modifications over the spa-
tial extent. Even though scattered updates are expected to
take more time (more range queries, non sequential I/O) the
performance of the incremental algorithm is not greatly af-
fected, making it a robust solution for both environments.
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Table 6. Vertex table description
Dataset Features Vertexes Net. Elements Build Time Rebuild time

Durango 13,523 33,556 22,349 0.5 minutes 3 minutes
Inland empire 123,753 254,354 254,637 1.1 minutes 10 minutes
Philadelphia metro area 233,445 454,457 435,257 1.5 minutes 13 minutes
Paris metro area 403,040 834,024 734,234 3 minutes 27 minutes

Table 7. Rebuild time

Type of modifications 1% 5% 10% 15%

Localized updates 4 sec 10 sec 17 sec 32 sec
Scattered updates 4 sec 11 sec 18 sec 33 sec

6 Conclusion

Using existing functionality provided by a relational
DBMS (tables, joins etc.) we presented algorithms and ap-
propriate infrastructure (dirty areas, dirty objects and man-
agement policies for them) needed to incrementally main-
tain connectivity of a dynamic multimodal network. This is
required by applications which frequently edit their network
data. The proposed solution provides for fast maintenance
while existing approaches need to rebuild connectivity from
scratch. We are currently extending our work to support
a versioning mechanism for network datasets. As future
work we plan to extend our network model maintenance al-
gorithms within a distributed database environment; more-
over, we will examine how to incorporate features without
geometry (so calledaspatial features) into the model.
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