
Holistic Twig Joins: Optimal XML Pattern Matching

Nicolas Bruno
Columbia University

nicolas@cs.columbia.edu

Nick Koudas
AT&T Labs–Research

koudas@research.att.com

Divesh Srivastava
AT&T Labs–Research

divesh@research.att.com

ABSTRACT
XML employs a tree-structured data model, and, naturally,
XML queries specify patterns of selection predicates on mul-
tiple elements related by a tree structure. Finding all occur-
rences of such a twig pattern in an XML database is a core
operation for XML query processing. Prior work has typ-
ically decomposed the twig pattern into binary structural
(parent-child and ancestor-descendant) relationships, and
twig matching is achieved by: (i) using structural join algo-
rithms to match the binary relationships against the XML
database, and (ii) stitching together these basic matches.
A limitation of this approach for matching twig patterns is
that intermediate result sizes can get large, even when the
input and output sizes are more manageable.
In this paper, we propose a novel holistic twig join algo-

rithm, TwigStack, for matching an XML query twig pattern.
Our technique uses a chain of linked stacks to compactly
represent partial results to root-to-leaf query paths, which
are then composed to obtain matches for the twig pattern.
When the twig pattern uses only ancestor-descendant rela-
tionships between elements, TwigStack is I/O and CPU op-
timal among all sequential algorithms that read the entire
input: it is linear in the sum of sizes of the input lists and the
�nal result list, but independent of the sizes of intermediate
results. We then show how to use (a modi�cation of) B-
trees, along with TwigStack, to match query twig patterns
in sub-linear time. Finally, we complement our analysis with
experimental results on a range of real and synthetic data,
and query twig patterns.

1. INTRODUCTION
XML employs a tree-structured model for representing

data. Queries in XML query languages (see, e.g., [8, 5, 2])
typically specify patterns of selection predicates on multiple
elements that have some speci�ed tree structured relation-
ships. For example, the XQuery expression:

book[title = `XML']//author[fn = `jane' AND ln = `doe']
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matches author elements that (i) have a child subelement
fn with content jane, (ii) have a child subelement ln with
content doe, and (iii) are descendants of book elements that
have a child title subelement with content XML. This ex-
pression can be represented as a node-labeled twig (or small
tree) pattern with elements and string values as node labels.
Finding all occurrences of a twig pattern in a database

is a core operation in XML query processing, both in re-
lational implementations of XML databases, and in native
XML databases. Prior work (see, for example, [12, 24, 17,
19, 18, 27, 1]) has typically decomposed the twig pattern into
a set of binary (parent-child and ancestor-descendant) rela-
tionships between pairs of nodes, e.g., the parent-child rela-
tionships (book, title) and (author, fn), and the ancestor-
descendant relationship (book, author). The query twig
pattern can then be matched by (i) matching each of the
binary structural relationships against the XML database,
and (ii) \stitching" together these basic matches.
For solving the �rst sub-problem of matching binary struc-

tural relationships, Zhang et al. [27] proposed a variation
of the traditional merge join algorithm, the multi-predicate
merge join (MPMGJN) algorithm, based on the (DocId,
LeftPos : RightPos, LevelNum) representation of posi-
tions of XML elements and string values (see Section 2.3
for details about this representation). Their results showed
that the MPMGJN algorithm could outperform standard
RDBMS join algorithms by more than an order of magni-
tude. More recently, Al-Khalifa et al. [1] took advantage
of the same representation of positions of XML elements to
devise I/O and CPU optimal join algorithms for matching
binary structural relationships against an XML database.
The second sub-problem of stitching together the basic

matches obtained using binary \structural" joins requires
identifying a good join ordering in a cost-based manner,
taking selectivities and intermediate result size estimates
into account. In this paper, we show that a basic limita-
tion of this (traditional) approach for matching query twig
patterns is that intermediate result sizes can get very large,
even when the input and �nal result sizes are much more
manageable. As a result, we seek a better solution to the
problem of matching query twig patterns eÆciently.
In this paper, we propose a novel holistic twig join ap-

proach for matching XML query twig patterns, wherein no
large intermediate results are created. Our technique uses
the (DocId, LeftPos : RightPos, LevelNum) representa-
tion of positions of XML elements and string values (that
succinctly captures structural relationships between nodes
in the XML database). It also uses a chain of linked stacks to



compactly represent partial results to individual query root-
to-leaf paths, which are then composed to obtain matches
to the query twig pattern.
Since a great deal of XML data is expected to be stored in

relational database systems (all the major DBMS vendors
including Oracle, IBM and Microsoft are providing system
support for XML data), our study provides evidence that
RDBMS systems need to augment their suite of query pro-
cessing strategies to include holistic twig joins for eÆcient
XML query processing. Our study is equally relevant for
native XML query engines, since holistic twig joins are an
eÆcient set-at-a-time strategy for matching XML query pat-
terns, in contrast to the node-at-a-time approach of using
tree traversals.

1.1 Outline and Contributions
We begin by presenting background material (data model,

query twig patterns, and positional representations of XML
elements) in Section 2. Our main contributions are:

� We develop two families of holistic path join algorithms
in Section 3 to match XML query root-to-leaf paths ef-
�ciently. The �rst, PathStack, generalizes the Stack-
Tree-Desc binary structural join algorithm of [1], while
the second, PathMPMJ, generalizes the MPMGJN bi-
nary join algorithm of [27]. We analyze PathStack
and show that it is I/O and CPU optimal among all
sequential algorithms that read the entire input, and
has worst-case complexities linear in the sum of input
and output sizes but independent of the sizes of inter-
mediate results.

� We then develop TwigStack in Section 4, a holistic
twig join algorithm that (i) re�nes PathStack to en-
sure that results computed for one root-to-leaf path
of a twig pattern are likely to have matching results
in other paths of the twig pattern, and (ii) merges re-
sults for the di�erent root-to-leaf paths in the query
twig pattern, to compute the desired output. When
the query twig uses only ancestor-descendant relation-
ships between elements, we analytically demonstrate
that TwigStack is I/O and CPU optimal among all
sequential algorithms that read the entire input.

� Finally, in Section 5 we present experimental results
on a range of real and synthetic data, and query twig
patterns, to complement our analytical results:

{ We show the substantial performance bene�ts of
using holistic twig joins over binary structural
joins (for arbitrary join orders).

{ We show that among holistic path join algorithms,
PathStack is signi�cantly faster than PathMPMJ.
This validates the analytical results demonstrat-
ing the I/O and CPU optimality of PathStack.

