
A Generic Framework for Continuous Motion Pattern Query Evaluation

Petko Bakalov
University of California

Riverside, CA 92521
email@cs.ucr.edu

Vassilis J. Tsotras
University of California

Riverside, CA 92521
tsotras@cs.ucr.edu

Abstract

We introduce a novel query type defined over streaming
moving object data, namely, theContinuous Motion Pattern
(CMP) Queries. A motion pattern is defined as a sequence
of distinct spatial predicates, each attached to a temporal
constraint. The spatial predicates can be of various types
(range, nearest neighbor, etc.) The temporal constraints
are relative to the current time instant and are used to spec-
ify the order of the spatial predicates on the time axis. A
CMP query is continuously reevaluated over streaming spa-
tiotemporal data, producing the moving objects which sat-
isfy the query’s motion pattern. We first introduce an easily
maintainable indexing scheme for spatiotemporal streams
that facilitates the evaluation of the spatial predicates over
their temporal constraints. Using this scheme we propose
a generic framework for efficiently answering a wide range
of CMP queries. The effectiveness of our algorithms in re-
ducing the query computation cost and I/O operations is
revealed through a thorough experimental evaluation.

1 Introduction

The widespread use of location detection devices (RFID,
GPS etc.) has enabled the creation of complex tracking and
situational awareness systems which continuously monitor
the position of moving objects of interest and can thus pro-
vide complex services to their end users. Example applica-
tions include security monitoring, vehicle tracking, traffic
management, etc. In a typical surveillance system architec-
ture the set of monitored objects continuously report their
position to the data collection device using data packets
containing their identifier, current location and timestamp.
These data packets are combined into a single spatiotem-
poral stream that is forwarded to a centralized server for
query processing. The system users register their queries to
the server and continuously receive the result based on the
changing state of the data.

The described streaming architecture differs from the

static spatiotemporal archives like [11, 5] in two major as-
pects. First, the continuous nature of the streaming data
requires real time processing using relatively simple data
structures for indexing. Second, in the streaming environ-
ment the query evaluation is a continuous process. Unlike
the typical snapshot queries over the static archives that are
evaluated only once, continuous queries require a continu-
ous reevaluation since results become obsolete and invalid
as information about the monitored objects changes.

Recent research in continuous spatial query processing
has been focused mainly onsinglepredicate queries, where
the predicate is a Range [3, 12] or a Nearest Neighbor [6].
In this paper we focus on the continuous evaluation of “mo-
tion pattern” (i.e. CMP) queries. Here a single query is
expressed withmultiplepredicates, correlated over time.

We argue that since the data produced by the moni-
tored moving objects is “trajectorial” in nature, users of
these surveillance and tracking systems should also be able
to query the “behavior” of the moving objects over time.
Consider for instance a criminal offenders monitoring ap-
plication (like tracNET24 or ExacuTrack) which tracks the
movement of law offenders (through special wearable GPS
devices) inside a given area and alerts the correctional offi-
cers for any suspicious or illegal behavior. The suspicious
behavior can be defined as a CMP query like: “Continu-
ously report objects that did pass through all five bank of-
fices in the area and have been in areas not covered with
surveillance cameras for more than 20 minutes in the last
half an hour”. In this example, the object behavior is cap-
tured by the sequence of spatial (range) predicates ordered
by time, where the temporal predicates are relative to the
ever increasing current time. This type of query cannot be
answered with processing methods focused only on the cur-
rent state of the stream; rather, we need to maintain and
query appropriate past states (the history) of the spatiotem-
poral stream.

Motion pattern queries [4] have been well studied for
static spatiotemporal archives (i.e., when all data is known
in advance and the query is evaluated once). To the best
of our knowledge there is no work for this problem in the

1

streaming environment where the query result has to be con-
stantly reevaluated. A trivial solution involves repetitive ex-
ecution of the static algorithms described in [4], i.e. every
time when the result becomes obsolete it has to be recom-
puted. This would be very expensive and inefficient since
in a typical streaming environment location updates are very
frequent.

The predominant approach for effective evaluation of
continuous queries is by incremental processing [20, 19].
This strategy implies that the query processor utilizes as
much as possible the current intermediate results and data
structures in the successive iterations of the evaluation al-
gorithm. The query result can be kept persistent during
consecutive iterations by applying positive and negative up-
dates on it.

In this paper we first present a novel indexing scheme for
answering CMP queries on spatiotemporal streams. Using
this indexing structure we propose an efficient framework
for incremental evaluation of a wide range of CMP queries.
The effectiveness of our algorithms is revealed trough an
extensive experimental evaluation.

2 Related Work

With the exception of [4] which presents a set of algo-
rithms for pattern query evaluation in a static environment,
all previous related work on spatiotemporal pattern queries
deals only with modeling and language issues. [1] proposes
using spatiotemporal patterns as a systematic and scalable
query mechanism to characterize complex object behaviors
in space and time; nevertheless no query evaluation strat-
egy is proposed. Similarly [13] presents a powerful query
language able to describe complex pattern queries using a
combination of logical functions and quantifiers. This lan-
guage however is of declarative nature and cannot be used
the query optimization. Pattern queries have recently at-
tracted interest for a numerical (i.e no trajectory) data in a
relational DBMS.