{ For the case of twig patterns, we show that the use
of TwigStack is better (both in time and space)
than the independent use of PathStack on each
root-to-leaf path, even when the twig pattern con-
tains parent-child structural relationships.

{ We show how to use a modi�cation of B-trees,
denoted XB-trees, along with TwigStack, to per-
formmatching of query twig patterns in sub-linear
time.

We describe related work in Section 6, and conclude by
discussing ongoing and future work in Section 7.

2. BACKGROUND

2.1 Data Model and Query Twig Patterns
An XML database is a forest of rooted, ordered, labeled

trees, each node corresponding to an element or a value,
and the edges representing (direct) element-subelement or
element-value relationships. Node labels consist of a set of
(attribute, value) pairs, which suÆces to model tags, IDs,
IDREFs, etc. The ordering of sibling nodes implicitly de�nes
a total order on the nodes in a tree, obtained by a preorder
traversal of the tree nodes. Figure 1 shows the tree repre-
sentation of a sample XML document. (The utility of the
numbers associated with the tree nodes will be explained in
Section 2.3.)
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Figure 1: A sample XML Tree representation

Queries in XML query languages like XQuery [2], Quilt [5]
and XML-QL [8] make use of (node labeled) twig patterns
for matching relevant portions of data in the XML database.
The twig pattern node labels include element tags, attribute-
value comparisons, and string values, and the query twig
pattern edges are either parent-child edges (depicted using
a single line) or ancestor-descendant edges (depicted using
a double line). For example, the XQuery expression:

book[title = `XML' AND year = `2000']

which matches book elements that (i) have a child title

subelement with content XML, and (ii) have a child year
subelement with content 2000, can be represented as the
twig pattern in Figure 2(a). Only parent-child edges are
used in this case. Similarly, the XQuery expression in the
introduction can be represented as the twig pattern in Fig-
ure 2(b). Note that an ancestor-descendant edge is used
between the book element and the author element.
In general, at each node in the query twig pattern, there is

a node predicate on the attributes (e.g., tag, content) of the
node in question. For the purposes of this paper, exactly

XML

book

year

(a)

title

2000 XML

authortitle

book

(b)

fn ln

jane doe

Figure 2: Query twig patterns



what is permitted in this predicate is not material. Simi-
larly, the physical representation of the nodes in the XML
database is not relevant to the results in this paper. It suf-
�ces for our purposes that there be eÆcient access mecha-
nisms (such as index structures) to identify the nodes in the
XML database that satisfy any given node predicate q, and
return a stream of matches Tq.

2.2 Twig Pattern Matching
Given a query twig pattern Q and an XML database D, a

match of Q in D is identi�ed by a mapping from nodes in Q
to nodes in D, such that: (i) query node predicates are sat-
is�ed by the corresponding database nodes (the images un-
der the mapping), and (ii) the structural (parent-child and
ancestor-descendant) relationships between query nodes are
satis�ed by the corresponding database nodes. The answer
to query Q with n nodes can be represented as an n-ary re-
lation where each tuple (d1; : : : ; dn) consists of the database
nodes that identify a distinct match of Q in D.
Finding all matches of a query twig pattern in an XML

database is a core operation in XML query processing, both
in relational implementations of XML databases, and in na-
tive XML databases. In this paper, we consider the twig
pattern matching problem:

Given a query twig pattern Q, and an XML database
D that has index structures to identify database nodes
that satisfy each of Q's node predicates, compute the
answer to Q on D.

Consider, for example, the query twig pattern in Fig-
ure 2(a), and the database tree in Figure 1. This query
twig pattern has one match in the data tree that maps the
nodes in the query to the root of the data and its �rst and
third subtrees.

2.3 Representing Positions of Elements and
String Values in an XML Database

The key to an eÆcient, uniform mechanism for set-at-a-
time (join-based) matching of query twig patterns is a po-
sitional representation of occurrences of XML elements and
string values in the XML database (see, e.g., [6, 7, 27]),
which extends the classic inverted index data structure in
information retrieval [22].
We can represent the position of a string occurrence in the

XML database as a 3-tuple (DocId, LeftPos, LevelNum),
and analogously, the position of an element occurrence as a
3-tuple (DocId, LeftPos : RightPos, LevelNum), where
(i) DocId is the identi�er of the document; (ii) LeftPos and
RightPos can be generated by counting word numbers from
the beginning of the document DocId until the start and
the end of the element, respectively; and (iii) LevelNum is
the nesting depth of the element (or string value) in the
document. Figure 1 shows 3-tuples associated with some
tree nodes, based on this representation (the DocId for all
nodes is chosen to be one).
Structural relationships between tree nodes whose posi-

tions are recorded in this fashion can be determined easily:
(i) ancestor-descendant: a tree node n2 whose position in
the XML database is encoded as (D2; L2 : R2; N2) is a de-
scendant of a tree node n1 whose position is encoded as
(D1; L1 : R1; N1) i� D1 = D2; L1 < L2, and R2 < R1

1;
1For leaf strings, the RightPos value is the same as the LeftPos
value.

(ii) parent-child: a tree node n2 whose position in the XML
database is encoded as (D2; L2 : R2; N2) is a child of a tree
node n1 whose position is encoded as (D1; L1 : R1; N1) i�
D1 = D2; L1 < L2; R2 < R1, and N1 + 1 = N2. For exam-
ple, in Figure 1, the author node with position (1; 6 : 20; 3)
is a descendant of the book node with position (1; 1 : 150; 1),
and the string \jane" with position (1; 8; 5) is a child of the
author node with position (1; 7 : 9; 4).
A key point worth noting about this representation of

node positions in the XML data tree is that checking an
ancestor-descendant relationship is as simple as checking
a parent-child relationship (we can check for an ancestor-
descendant structural relationship without knowledge of the
intermediate nodes on the path). Also, this representation
of positions of nodes allow for checking order (e.g., node n2
follows node n1) and structural proximity (e.g., node n2 is
a descendant within 3 levels of n1) relationships.

3. HOLISTIC PATH JOIN ALGORITHMS

3.1 Notation
Let q (with or without subscripts) denote twig patterns, as

well as (interchangeably) the root node of the twig pattern.
In our algorithms, we make use of the following twig node
operations: isLeaf: Node ! Bool, isRoot: Node ! Bool,
parent: Node ! Node, children: Node ! fNodeg, and
subtreeNodes: Node ! fNodeg. Path queries have only
one child per node, otherwise children(q) returns the set
of children nodes of q. The result of subtreeNodes(q) is the
node q and all its descendants.
Associated with each node q in a query twig pattern there

is a stream Tq. The stream contains the positional represen-
tations of the database nodes that match the node predicate
at the twig pattern node q (possibly obtained using an ef-
�cient access mechanism, such as an index structure). The
nodes in the stream are sorted by their (DocId, LeftPos)
values. The operations over streams are: eof, advance,
next, nextL, and nextR. The last two operations return the
LeftPos and RightPos coordinates in the positional repre-
sentation of the next element in the stream, respectively.
In our stack-based algorithms, PathStack and TwigStack,

we also associate with each query node q a stack Sq. Each
data node in the stack consists of a pair: (positional repre-
sentation of a node from Tq, pointer to a node in Sparent(q)).
The operations over stacks are: empty, pop, push, topL,
and topR. The last two operations return the LeftPos and
RightPos coordinates in the positional representation of the
top element in the stack, respectively. At every point during
the computation, (i) the nodes in stack Sq (from bottom to
top) are guaranteed to lie on a root-to-leaf path in the XML
database, and (ii) the set of stacks contain a compact encod-
ing of partial and total answers to the query twig pattern,
which can represent in linear space a potentially exponential
(in the number of query nodes) number of answers to the
query twig pattern, as illustrated below.

Example 3.1. Figure 3 illustrates the stack encoding of
answers to a path query for a sample data set. The answer
[A2; B2; C1] is encoded since C1 points to B2, and B2 points
to A2. Since A1 is below A2 on the stack SA, [A1; B2; C1] is
also an answer. Finally, since B1 is below B2 on the stack
SB, and B1 points to A1, [A1; B1; C1] is also an answer.
Note that [A2; B1; C1] is not an answer, since A2 is above
the node (A1) on stack SA to which B1 points.
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Figure 3: Compact encoding of answers using stacks.

We make crucial use of this compact stack encoding in
our algorithms, PathStack and TwigStack.

3.2 PathStack
Algorithm PathStack, which computes answers to a query

path pattern, is presented in Figure 4, for the case when the
streams contain nodes from a single XML document. When
the streams contain nodes from multiple XML documents,
the algorithm is easily extended to test equality of DocId
before manipulating the nodes in the streams and stacks.

Algorithm PathStack(q)
01 while :end(q)
02 qmin = getMinSource(q)
03 for qi in subtreeNodes(q) // clean stacks
04 while (:empty(Sqi ) ^ topR(Sqi ) < nextL(Tqmin

))
05 pop(Sqi)
06 moveStreamToStack(Tqmin

; Sqmin
, pointer to

top(Sparent(qmin)
))

07 if (isLeaf(qmin))
08 showSolutions(Sqmin

; 1)
09 pop(Sqmin

)

Function end(q)
return 8qi 2 subtreeNodes(q) : isLeaf(qi)) eof(Tqi )

Function getMinSource(q)
return qi 2 subtreeNodes(q) such that nextL(Tqi)

is minimal

Procedure moveStreamToStack(Tq ; Sq ; p)
01 push(Sq ; (next(Tq); p))
02 advance(Tq)

Figure 4: Algorithm PathStack

The key idea of Algorithm PathStack is to repeatedly con-
struct (compact) stack encodings of partial and total an-
swers to the query path pattern, by iterating through the
stream nodes in sorted order of their LeftPos values; thus,
the query path pattern nodes will be matched from the query
root down to the query leaf. Line 2, in Algorithm PathStack,
identi�es the stream containing the next node to be pro-
cessed. Lines 3-5 remove partial answers from the stacks
that cannot be extended to total answers, given knowledge of
the next stream node to be processed. Line 6 augments the
partial answers encoded in the stacks with the new stream
node. Whenever a node is pushed on the stack Sqmin

, where
qmin is the leaf node of the query path, the stacks contain
an encoding of total answers to the query path, and Algo-
rithm showSolutions is invoked by Algorithm PathStack
(lines 7-9) to \output" these answers.
A natural way for Algorithm showSolutions to output

query path answers encoded in the stacks is as n-tuples
that are in sorted leaf-to-root order of the query path. This

will ensure that, over the sequence of invocations of Algo-
rithm showSolutions by Algorithm PathStack, the answers
to the query path are also computed in leaf-to-root order.
Figure 5 shows such a procedure for the case when only
ancestor-descendant edges are present in the query path.

Procedure showSolutions(SN;SP)
// Assume, for simplicity, that the stacks of the query
// nodes from the root to the current leaf node we
// are interested in can be accessed as S[1]; : : : ; S[n].
// Also assume that we have a global array index[1::n]
// of pointers to the stack elements.
// index[i] represents the position in the i'th stack that
// we are interested in for the current solution, where
// the bottom of each stack has position 1.

// Mark we are interested in position SP of stack SN .
01 index[SN ] = SP

02 if (SN == 1) // we are in the root
03 // output solutions from the stacks
04 output (S[n]:index[n]; : : : ; S[1]:index[1])
05 else // recursive call
06 for i = 1 to S[SN ]:index[SN ]:pointer to parent
07 showSolutions(SN � 1; i)

Figure 5: Procedure showSolutions

When parent-child edges are present in the query path,
we also need to take the LevelNum information into ac-
count. PathStack does not need to change, but we need
to ensure that each time showSolutions is invoked, it does
not output incorrect tuples, in addition to avoiding unnec-
essary work. This can be achieved by modifying the re-
cursive call (lines 6-7) to check for parent-child edges, in
which case only a single recursive call (showSolutions(SN�
1; S[SN ]:index[SN ]:pointer to the parent stack)) needs to
be invoked, after verifying that the LevelNum of the two
nodes di�er by one. Looping through all nodes in the stack
S[SN �1] would still be correct, but it would do more work
than is strictly necessary.
If we desire the �nal answers to the query path be pre-

sented in sorted root-to-leaf order (as opposed to sorted leaf-
to-root order), it is easy to see that it does not suÆce that
each invocation of showSolutions output answers encoded
in the stack in the root-to-leaf order. To produce answers
in the sorted root-to-leaf order, we would need to \block"
answers, and delay their output until we are sure that no
answer prior to them in the sort order can be computed.
The details of how to achieve this naturally are presented
in [3] and are omitted here for reasons of space.