Related to our research is also the work done on contin-
uously querying spatiotemporal streams. Various indexing
structures have been proposed in the past as well as multiple
algorithms utilizing these structures to answer mainly NN
and range queries. They all fall in three basic categories: (i)
methods using grids, (ii) methods utilizing tree structures,
and, (iii) methods using “safe” regions.

Many of the proposed indexing structures [3, 14] use a
simple grid to index the location of the objects inside the
spatiotemporal stream. Every cell inside the grid structure
keeps a list with the objects whose location is within the
boundaries of this cell. Multiple algorithms have been pro-
posed to solve single range [3, 12]. and NN predicates
[6, 14]. using this simple grid structure in distributed and
centralized environments. Given its straightforward main-

tenance, a grid structure can handle very effectively issues
like frequent updates, high arrival rates, and the continuous
nature of the data, which are critical in a streaming environ-
ment. Unfortunately, because of its simplicity this structure
cannot capture the temporal characteristics of the data and
can be used only for a queries focused on the current state
of the stream. Thus it cannot be used directly to evaluate
continuous motion pattern queries.

Methods using tree structures are either B+-tree based
[9] or R-tree based [7, 8, 18, 16, 17]. The main objective
here is to improve the index update performance. In [7] the
amortized update cost is reduced by avoiding updates for
objects that do not move outside their MBRs. [8] general-
ized this technique through a bottom - up update strategy.
[9] propose instead the linearization of the moving object
location representation by using space filling curves. Then
B+ trees can be used, which have better update characteris-
tics than R-trees.

The last group [15, 10] of query evaluation methods for
spatiotemporal streams avoids the expensive maintenance
of index structures over the streaming data. Instead, they in-
troduce the notion of safe regions, created either around the
moving object [15] or around the query [10]. If the object
does not leave its safe region no further query processing
is required. Similarly in [10] objects are considered only if
they fall inside the query region or its uncertainty regions.

3 Problem Definition

Consider a situational awareness system that contin-
uously monitors the location of a set of moving ob-
jects. Location data arrive as a stream of tuplesS ≡
〈u1, u2, . . . , ul, . . .〉 whereui ≡ 〈o, l, t〉, o is the moving
object identifier,t is the observation timestamp andl is the
object location at timet (wherel ∈ Rd, t ∈ N, o ∈ N).
A trajectory TR(oj , T) of object oj inside the streamS
for time predicateT is defined as a sequence of tuples
u1, u2, . . . , un, . . . whereui.o = oj and∀i , ui.t ∈ T . The
notation used in the rest of the paper is summarized in the
following table:

Notation Meaning

Q continuous spatial predicate
T relative time constraint
oj spatial object
CNP set of continuous numerical predicates
CBP set of continuous binary predicates

Our definition of continuous motion pattern queries is
based on the notion of pattern queries defined in [2]. How-
ever instead of absolute time constraints we userelative
ones; in a streaming environment absolute time constraints
as defined in [2] do not apply since their result never

2

changes. A relative time constraint uses the current time
instance as a reference point. (e.g.. “between 40 and 50
minutes ago”). As time advances, the value of the current
timestamp changes, forcing the relative time constraint slide
along the temporal axis.

More formally a CMP queryQ is expressed as a se-
quence of (arbitrary number)n spatiotemporal predicates:

Q = {(Q1, 〈T1,Ψ1〉), . . . , (Qn, 〈Tn,Ψn〉), Θ}

whereQi is a spatial predicate,Ti is a relative time con-
straint,Ψi is a logical quantifier (Ψi ≡ {∀,∃}) which indi-
cates if the spatial predicate is applies for the whole dura-
tion of the time constraintTi or just for one time instance.
Θ is an operator that maps a real valueR to a boolean
B ≡ {true, false}. Note that in the definition above the
temporal constraintsTi are optional. If there is no temporal
constraint provided for spatial predicateQi a temporal or-
dering is implied by the actual position of the predicateQi

in the query sequenceQ. For example in the query:

Q = {(Q1, (30, 20), ∀), (Q2), (Q3), (Q4, (10, 5), ∃),Θ}

defines a pattern where the spatial predicateQ1 is satisfied
for every time instance in the time interval between 20 and
30 minutes ago,Q4 is satisfied for at least one time instance
in the time interval between 5 and 10 minutes ago and the
predicatesQ2 andQ3 are satisfied between predicatesQ1

andQ4 in that order.
We allow a very general class of spatial predicates to par-

ticipate in a CMP query. A spatial predicateQi is described
through a spatial objectsoi (wheresoi represents point or
region) and can be eitherbinary or numerical. Let CBP
(respectivelyCNP) denote the set of all binary (respec-
tively, numerical) predicates.

Binary spatial predicate: A predicateQi ∈ CBP maps
a combination between a moving objectoj and the spatial
objectsoi defined in this predicate to a boolean valueB ≡
{true, false}. That isQi ≡ oj × soi → B.

An example of a binary predicate is the predicate
Inside. that checks whether the moving objectoj is in-
side regionsoi Range predicates belong to CBP as well. In
analogy:

Numerical spatial predicate: A predicateQi ∈ CNP
maps the combination of moving objectoj and spatial ob-
jectsoi to a real value. That isoj × soi → R.

A numerical spatial predicate example is the function
min distance which returns the minimal distance between
the moving objectoj and spatial objectsoi (which can be a
point or a region). Clearly NN predicates belong to CNP.