Example 3.2. Consider the leftmost path, book{title{
XML, in each of the query twigs of Figure 2. If we used the
binary structural join algorithms of [27, 1], we would �rst
need to compute matches to one of the parent-child struc-
tural relationships: book{title, or title{XML. Since every
book has a title, this binary join would produce a lot of
matches against an XML books database, even when there
are only a few books whose title is XML. If, instead, we �rst
computed matches to title{XML, we would also match pairs
under chapter elements, as in the XML data tree of Fig-
ure 1, which do not extend to total answers to the query
path pattern. Using Algorithm PathStack, partial answers
are compactly represented in the stacks, and not output. Us-
ing the XML data tree of Figure 1, only one total answer,
identi�ed by the mapping [ book ! (1; 1 : 150; 1), title

! (1; 2 : 4; 2), XML ! (1; 3; 3) ], is encoded in the stacks.



3.3 Analysis of PathStack
The following proposition is a key to establishing the cor-

rectness of Algorithm PathStack.

Proposition 3.1. If we �x node Y , the sequence of cases
between node Y and nodes X on increasing order of LeftPos
(L) is: (1j2)�3�4�. Cases 1 and Cases 2 are interleaved, then
all nodes in Case 3 before any node in Case 4, and �nally
all nodes in Case 4 (see Figure 6).

X

Y

Case 1 Case 4Case 3Case 2

Y

Root

X

Y

Root

X

Y

Root

X

Y

Root

X

X X X

Y Y Y

X.R<Y.L X.L>Y.RX.L<Y.L
X.R>Y.R

X.L>Y.L
X.R<Y.R

Property

Segments

Tree

Figure 6: Cases for PathStack and TwigStack

Lemma 3.1. Suppose that for an arbitrary node q in the
path pattern query, we have that getMinSource(q) = qN .
Also, suppose that tqN is the next element in qN 's stream.
Then, after tqN is pushed on to stack SqN , the chain of stacks
from SqN to Sq veri�es that their labels are included in the
chain of nodes in the XML data tree from tqN to the root.

For each node tqmin
pushed onto stack Sqmin

, it is easy to
see that the above lemma, along with the iterative nature of
Algorithm showSolutions, ensures that all answers in which
tqmin

is a match for query node qmin will be output. This
leads to the following correctness result:

Theorem 3.1. Given a query path pattern q and an XML
database D, Algorithm PathStack correctly returns all an-
swers for q on D.

We next show optimality. Given an XML query path of
length n, PathStack takes n input lists of tree nodes sorted
by (DocId, LeftPos), and computes an output sorted list
of n-tuples that match the query path. It is straightforward
to see that, excluding the invocations to showSolutions, the
I/O and CPU costs of PathStack are linear in the sum of
sizes of the n input lists. Since the cost of showSolutions
is proportional to the size of the output list, we have the
following optimality result:

Theorem 3.2. Given a query path pattern q with n nodes,
and an XML database D, Algorithm PathStack has worst-
case I/O and CPU time complexities linear in the sum of
sizes of the n input lists and the output list. Further, the
worst-case space complexity of Algorithm PathStack is the
minimum of (i) the sum of sizes of the n input lists, and
(ii) the maximum length of a root-to-leaf path in D.

It is particularly important to note that the worst-case
time complexity of Algorithm PathStack is independent of
the sizes of any intermediate results.

3.4 PathMPMJ
A straightforward generalization of the MPMGJN algo-

rithm [27] for path queries proceeds one stream at a time to
get all solutions. Consider the path query q1==q2==q3. The
basic idea is as follows: Get the �rst (next) element from
the stream Tq1 and generate all solutions that use that par-
ticular element from Tq1 . Then, advance Tq1 and backtrack
Tq2 and Tq3 accordingly (i.e., to the earliest position that
might lead to a solution). This procedure is repeated un-
til Tq1 is empty. The generate all solutions step recursively
starts with the �rst marked element in Tq2 , gets all solutions
that use that element (and the calling element in Tq1), then
advances the stream Tq2 until there are no more solutions
with the current element in Tq2 , and so on. We refer to this
algorithm as PathMPMJNaive, in our experiments.
It turns out that maintaining only one mark per stream

(for backtracking purposes) is too ineÆcient, since all marks
need to point to the earliest segment that can match the
current element in Tq1 (the stream of the root node). A
better strategy is to use a stack of marks, as described in
Algorithm PathMPMJ in Figure 7. In this optimized general-
ization of MPMGJN, each query node will not have a single
mark in the stream, but \k" marks where k is the number
of its ancestors in the query. Each mark points to an earlier
position in the stream, and for query node q, the i'th mark
is the �rst point in Tq such that the element in Tq starts
after the current element in the stream of q's i'th ancestor.

Algorithm PathMPMJ(q)
01 while (:eof(Tq)^ (isRoot(q)_

nextL(q) < nextR(parent(q))))
02 for (qi 2 subtreeNodes(q)) // advance descendants
03 while (nextL(qi) < nextL(parent(qi)))
04 advance(Tqi)
05 PushMark(Tqi )
06 if (isLeaf(q)) // solution in the streams' heads

outputSolution()
07 else PathMPMJ(child(q))
08 advance(Tq)
09 for (qi 2 subtreeNodes(q)) // backtrack descendants
10 PopMark(Tqi )

Figure 7: Algorithm PathMPMJ

Theorem 3.3. Given a query path pattern q and an XML
database D, Algorithm PathMPMJ correctly returns all an-
swers for q on D.

While the two extensions of MPMGJN appear similar,
the di�erence between their performance is noticeable, as
we shall see in the experimental section. Further, as was the
case with MPMGJN, Algorithm PathMPMJ is not asymptot-
ically optimal either.

4. TWIG JOIN ALGORITHMS

4.1 Limitations of Using PathStack
A straightforward way of computing answers to a query

twig pattern is to decompose the twig into multiple root-
to-leaf path patterns, use PathStack to identify solutions to
each individual path, and then merge-join these solutions to
compute the answers to the query. This approach, which we



experimentally evaluate in Section 5, faces the same funda-
mental problem as the techniques based on binary structural
joins, towards a holistic solution: many intermediate results
may not be part of any �nal answer, as illustrated below.

Example 4.1. Consider the query sub-twig rooted at the
author node of the twig pattern in Figure 2(b). Against
the XML database in Figure 1, the two paths of this query:
author{fn{jane, and author{ln{doe, have two solutions
each, but the query twig pattern has only one solution.

In general, if the query (root-to-leaf) paths have many
solutions that do not contribute to the �nal answers, using
PathStack (as a sub-routine) is suboptimal, in that the over-
all computation cost for a twig pattern is proportional not
just to the sizes of the input and the �nal output, but also
to the sizes of intermediate results. In this section, we seek
to overcome this suboptimality using Algorithm TwigStack.

4.2 TwigStack
Algorithm TwigStack, which computes answers to a query

twig pattern, is presented in Figure 8, for the case when
the streams contain nodes from a single XML document.
As with Algorithm PathStack, when the streams contain
nodes from multiple XML documents, the algorithm is easily
extended to test equality of DocId before manipulating the
nodes in the streams and on the stacks.

Algorithm TwigStack(q)
// Phase 1

01 while :end(q)
02 qact = getNext(q)
03 if (:isRoot(qact))
04 cleanStack(parent(qact), nextL(qact))
05 if (isRoot(qact) _ :empty(Sparent(qact)))
06 cleanStack(qact, next(qact))
07 moveStreamToStack(Tqact ; Sqact ; pointer to

top(Sparent(qact)))
08 if (isLeaf(qact))
09 showSolutionsWithBlocking(Sqact ; 1)
10 pop(Sqact)
11 else advance(Tqact)

// Phase 2
12 mergeAllPathSolutions()

Function getNext(q)
01 if (isLeaf(q)) return q

02 for qi in children(q)
03 ni = getNext(qi)
04 if (ni 6= qi) return ni
05 nmin = minargni nextL(Tni)
06 nmax = maxargni nextL(Tni)
07 while (nextR(Tq) < nextL(Tnmax

))
08 advance(Tq)
09 if (nextL(Tq) < nextL(Tnmin

)) return q

10 else return nmin

Procedure cleanStack(S, actL)
01 while (:empty(S) ^ (topR(S) < actL))
02 pop(S)

Figure 8: Algorithm TwigStack

Algorithm TwigStack operates in two phases. In the �rst
phase (lines 1-11), some (but not all) solutions to individual
query root-to-leaf paths are computed. In the second phase
(line 12), these solutions are merge-joined to compute the
answers to the query twig pattern.

The key di�erence between PathStack and the �rst phase
of TwigStack is that before a node hq from the stream Tq is
pushed on its stack Sq, TwigStack (via its call to getNext)
ensures that: (i) node hq has a descendant hqi in each
of the streams Tqi , for qi 2 children(q), and (ii) each of
the nodes hqi recursively satis�es the �rst property. Algo-
rithm PathStack does not satisfy this property (and it does
not need to do so to ensure (asymptotic) optimality for query
path patterns). Thus, when the query twig pattern has only
ancestor-descendant edges, each solution to each individual
query root-to-leaf path is guaranteed to be merge-joinable
with at least one solution to each of the other root-to-leaf
paths. This ensures that no intermediate solution is larger
than the �nal answer to the query twig pattern.
The second merge-join phase of Algorithm TwigStack is

linear in the sum of its input (the solutions to individual
root-to-leaf paths) and output (the answer to the query twig
pattern) sizes, only when the inputs are in sorted order of the
common pre�xes of the di�erent query root-to-leaf paths.
This requires that the solutions to individual query paths
be output in root-to-leaf order as well, which necessitates
blocking; showSolutions (from Figure 5), which outputs
solutions in sorted leaf-to-root order, cannot be used.

Example 4.2. Consider again the query of Example 4.1,
which is the sub-twig rooted at the author node of the twig
pattern in Figure 2(b), and the XML database tree in Fig-
ure 1. Before Algorithm TwigStack pushes an author node
on the stack Sauthor, it ensures that this author node has:
(i) a descendant fn node in the stream Tfn (which in turn
has a descendant jane node in Tjane), and (ii) a descendant
ln node in the stream Tln (which in turn has a descendant
doe node in Tdoe). Thus, only one of the three author nodes
(corresponding to the third author) from the XML data tree
in Figure 1 is pushed on the stacks. Subsequent steps ensure
that only one solution to each of the two paths of this query:
author{fn{jane, and author{ln{doe, is computed. Finally,
the merge-join phase computes the desired answer.

4.3 Analysis of TwigStack
In this section we discuss the correctness of algorithm

TwigStack for processing twig queries, and then we ana-
lyze its complexity. Most of the proofs in this section are
omitted for lack of space and can be found in [3].

Definition 4.1. Consider a twig query Q. For each node
q 2 subtreeNodes(Q) we de�ne the head of q, denoted hq,
as the �rst element in Tq that participates in a solution for
the sub-query rooted at q. We say that a node q has a mini-
mal descendant extension if there is a solution for the sub-
query rooted at q composed entirely of the head elements of
subtreeNodes(q).

Proposition 3.1, based on Figure 6, is important for es-
tablishing the following lemma:

Lemma 4.1. Suppose that for an arbitrary node q in the
twig query we have that getNext(q) = qN . Then, the follow-
ing properties hold:

1. qN has a minimal descendant extension.

2. For each node q0 2 subtreeNodes(qN ), the �rst ele-
ment in Tq0 is hq0 .



3. Either (a) q = qN or (b) parent(qN) does not have
a minimal right extension because of qN (and possibly
other nodes). In other words, the solution rooted at
p = parent(qN ) that uses hp does not use hq for node
q but some other element whose L component is larger
than that of hq.

Using the lemma above, we can prove [3] that when some
node qN is returned by getNext, hqN is guaranteed to have
a descendant extension in subtreeNodes(qN ). We can also
prove [3] that any element in the ancestors of qN that uses
hqN in a descendant extension was returned by getNext be-
fore hqN . Therefore we can maintain, for each node q in
the query, the elements that are part of a solution involving
other elements in the streams of subtreeNodes(q). Then,
each time that qN = getNext(q) is a leaf node, we output
all solutions that use hqN . It can be proved [3] that we can
achieve that by maintaining one stack per node in the query.

Theorem 4.1. Given a query twig pattern q and an XML
database D, Algorithm TwigStack correctly returns all an-
swers for q on D.