For both binary and numerical predicates the mapping
is done through ascore function f(Qi, TR(oj , Ti), Ψi).
Given a single spatial predicateQi, its relative time
constraintTi, quantifier Ψi and a moving objectoj in

a spatiotemporal streamS, f is a score function if
f(Qi, TR(oj , Ti), Ψi) = c wherec ∈ R for a numerical
spatial predicate orc ∈ B for a binary spatial predicate.

Given a pattern queryQ and a streamS our goal is to
find the moving objectsoj ∈ S which satisfy the queryQ.
If the queryQ contains binary predicatesCBP we have to
find all objectsoj which satisfy all binary predicates (i.e.
∀Qi ∈ CBP → f(Qi, TR(oj , Ti), Ψi) = true). The bi-
nary predicates are aggregated using the operator∩ (AND).
If the queryQ contains numerical predicatesCNP , their
scores on objectoj are aggregated using a summation to
produce an object numerical scoreµj .

µj =
∑

Qi∈CNP

f(Qi, TR(oj , Ti), Ψi)

To determine if an objectoj satisfies theCNP predi-
cates of queryQ its numerical score has to be mapped to
a binary value. This is done by theΘ operator defined in
the queryQ. An example ofΘ operator can be the simple
check function “≤ 4”. In this exampleΘ will return true
for all objectsoj that have a sum of the numerical scoring
functions less or equal than 4 (i.e.,µj ≤ 4). It is also possi-
ble to use more sophisticatedΘ operators likemin or max.
In the first case the operator will returntrue only for the
object which has the smallest numerical scoreµj . In anal-
ogyΘ ≡ max will return true only for the object with the
highest numerical score. To summarize, in order to check if
an objectoj satisfiesQ we computeλ(Q, oj) where:

λ(Q, oj) ≡
⋂

Qi∈CBP

f(Qi, TR(oj , Ti), Ψi)

∩ Θ(
∑

Qi∈CNP

f(Qi, TR(oj , Ti),Ψi))

andλ ≡ {true, false}.

4 Index Structure

Given that incremental processing has been shown to be
the most efficient approach for continuous query evalua-
tion, we need an appropriate spatiotemporal indexing struc-
ture that can accommodate positive and negative updates.
Such structure should answer efficiently questions of the
type “given area A, provide all objects that arenot in A
at the previous time instant but appear in A at the current
instant” (a positive update), or, “provide all objects that do
not appear in A in the current time instant but were in A at
the previous one” (a negative update).

Generating positive or negative updates every time an
object changes its location would produce an intractable
number of such updates. Instead we generate positive and

3

Grid
Cells

1 2 3

Time

t1

t2

Figure 1. 2-dimensional example.

t2

t1

t1 t2

Time
To

Time
From

1

2

3

…
… …

…

Data
Pages

Grid Cells

Figure 2. Indexing space.

negative updates every time an object enters or leaves a spa-
tial cell. Hence we utilize a uniform grid structure to dis-
cretize the spatial domain. This grid is combined with two
temporal axes (“from” and “to”) to form ad + 2 dimen-
sional index space (whered is the number of dimensions in
the spatial domain).

In particular, for every time period(tfrom; tto) during
which an objectoj was inside grid cellgi we place ad + 2
index pointIi inside the index space. The projected co-
ordinate ofIi on the temporal “from” axis istfrom and
on the “to” axis istto. Ii keeps the period during which
object oj was within cell gi, and points to a secondary
storage (disk page) where the actual (raw) object move-
ment data for the specified time period and the specified
grid cell are stored. Hence, anindex point carries a tu-
ple Ii = 〈oj , gi, tfrom, tto, p〉, whereoj is an object in the
streamS, gi is the grid cell that contains objectoj (i.e.,
∧(gi, TRoj) = true for ∀t ∈ 〈tfrom, . . . tto〉) andp is a
pointer pointing to a place in secondary storage which stores
the sequence of pairs{〈l1, t1〉, . . . , 〈ln, tn〉}, whereli ∈ gi

andti ∈ 〈tfrom, . . . , tto〉.
As a result, an object trajectory can be abstracted as a

“sequence of index points” in the indexing space.
Figure 1 shows a 1-dimensional trajectory which stays

within grid cell1 during interval(0; t1); it then stays inside

tto tfrom From

1

2

3

Positive
Updates
(Region 1)

Negative
Updates
(Region 2)

“Trough’
objects
(Region 3)

To

tfrom

tto

tfrom tto

tfrom tto

tfrom tto

Index
Point 1

Index
Point 2

“ In-out’
objects
(Region 4)

tfrom tto

4

Figure 3. Indexing space projection.

grid cell2 from t1 to t2, and finally moves inside grid cell3.
Figure 2 depicts the 3-dimensional indexing space for this
example.

We now describe how the above indexing structure leads
to effective incremental evaluation of continuous queries.
To simplify the discussion we ignore the spatial axes in this
indexing space and focus only on the plane formed by the
two temporal axes i.e., the “from” and “to” axes. Figure 3
shows the projection of the index points of figure 2 on the
time axes.