Proof. [Sketch] In Algorithm TwigStack, we repeat-
edly �nd getNext(q) for query q (line 2). Assume that
getNext(q) = qN . Let AqN be the set of nodes in the query
that are ancestors of qN . We know that getNext already re-
turned all elements from the streams of nodes in AqN that
are part of a solution that uses hqN . If q 6= qN , in line 4 we
pop from parent(qN )'s stack all elements that are guaran-
teed not to participate in any new solution. After that, in
line 5 we test whether hqN participates in a solution. We
know that qN has a descendant extension by Lemma 4.1,
property 1. If q 6= qN and parent(qN )'g stack is empty,
node qN does not have an ancestor extension. Therefore it
is guaranteed not to participate in any solution, so we ad-
vance qN in line 11 and continue with the next iteration.
Otherwise, node qN has both ancestor and descendant ex-
tensions and therefore it participates in at least one solution.
We then clean qN 's stack (line 6) and push hqN to it (line 7).
Finally, if qN is a leaf node, we output the stored solutions
from the stacks (lines 8-10).

While correctness holds for query twig patterns with both
ancestor-descendant and parent-child edges, we can prove
optimality only for the case where the query twig pattern
has only ancestor-descendant edges. The intuition is simple.
Since we push into the stacks only elements that have both
a descendant and an ancestor extension, we are guaranteed
that no element that does not participate in any solution is
pushed into any stack. Therefore, the merge postprocessing
step is optimal, and we have the following result.

Theorem 4.2. Consider a query twig pattern q with n
nodes, and only ancestor-descendant edges, and an XML
database D. Algorithm TwigStack has worst-case I/O and
CPU time complexities linear in the sum of sizes of the
n input lists and the output list. Further, the worst-case
space complexity of Algorithm TwigStack is the minimum
of (i) the sum of sizes of the n input lists, and (ii) n times
the maximum length of a root-to-leaf path in D.

It is particularly important to note that, for the case of
query twigs with ancestor-descendant edges, the worst-case
time complexity of Algorithm TwigStack is independent of
the sizes of solutions to any root-to-leaf path of the twig.

4.4 Suboptimality for Parent-Child Edges
Theorem 4.2 holds only for query twigs with ancestor-

descendant edges. Unfortunately, in the case where the twig
pattern contains a parent-child edge between two elements
(e.g., see the query in Example 4.2), Algorithm TwigStack
is no longer guaranteed to be I/O and CPU optimal. In
particular, the algorithm might produce a solution for one
root-to-leaf path that does not match with any solution in
another root-to-leaf path.
Consider the query twig pattern with three nodes: A;B

and C, and parent-child edges between (A;B) and between
(A;C). Let the XML data tree consist of node A1, with
children (in order) A2; B2; C2, such that A2 has children
B1; C1. The three streams TA; TB and TC have as their
�rst elements A1; B1 and C1 respectively. In this case, we
cannot say if any of them participates in a solution without
advancing other streams, and we cannot advance any stream
before knowing if it participates in a solution. As a result,
optimality can no longer be guaranteed.

4.5 Using XB-Trees
Algorithms PathStack and TwigStack need to process

each node in the input lists to check whether or not it is part
of an answer to the query (path or twig) pattern. When the
input lists are very long, this may take a lot of time. In this
section, we propose the use of a variant of B-trees, denoted
XB-tree, on the input lists to speed up this processing.

4.5.1 XB-Tree Description
As its name suggests, the XB-tree is a variant of the

B-tree, designed for indexing the positional representation
(DocId, LeftPos : RightPos, LevelNum) of elements in
the XML tree. We describe the index structure when all
nodes belong to the same XML document; the extension to
multiple documents is straightforward.
The nodes in the leaf pages of the XB-tree are sorted by

their LeftPos (L) values; this is similar to the leaf pages
of a B-tree on the L values. The di�erence between a B-
tree and an XB-tree is in the data maintained at internal
pages. Each node N in an internal page of the XB-tree
consists of a bounding segment [N:L;N:R] (where L denotes
LeftPos and R denotes RightPos) and a pointer to its child
page N:page (which contains nodes with bounding segments
completely included in [N:L;N:R]). The bounding segments
of nodes in internal pages might partially overlap, but their
L positions are in increasing order. Besides, each page P
has a pointer to the parent page P:parent and the integer
P:parentIndex which is the index of the node in P:parent
that points back to P . The construction and maintenance
of an XB-tree is very similar to those in a B-tree, using the
L value as the key; the di�erence is that the R values need
to be propagated up the index structure.

4.5.2 Using XB-Trees
We maintain a pointer act = (actPage; actIndex) to the

actIndex'th node in page actPage of the XB-tree. There
are two operations over the XB-tree that a�ect this pointer:

1. advance. If act = (actPage; actIndex) does not point
to the last node in the current page, we simply ad-
vance actIndex. Otherwise we replace act with the
value (actPage:parent;actPage:parentIndex) and re-
cursively advance it.



2. drillDown. If act = (actPage; actIndex), actPage is
not a leaf page, and N is the actIndex'th node in
actPage, we replace act with (N:page;0) so that it
points to the �rst node in N:p.

Initially act = (rootPage;0), pointing to the �rst node in
the root page of the XB-tree. When act points to the last
node in rootPage and we advance it, we �nish the traversal.
We can modify the previous algorithms easily to use XB-

trees. Algorithm TwigStackXB, in Figure 9, extends Algo-
rithm TwigStack so that it uses XB-trees. The only changes
are in the lines indicated by parentheses. The function
isPlainValue returns true if the actual pointer in the XB-
tree is pointing to a leaf node (actual value in the original
stream). If we de�ne isPlainValue(T)=true when T is not
an XB-tree but a regular �le, this algorithm reduces to the
previous one.

Algorithm TwigStackXB(q)
01 while :end(q)
02 qact = getNext(q)
(03) if (isPlainValue(Tqact ))
04 if (:isRoot(qact))
05 cleanStack(parent(qact), next(qact))
06 if (isRoot(qact) _ :empty(Sparent(qact)))
07 cleanStack(qact, next(qact))
08 moveStreamToStack(Tqact ; Sqact ; pointer to

top(Sparent(qact)))
09 if (isLeaf(qact))
10 showSolutionsWithBlocking(Sqact ; 1)
11 pop(Sqact)
12 else advance(Tqact)
(13) else if (:isRoot(qact) ^ empty(Sparent(qact))^

nextL(Tparent(qact)) > nextR(Tqact ))
(14) advance(Tqact) // Not part of a solution
(15) else // Might have a child in some solution
(16) drillDown(Tqact)

// Phase 2
17 mergeAllPathSolutions()

Function getNext(q)
01 if (isLeaf(q)) return q

02 for qi in children(q)
03 ni = getNext(qi)
(04) if (qi 6= ni _ :isPlainValue(Tni )) return ni
05 nmin = minargni nextL(Tni)
06 nmax = maxargni nextL(Tni)
07 while (nextR(Tq) < nextL(Tnmax

))
08 advance(Tq)
09 if (nextL(Tq) < nextL(Tnmin

)) return q

10 else return nmin

Procedure cleanStack(S, actL)
01 while (:empty(S) ^ (topR(S) < actL))
02 pop(S)

Figure 9: Algorithm TwigStackXB

Theorem 4.3. Given a query twig pattern q and an XML
database D, Algorithm TwigStackXB correctly returns all an-
swers for q on D.

While we do not have any analytical results about the
eÆciency of Algorithm TwigStackXB, we show experimen-
tally that it performs matching of query twig patterns in
sub-linear time.

5. EXPERIMENTAL EVALUATION
In this section we present experimental results on the per-

formance of the join algorithms introduced in Sections 3
and 4 using both real and synthetic data.

5.1 Experimental Setting
We implemented all XML join algorithms in C++ using

the �le system as the storage engine. All experiments were
run on a 550Mhz Pentium III processor with 768MB of main
memory and a 2GB quota of disk space.
We used both synthetic and real-world data. The syn-

thetic data sets are random trees generated using three pa-
rameters: depth, fan-out and number of di�erent labels. For
most of the experiments presented involving synthetic data
sets, we generated full binary and ternary trees. Unless
speci�ed explicitly, the node labels in the trees were uni-
formly distributed. We tried other con�gurations (larger
fanout and random depths in the tree) and also used the
XMach-1 [25] and XMark [26] benchmarks. Those results
are omitted for lack of space and can be found in [3].
The real data set is an \unfolded" fragment of the DBLP

database. In the DBLP data set, each author is represented
by a name, a homepage, and a list of papers. In turn, each
paper contains a title, the conference where it was published,
and a list of coauthors. We generated our unfolded fragment
of DBLP as follows. We started with an arbitrary author
and converted the corresponding information to XML for-
mat. For each paper, we replaced each coauthor name with
the actual information for that author. We continued un-
folding authors until we reached a previously traversed au-
thor, or a depth of 200 authors. The resulting XML data
set has depth 805 and around 3 million nodes, representing
93,536 di�erent papers from 36,900 unique authors.

5.2 Binary Structural Joins vs PathStack
In this experiment we compare our holistic PathStack

algorithm against strategies that use a combination of bi-
nary structural joins [1]. For this purpose, we used a syn-
thetic data set consisting of 1,000,000 nodes and six dif-
ferent labels: A1; A2; : : : ; A6.

2 We issued the path query
A1==A2== : : : ==A6 and evaluated it using PathStack. Then,
we evaluated all binary join strategies resulting from apply-
ing all possible join orders. Figure 10 shows the execution
time of all join strategies, where each strategy is represented
with a bar. We also show with a solid line the execution time
of PathStack, and with a dotted line the time it takes to do
a sequential scan over the input data (labeled SS).
For this query, PathStack took 2:53s, slightly more than

the 1:87s taken by the sequential scan over the input data.
In contrast, the strategies based on binary structural joins
ranged from 16:1s to 53:07s. Our �rst conclusion is that
optimization plays an important role for binary structural
joins, since a bad join ordering can result in a plan that
is more than three times worse than the best plan. Our
second conclusion is that the holistic strategy is superior to
the approach of using binary structural joins for arbitrary
join orders; in this case, it results in more than a six-fold
improvement in execution time over the best strategy that
uses binary structural joins.

2Note that the actual XML data can contain many more labels,
but that does not a�ect our techniques since we only access the
indexes of labels present in the query.
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Figure 10: Holistic and binary joins for path queries

5.3 Paths: PathStack vs PathMPMJ
In this section we study the eÆciency of the di�erent holis-

tic path join algorithms of Section 3. We �rst compare the
two versions of PathMPMJ. We used a 64K synthetic data
set with labels A1; : : : A10, and issue path queries of di�er-
ent lengths. Figure 11 shows the execution times of both
techniques, as well as the time taken for a sequential scan
over the input data. PathMPMJNaive is much slower com-
pared to the optimized PathMPMJ (generally over an order
of magnitude). The reason is that PathMPMJNaive is too
conservative when backtracking and reads several times un-
necessary portions of the data (in our experiments, as much
as 15 times more nodes than PathMPMJ). Since the perfor-
mance of PathMPMJNaive degrades considerably with the size
of the data set and the length of the input query, we do not
consider this strategy for the remainder of this paper.

0

5

10

15

20

2 3 4 5 6 7 8 9 10

Path Length

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

SS PathMPMJ PathMPMJNaive

Figure 11: PathMPMJ versus PathMPMJNaive

We now compare PathStack against PathMPMJ. In Fig-
ure 12 we show the execution time and the number of nodes
read from disk for path queries of di�erent length and a
synthetic data set of 1,000,000 nodes and 10 di�erent la-
bels. Clearly, PathStack results in considerably better per-
formance than PathMPMJ, and this di�erence increases with
longer path queries. This is explained by the fact that
PathStack makes a single pass over the input data, while
PathMPMJ needs to backtrack and read again large portions of
data. For instance, for a path query of length 10, PathMPMJ
reads the equivalent of �ve times the size of the original data,
as seen in Figure 12(b). In Figure 12(a), for path queries
of length two, the execution time of PathStack is consider-
ably slower than that of the sequential scan, and closer to
PathMPMJ. This behavior is due to the fact that for the path
query of length two, the number of solutions is rather large
(more than 100,000), so most of the execution time is used
in processing these solutions and writing them back to disk.
For longer path queries, the number of solutions is consid-
erably smaller, and the execution of PathStack is closer to
a sequential scan and much more eÆcient than PathMPMJ.

Figure 13 shows the execution time and number of values
read for two simple path queries over the unfolded DBLP
data set (note the logarithmic scale on the Y axis). Due to
the speci�c nesting properties between nodes in this data
set, the PathMPMJ algorithm spends much time backtracking
and reads several times the same values. For instance, for
the path query of length three in Figure 13, PathMPMJ reads
two orders of magnitude more elements than PathStack.