Given a time period(tstart; tend) we can partition the
index space in four regions as shown on figure 3. To lo-
cate all positive updates for time period(tstart; tend) (e.g.
all objects which enter some grid cell) we need to lo-
cate all index pointsIi such that: (tstart ≤ Ii.tfrom ≤
tend) ∩ (Ii.tto ≥ tend)). These are the index points which
reside inside region1 in figure 3. Similarly, for the negative
updates we need the index pointsIi such that:(Ii.tfrom ≤
tend)∩(tstart ≤ Ii.tto ≤ tend)). These are the index points
inside region 2 in figure 3. Region 3 contains objects which
were inside the given grid cell during the whole time period
(∀Ii → (Ii.tfrom ≤ tstart) ∩ (tend ≤ Ii.tto))) and region
4 contains objects which moved in and then moved out of
some grid cellgi during the time period.

As a result, the process of finding objects which change
their location and move to another grid cell is equivalent to
issuing a range query in the indexing space which retrieves
the indexing points in the appropriate partition. Such range
queries can be efficiently resolved with a spatial index (an
R tree or kdb tree) build on top of the index space.

4

Data Manager Query Processor

Raw Storage Index Space

Spatiotemporal Stream Query Registration

Result

Figure 4. General Framework.

5 CMP Query Evaluation

We proceed with the evaluation algorithms for answer-
ing CMP queries assuming that we have a spatiotemporal
streamS and the indexing described in the previous section.

5.1 General Framework

As depicted in Figure 4 there are two major processes
in a CMP query evaluation framework that work in paral-
lel. The Data Manager keeps the raw data storage and the
indexed space on the server side consistent with the spa-
tiotemporal streamS. The Query Processor is responsi-
ble for the continuous reevaluation of the motion pattern
queriesQ in the system. The clients submit their CMP
queries and they are registered inside the Query Processor.
During its lifetime, a registered motion pattern query goes
trough two distinctive phases, namely: the Initialization
phase and the Reevaluation phase. During the first phase
the initial result for a CMP query is computed from scratch
and then reported to the client. The result and the intermedi-
ate data structures are preserved inside the query processor.
After the formation of the initial result, the evaluation of the
continuous query moves to its second phase (and stays until
it is removed from the system). In this phase the result is
kept persistent through consecutive executions of an incre-
mental evaluation algorithm. On a regular time basis the re-
sult is reported to the client. Given the different approaches
for evaluating binary and numerical predicates, we present
their algorithms separately.

5.2 Binary predicates

We will illustrate the evaluation algorithm for continuous
binary predicatesCBP using the predicateinside as an
example.

For simplicity first we assume that the spatial objectsoi

related to a binary spatial predicateQi ∈ CBP can be cov-
ered precisely with the grid cells or, equivalently, that the

a b

Figure 5. Query object snapping.

soi borders are “snapped” to the grid (fig 5.a). (An exten-
sion that handles arbitrary object shapes like the one in fig
5.b will be discussed later). For every single predicate ob-
ject soi we have two types of grid cells: (1) grid cells en-
tirely covered by objectsoi and (2) grid cells not covered by
soi at all. The set of grid cells covered by objectsoi form
the search areaof the binary predicateQi. (This depends
on the type of the spatial predicate - for example in the pred-
icatedisjoint the search area will be formed by the set of
grid cells NOT covered by thesoi while for the predicate
inside this is the set of grid cells covered bysoi). Using
the described index structure we locate all index pointsIi

inside the search area for the specified time constraintTi.
A hash table called Binary Hash Table (BHT) is created.

This hashing table is indexed by the object identifiers and
has a column for every binary predicateQi ∈ CBP in the
queryQ. For each moving objectoj and for each predi-
cateQi the table contains a list of index pointsIi that have
been discovered for this object inside the search area of the
predicateQi. Checking if an object satisfies all predicates
can be done on the fly while inserting the index points in
the structure. If an objectoj covers all predicates (there are
index points in all columns for this object) then this object
satisfies the queryQ and is placed inside the result set. Fig-
ure 6 shows an example of such a hash table. Algorithm 1
describes the first (initialization) phase.

During the second phase (Algorithm 2) the result is kept
consistent by applying positive and negative updates. To
do so we use theBHT table produced in the first phase.
Assume that the last query reevaluation was at timestamp
tprev and the current timestamp istnow. Using the parti-
tioning of the index space as shown in Figure 3 inside the
Qi search area for a time period(tprev; tnow) we can com-
pute the list of positive and negative updates which occur in
theQi search area for time interval(tprev; tnow).

The set of index points inside region 2 forms the negative
updates and the index points inside region 3 - the positive
ones. We apply these updates to theBHT for predicateQi

and adjust the result set accordingly.
A more general situation is when the spatial objectsoi

describing the spatial predicateOi does not snap precisely
to the grid. In this case there are three categories of grid
cells, as following: (1) cells which are entirely covered by
soi (2) cells that are partially covered bysoi (3) cells not
covered bysoi (Figure 5.b). We process the partially cov-

5

Object 1

Object 2

Pred. 2

Pred. 1

Pred. 3

Predicates

1 2 3

1

2

Obj.

1
2

5
6
8

9
10
11

2
3

11
12

Not
covered

Figure 6. Binary hash table example.

ered grid cells similarly as the fully covered grid cells with
one major difference. If an object inside the hash table cov-
ers all the predicates but some of the index pointsIi are
generated from partially covered grid cells (we call them
gray index points) we have to load the actual trajectory data
from the secondary storage for this predicate and verify if
the predicate is indeed satisfied.

5.3 Numerical predicates

We describe the algorithm for continuous numerical
predicateCNP using as example predicate themin dist
while asΘ operator inQ we usemin. This operator re-
turnstrue only for the moving objectoj with minimal sum
of the distances to the query predicatesQi ∈ CNP .

First we discuss the initialization phase (Algorithm 3).
The general idea here is to use the index structure and the
grid it contains to compute an upper boundµj .u and a lower
boundµj .l, of the object numerical scoreµj for every ob-
ject oj . Using these bounds we then prune as many object
trajectories as possible.

For the case of amin dist predicate we use the index
structure described in section 3 (in particular the spatial
grid inside it), to compute the upper and the lower bound
distances of the actual distance between an object location
and the spatial objectsoi. By summing together the lower
bound distances for all predicates we get a lower bound
object scoreµj .l. The sum of the upper bound distances
generates the object upper bound scoreµj .u. We can suc-
cessfully prune and avoid the raw trajectory access for all
objects which have a lower bound distanceµj .l > µj .u
bigger than the upper bound distance of another object.

The algorithm starts from the grid cells containing the

Algorithm 1 Binary query - phase 1
Require: QueryQ = {(RP (r1), T1), . . . , (RP (rn), Tn)},

1: C ← ∅; R← ∅; H ← ∅
2: for i = 1 to n do
3: IdxPoints← GetAllIndedxPoints(ri, Ti);
4: GreyIdxPoints← GetAllGreyIndedxPoints(ri, Ti);
5: while IdxPoints ∪GreyIdxPoints not emptydo
6: Entry ip = IdxPoints ∪GreyIdxPoints.pop
7: InsertIntoHash(H, ip.obj, i, ip)
8: if H.allPredicatesCovered(ip.obj) then
9: if H.coveredByGrey(ip.obj) then

10: C.push(ip.obj);
11: else R.push(ip.obj);
12: end if
13: end if
14: while C not emptydo
15: Entry id = U .pop
16: P = getTrajectoryData(id)
17: if P satisfiesQ then R.push(id)
18: end for

spatial objectsoi associated with the predicateOi and in-
teractively examines all cells adjacent to them. (This is the
case when theΘ operator minimizes the object scoresµj .
If Θ maximizes the object scores we start from the most
distant grid cell from the query). In each step the process
increases the number of adjacent cells examined by moving
one step further away from the query point (see Figure 7).
We maintain two hash tables in main memory - the Lower
bound table (LBT) and the Actual Score Table (AST). The
structures are populated with lower bound object scoresµj .l
and actual object numerical scoreµj as we visit the adjacent
to the spatial objectsoi cells.

TableLBT has a column for every query predicateQi ∈
CNP and one row for every single objectoj discovered so
far. It contains the lower bound scoref.l(Qi, oj [Ti]) per
predicate for every object. If the given predicate has not
been covered by an objectoj in the corresponding column,
we put the maximal lower bound distance for this predicate
regardless of which object trajectory it corresponds to. Due
to the incremental visit of grid cells the computed approxi-
mation is still a lower bound to the actual object scoreµj . In
each iteration and for each predicateQi ∈ CNP we add the
grid cells one hop away from the grid cells accessed the pre-
vious step to the vicinity of the predicateQi. We query the
index pointsIi in the index space for these newly added grid
cells, compute the lower bound score of the corresponding
grid cell to the predicateQi and place them insideLBT .
The sum of the lower bound distances in theLBT columns
for a given object forms the object lower bound scoreµj .l.
The rows insideLBT are also sorted in increasing order of
µj .l.

The AST table stores the actual object score
f(Qi, oj [Ti]) per predicate and is organized in the

6

Algorithm 2 Binary query - phase 2
Require: Query Q = {(RP (r1), T1), . . . , (RP (rn), Tn)}, R,

C, H
1: for i = 1 to n do
2: PU ← GetPosUpdate(ri, Ti)
3: NU ← GetNegUpdate(ri, Ti)
4: while NU not emptydo
5: Entry ip = NU .pop
6: RemoveFromHash(H, ip.obj, i, ip)
7: if !H.allPredicatesCovered(ip.obj) then
8: if ip.obj ∈ C then C.pop(ip.obj);
9: else R.pop(ip.obj);

10: end if
11: end if
12: while PU not emptydo
13: Entry ip = PU .pop
14: InsertIntoHash(H, ip.obj, i, ip)
15: if H.allPredicatesCovered(ip.obj) then
16: if H.coveredByGrey(ip.obj) then
17: C.push(ip.obj);
18: else R.push(ip.obj)
19: end if
20: end if
21: while U not emptydo
22: Entry id = U .pop
23: P = getTrajectoryData(id)
24: if P satisifesQ then R.push(id)
25: end for

same way asLBT . There is one column for every query
predicateQi ∈ CNP and one row for every object, which
covers all predicates inQ. The sum of the scores in the
columns forms the actual object numerical scoreµj . The
rows insideAST are sorted in increasing order ofµj .

We continuously compare the best lower bound inLBT
and the best numerical scoreµj in AST . (these are the first
rows in both tables). If the best lower bound inLBT is
larger than the best numerical scoreµj in AST (for Θ max-
imizing scores it is the opposite) and the corresponding ob-
ject inLBT covers all predicates inQ, then for this moving
object, the raw trajectory data is loaded,µj is computed and
placed inside theAST . The algorithm stops when the best
lower boundµj .l in LBT is bigger than the best numerical
scoreµj in AST .

For the second phase (reevaluation) of the algorithm (Al-
gorithm 4) we keep both tables - theLBT andAST and
the vicinity discovered so far for each numerical predicate
Qi ∈ CNP in Q. Assume that the last query reevaluation
was at time-stamptprev and the current time-stamp istnow.
Using the partitioning of the index space shown on Figure
3 we locate the positive and negative updates in each predi-
cate vicinity for the time period since the last reevaluation.
These updates are applied toLBT to keep it persistent. We
keepAST persistent by loading the raw trajectory data for

1 2 3

Predicate Obj. Numerical
score

1 1.5 1.3 1.1 3.9

1 2 3

Predicate Obj. Lower
Bound
Score

3 2

2

0 1 1

0.7 1 0.4 2.1

Object 2

Object 3

Object 1

Q2

Q1

Q3

Actual Score Table

Lower Bound Table

Figure 7. NN query example.

the time period since the last reevaluation, and recomputing
µj .

Both update types - positive or negative modify the lower
bounds inLBT . When the updates are applied, it may hap-
pen that the best actual score inAST is bigger than the
best lower bound scoreLBT . In this scenario, phase 1
is reevaluated increasing the vicinity circle for the predi-
catesQi ∈ CNP . Elements from theLBT are popped and
added toAST until the condition is satisfied again.

5.4 Predicates without Temporal Con-
straints

For CMP queries where the temporal constraintsTi are
not specified, an ordering will be implied by the actual
position of the predicateQi in the query sequence. For
such CMP queries we need to verify that the predicates
are satisfied in the proper order. To do so during the in-
sertion of the index pointsIi for predicateQi, which is
without temporal constraintTi, we check ifIi.tfrom and
Ii.tto satisfy the order (e.g.(∃Ij for Qi−1 → Ij .tto ≤
Ii.tfrom) ∩ (∃Ik for Qi+1 → Ik.tfrom ≥ Ii.tto)) Only
if Ii satisfies the order we increase the satisfied predicate’s
counter. To speed up this process the index points can be
kept sorted during the insertions and deletions inBHT by
using a heap (details are omitted due to lack of space).

7

Algorithm 3 Numerical query - phase 1
Require: QueryQ = {(NNP (q1), T1), . . . , (NNP (qn), Tn)}

1: AST ← ∅; LBT ← ∅; r = 0
2: while AST.best ≥ LBT.best do
3: for i = 1 to n do
4: r = r + 1;
5: SA←IncreaseSearchArea(qi, r);
6: IdxPoints← GetAllIndedxPoints(SA, Ti);
7: while IdxPoints not emptydo
8: Entry ip = IdxPoints.pop
9: if ip.obj ∈ AST thenInsertIntoAST(ip, i);

10: else InsertIntoLBT(ip, i);
11: end if
12: end while
13: end for
14: while LBT.best covers all predicatesdo
15: Entry id = LBT.best;
16: P = getTrajectoryData(id);
17: AST .LoadIntoAST(P);
18: end while
19: end while

6 Experimental Evaluation

In our experiments we use synthetic data to test the be-
havior of each algorithm under different settings. We have
created up to 150,000 objects moving in a 2-dimensional
spatial universe which is 1,000 miles long in each direc-
tion. Objects follow random routes on a freeway network
traveling through a number of consecutive intersections and
report their positions every time-instant. Query reevalua-
tion is done every 2 minutes. On the top of this data we
build the indexing space as it is described in section 4. We
used a standard R tree (with utilization factor 64%) and a
KDB tree as the indexing structures build on top of the in-
dex points. To test the proposed techniques we use two
measures, namely: (i) the average number of index node
accesses, which is mainly CPU related and, (ii) the average
number of data pages per query that need to be retrieved
from secondary storage for verification of the result (the I/O
cost of the algorithms). We refer to the first phase as ”ini-
tial” and to the second as ”continuous”.

6.1 Comparison with the brute force ap-
proach

First we compare our algorithms with a brute-force ap-
proach where all trajectories from the repository are exam-
ined sequentially. The results are shown in Figure 8. Note
the logarithmic scale. We can see that the proposed index
structure and algorithms help reduce the total I/O cost by
orders of magnitude for both the numerical and the binary
predicates. The brute force approach is shown to be com-
putationally very expensive and is thus not depicted in the

Algorithm 4 Numerical query - phase 2
Require: Query Q = {(RP (r1), T1), . . . , (RP (rn), Tn)},

AST , LBT , r
1: for i = 1 to n do
2: SA←getSearchArea(qi, r);
3: PU ← GetPosUpdate(SA, Ti)
4: NU ← GetNegUpdate(SA, Ti)
5: while NU not emptydo
6: Entry ip = NU .pop
7: DeleteFromLBT(ip, i);
8: end if
9: end while

10: while PU not emptydo
11: Entry ip = PU .pop
12: InsertIntoLBT (ip, i);
13: end if
14: end while
15: end for
16: RefreshAST
17: if AST.best ≥ LBT.best then goto phase 1;
18: end if

1

10

100

1000

10000

100000

1000000

2 3 4 5 6

Numerical: Number of predicates

D
at

a
P

ag
es

Initial phase Relevant Continuous phase Relevant Brute Force

1

10

100

1000

10000

100000

1000000

2 3 4 5 6

Range: Number of predicates

D
at

a
P

ag
es

Initial phase Continuous phase Brute Force
Figure 8. RANGE AND NN QUERIES: Number of predi-
cates.

remaining experiments.

6.2 Binary Predicates

6.2.1 Performance vs. Number of Predicates

0

5000

10000

15000

20000

25000

30000

2 3 4 5 6

Number of predicates

N
od

e
A

cc
es

s

Initial phase Relevant Continuous phase Relevant

0

500

1000

1500

2000

2500

2 3 4 5 6

Number of predicates

D
at

a
P

ag
es

Initial phase Continuous phase
Figure 9. RANGE QUERIES: Number of predicates.

This set of experiments examines how the algorithms
perform for queries with increasing number of predicates.
Figure 9 depicts the average number of index node and data
pages accesses for different number of predicates. A dataset
with size 100,000 objects was used. Clearly the continuous
phase is much faster than the initial phase. As expected, the

8

number of index points accessed in both the initial and con-
tinuous phases increases with the number of the query pred-
icates because of the increased total search area. The num-
ber of data pages accessed decreases linearly as the number
of predicates increases. With the increase in the number
of predicates it becomes less likely to find objects which
satisfy all predicates; thus there is a smaller number of can-
didates which must be evaluated using the raw trajectory
data.

6.2.2 Performance vs. Dataset Size

0

5000

10000

15000

20000

25000

30000

35000

N
od

e
A

cc
es

s

25 50 100 150

Dataset size

Initial phase Continuous phase

0

500

1000

1500

2000

2500

3000

3500

D
at

a
P

ag
es

25 50 100 150

Dataset size

Initial phase Continuous phase

Figure 10. RANGE QUERIES: Dataset Size.

We next evaluate the performance scale-up for various
dataset sizes. We use queries with five range predicates.
Figure 10 shows the results for the four different datasets
(the size is given in thousands). Again the continuous phase
is an order magnitude faster than the initial one. As ex-
pected, the average number of node accesses per query in-
creases as the dataset size increases. This is because the
density in the index space is increased and the total number
of points inside the query regions also grows. The number
of objects in the result set also increases and this causes the
increase of the data I/Os needed for the verification step.
Nevertheless, the number of index points and data pages
accessed during the reevaluation step is much smaller than
the same number in the initial phase. This is due to the
incremental evaluation and because during the reevaluation
we access only partitions 1 and 2 (see Figure 3). Given
the small reevaluation period these partitions have relatively
small area and therefore generate limited number of index
points.

6.3 Numerical Predicates

6.3.1 Performance vs. Number and Type of Predicates

For the nearest neighbor queries we generate two query sets,
namely: (i) a RandomPattern set where the location of the
query predicate and its time interval are chosen in random,
and, (ii) a RelevantPattern set which is generated using ex-
isting object trajectories, that are slightly skewed in space
as compared with the original. The results for both datasets
are shown on Figure 11. We first discuss node accesses Our
incremental algorithm is expected to work best when the

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

2 3 4 5 6

Number of predicates

N
od

e
A

cc
es

s

Initial phase Relevant Continuous phase Relevant

Initial phase Random Continuous phase Random

0

5

10

15

20

25

2 3 4 5 6

Number of predicates

D
at

a
P

ag
es

Initial phase Relevant Continuous phase

Initial phase Random Continuous phase Random

Figure 11. NN QUERIES: Number of predicates.

spatial stream contains object trajectories that are very sim-
ilar to the query definition (RelevantPattern). This enables
fast pruning because the algorithm quickly finds an object
which covers all numerical predicates. Then its numerical
score is used for pruning the other objects. For the Random-
Pattern set as the number of predicates increases the proba-
bility that a given object matches closely the query predicate
decreases dramatically. As a result, the discovered areas for
each predicate need to grow large until an object which sat-
isfies all predicates is found. This results in a large number
of index points which have to be retrieved. For the data
page access the behavior of the algorithms in the initial and
continuous phase is similar. This is because few candidate
trajectories have been discovered by the end of the initial
phase resulting in a limited number of verification steps. As
with the binary predicates the continuous phase is faster.

6.3.2 Performance vs. Dataset Size

0

10000

20000

30000

40000

50000

60000

70000

80000

N
od

e
A

cc
es

s

25 50 100 150

Data Size

Initial phase Relvant Continuous phase Relevant

Initial phase Random Continuous phase Random

0

5

10

15

20

25

30

D
at

a
P

ag
es

25 50 100 150

Data Szie

Initial phase Relvant Continuous phase Relevant

Initial phase Random Continuous phase Random

Figure 12. NN QUERIES: Dataset Size.

To test the scalability of the numerical predicate algo-
rithm we use the same dataset sizes (given in thousands)
used in the scale-up test for the binary predicates. The re-
sults are shown in Figure 12. As it can be seen for the Ran-
domPattern dataset the average number of node accesses
per query starts growing very fast with the increase of the
dataset size compared with the growth in the RelevantPat-
tern query set. This is because in the RelevantPattern the
algorithm discovers the candidate objects very fast and the
vicinity of the numerical predicates is thus relatively small.
As a result, the search for positive and negative updates dur-
ing the continuous phase reaches only a limited number of
index points. As for the data pages, in the initial phase for
both query sets there is an increase in the number of pages
accessed with the increase of the dataset size. Nevertheless

9

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Initial phase
Node

Access

Continuous
phase Node

Access

Initial phase
Data Page

Continuous
phase Data

Page

R tree KDB tree

Figure 13. Index type. R tree v.s. KDB tree

the actual number is relatively small since for NN queries
few candidate trajectories are typically found.

6.4 Performance using KDB and R tree

We tested the algorithms performance using KDB tree
and R tree structures for efficient access to the content of
the indexing space. We use dataset containing 25K trajec-
tories and query with 5 range predicates. The results are
shown on Figure 13. As it can be depicted the algorithmic
performance does not depend of the type of index structure
chosen. The KDB tree performs slightly better mainly be-
cause there is no overlapping between the point bounding
boxes which is advantageous for point data indexing.

6.5 Performance vs. Buffer Size

Numerical predicates

0

5000

10000

15000

20000

25000

128k 512k 1MB 2MB

Buffer Size

In
d

ex
 n

o
d

e
ac

ce
ss

ed

Initial Phase Continuous Phase

Binary predicates

0

2000

4000

6000

8000

10000

12000

128k 512k 1MB 2MB

Buffer size

In
d

ex
 n

o
d

e
ac

ce
ss

ed

Initial Phase Continuous Phase

Figure 14. Buffer Size.

Figure 14 shows the effect of different buffer sizes on the
query performance for 50K objects. Since we run multiple
nearest neighbor searches concurrently we expect that there
will be a large number of pages accessed in two or more
consecutive iterations. Larger buffer sizes can help alleviate
loading these nodes multiple times. As expected numerical
predicate queries benefit the most since they iteratively visit
grid cells which are spatially close.

7 Conclusions

In this paper we define a novel type of complex con-
tinuous queries called Continuous Motion Pattern Queries.
We present a framework for efficient evaluation of the CMP
queries, starting with an index structure for spatiotemporal
streams, oriented towards incremental evaluation of contin-
uous queries. The results show that our algorithms are able

to do fast pruning and thus achieve very good performance.
Overall the continuous phase in our system is very efficient
which leads to very fast incremental query evaluation.

References

[1] M. Erwig. Toward spatiotemporal patterns.Spatio-Temporal
Databases, pages 29–54, 2004.

[2] M. Erwig and M. Schneider. Spatio-temporal predicates.IEEE
Transactions on Knowledge and Data Engineering, 2002.

[3] B. Gedik and L. Liu. MobiEyes: Distributed processing of continu-
ously moving queries on moving objects in a mobile system. InProc.
of Extending Database Technology (EDBT), pages 67–87, 2004.

[4] M. Hadjieleftheriou, G. Kollios, P. Bakalov, and V. J. Tsotras. Com-
plex spatio-temporal pattern queries. InVLDB, pages 877–888, 2005.

[5] M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and D. Gunopulos.
Efficient indexing of spatiotemporal objects. InProc. of Extending
Database Technology (EDBT), pages 251–268, 2002.

[6] N. Koudas, B. C. Ooi, K-L. Tan, and R. Zhang. Approximate nn
queries on streams with guaranteed error/performance bounds. In
VLDB, 2004.

[7] D. Kwon, S. Lee, and S. Lee. Indexing the current positions of mov-
ing objects using the lazy update r-tree. InMDM, pages 113–120,
2002.

[8] M.-L. Lee, W. Hsu, C. S. Jensen, and K. L. Teo. Supporting frequent
updates in R-Trees: A bottom-up approach. InVLDB, 2003.

[9] D. Lin, C. S. Jensen, B. C. Ooi, and S. Saltenis. Efficient indexing
of the historical, present, and future positions of moving objects. In
MDM, pages 59–66, 2005.

[10] M. F. Mokbel and W. G. Aref. Gpac: generic and progressive pro-
cessing of mobile queries over mobile data. InMDM, pages 155–163,
2005.

[11] M. F. Mokbel, T. M. Ghanem, and W. G. Aref. Spatio-temporal ac-
cess methods.IEEE Data Engineering Bulletin, 26(2):40–49, 2003.

[12] M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scalable incremen-
tal processing of continuous queries in spatiotemporal databases. In
Proc. of ACM Management of Data (SIGMOD), 2004.

[13] H. Mokhtar, J. Su, and O. Ibarra. On moving object queries: (ex-
tended abstract). InProc. of ACM Symposium on Principles of
Database Systems (PODS), pages 188–198, 2002.

[14] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou. Conceptual
partitioning: an efficient method for continuous nearest neighbor
monitoring. InProc. of ACM Management of Data (SIGMOD), pages
634–645, 2005.

[15] S. Prabhakar, Y. Xia, D. Kalashnikov, W. Aref, and S. Hambrusch.
Query indexing and velocity constrained indexing: Scalable tech-
niques for continuous queries on moving objects.IEEE Trans. Com-
put., 51(10):1124–1140, 2002.

[16] S. Saltenis and C. S. Jensen. Indexing of moving objects for location-
based services. InICDE, pages 463–472, 2002.

[17] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Index-
ing the positions of continuously moving objects.SIGMOD Record,
29(2):331–342, 2000.

[18] Y. Tao, D. Papadias, and J. Sun. The tpr*-tree: An optimized spatio-
temporal access method for predictive queries. InVLDB, pages 790–
801, 2003.

[19] X. Xiong, M.. Mokbel, and W. Aref. Sea-cnn: Scalable processing of
continuous k-nearest neighbor queries in spatio-temporal databases.
In ICDE, pages 643–654, 2005.

[20] X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest neighbor
queries over moving objects. InICDE, pages 631–642, 2005.

10