5.4 Twigs: PathStack vs TwigStack
We now focus on twig queries, and compare TwigStack

against the naive application of PathStack to each branch
in the tree followed by a merge step. As shown in Section 4,
TwigStack is optimal for ancestor/descendant relationships,
but it is provably suboptimal for parent/child relationships.
In this section, we analyze these two cases separately.
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Figure 14: Twig queries used in the experiments

5.4.1 Ancestor-Descendant Relationships
We �rst used the query shown in Figure 14(a) over dif-

ferent synthetically generated data sets. Each data set was
generated as a full ternary tree. The �rst subtree of the
root node contained only nodes labeled A1; A2; A3 and A4.
The second subtree contained nodes labeled A1; A5; A6 and
A7. Finally, the third subtree contained all possible nodes.
Clearly, there are many partial solutions in the �rst two
subtrees but those do not produce any complete solution.
Only the third subtree contains actual solutions. We varied
the size of the third subtree relative to the sizes of the �rst
two from 8% to 24% (beyond that point the number of solu-
tions became too large). Figures 15(a-b) show the execution
time of PathStack and TwigStack and the number of partial
solutions each algorithm produces before the merging step.
The consistent gap between TwigStack and PathStack re-
sults from the latter generating all partial solutions from
the �rst two subtrees which are later discarded in the merge
step (A1==A2==A3==A4) ./ (A1==A5==A6==A7). As seen in
Figure 15(b), the number of partial solutions produced by
PathStack is several orders of magnitude larger than that
of the TwigStack algorithm. The number of solutions to the
query computed by both algorithms is, of course, the same.
We then used the twig query of Figure 14(b) and gener-

ated di�erent synthetic data sets in the following way. As
before, each data set is a full ternary tree. The �rst subtree
does not contain any nodes labeled A2 or A3. The second
subtree does not contain any A4 or A5 nodes. Finally, the
third subtree does not contain any A6 or A7 nodes. There-
fore, there is not even a single solution for the query twig,
although each subtree contains a large number of partial so-
lutions. The main di�erence with the previous experiment
is that we need to materialize an intermediate join result
before getting the �nal answer. Therefore, there is no ex-
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Figure 13: PathStack versus PathMPMJ for the unfolded DBLP data set

ecution strategy using PathStack that avoids materializing
a big intermediate result. Figure 15(c) shows the execution
time for PathStack and TwigStack for di�erent data sizes
(note the logarithmic scale). For the last data set (with 243K
nodes), PathStack could not �nish, since the intermediate
result �lled all the available space on disk (2GB).

5.4.2 Parent-Child Relationships
As explained in Section 4, TwigStack is not optimal for

parent/child relationships. We now show that even in this
case, TwigStack performs much better than PathStack. For
that purpose, we modi�ed the queries in Figures 14(a-b)
adding the following constraint: all ancestor-descendant re-
lationships are connected by a path of length between one
and three (this can be checked by comparing the LevelNum
values of the positional representations). Figure 16 shows
the results for these experiments. Even in the presence of
parent-child constraints, TwigStack is considerably more ef-
�cient than PathStack. In particular, Figure 16(b) shows
that the number of partial solutions produced by TwigStack
(though not minimal) is small. The non-minimality is evi-
dent from the observation that the number of partial solu-
tions produced by TwigStack is sometimes larger than the
number of total solutions to the query twig.
We also evaluated the query of Figure 14(c) over the un-

folded DBLP data set. This query asks for authors with
papers published in the year 2000, who have some coauthor
with a paper published in 1990, who in turn has some coau-
thor with a paper in 1980. We vary the allowed depth in the
relationship COAUTHOR // PAPER, i.e., the number of coau-
thors and papers we can traverse from a given author, from
0 (no solutions) to 37. The results are shown in Figure 17.
We can see that for these queries, TwigStack is again more
eÆcient than PathStack.

5.5 Sub-Linearity: Using XB-Trees
We now study the advantages of using XB-trees to process

path and twig queries. In particular, we show that the num-
ber of nodes that need to be read from the XB-tree (counting
both leaf and internal nodes) is signi�cantly smaller than the
size of the input, which causes sub-linear behavior in our al-
gorithm. As we will see, XB-trees with small node capacities
can e�ectively skip many leaf nodes, but the number of in-
ternal nodes traversed is large. On the other hand, for large
node capacities there are fewer internal node accesses, but
XB-trees cannot skip many leaf nodes because they could
miss some solutions. We experimentally obtained the best
results when using node capacities ranging from 4 to 64.
For the experiments in this section, we evaluated di�erent

queries using PathStack and TwigStack, with and without
XB-trees. We varied the node capacity of the XB-trees be-
tween 2 and 1,024 values per index node. Figure 18(a) shows
the number of values read in the XB-tree (separated into in-
ternal and leaf accesses) for the data set and path queries
used in Section 5.3. Figure 18(b) shows the results when
using the twig query of Figure 14(a), and the data sets of
Section 5.4. Finally, Figure 18(c) shows the results for the
twig query in Figure 14(c) over the unfolded DBLP data set.
In general, the total number of nodes visited in the XB-

Tree is consistently smaller than the input data size for a
wide range of node capacities. For the synthetic data set,
we obtained better results for complex queries. In those sit-
uations, XB-trees can prune signi�cant portions of the input
data. In contrast, for simpler queries, we need to go deep in
the XB-tree nodes, in many cases down to the leaves, since
there are many solutions dispersed throughout the whole
data set. For data sets with solutions concentrated around
certain portions of the data, the impact of XB-trees is more
signi�cant, since many internal nodes can be skipped.
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Figure 15: PathStack versus TwigStack for two twig queries
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Figure 16: PathStack versus TwigStack for a parent-child twig query

6. RELATED WORK
Join processing is central to database implementation [13].

For inequality join conditions, band join [9] algorithms are
applicable when there exists a �xed arithmetic di�erence be-
tween the values of join attributes. Such algorithms are not
applicable in our domain as there is no notion of �xed arith-
metic di�erence. In the context of spatial and multimedia
databases, the problem of computing joins between pairs of
spatial entities has been considered, where commonly the
predicate of interest is overlap between spatial entities [14,
20, 15] in multiple dimensions. The techniques developed in
this paper are related to such join operations. However, the
predicates considered as well as the techniques we develop
are special to the nature of our structural join problem.
In the context of semistructured and XML databases,

query evaluation and optimization has attracted a lot of
research attention. In particular, work done in the Lore
DBMS [21, 16, 17], and the Niagara system [19], has consid-
ered various aspects of query processing on such data. XML
data and various issues in their storage as well as query pro-
cessing using relational database systems have recently been
considered in [12, 24, 23, 4, 10, 11]. In [12, 24, 11], the map-
ping of XML data to a number of relations was considered
along with translation of a subset of XML queries to rela-
tional queries. In subsequent work [23, 4, 10], the authors
considered the problem of publishing XML documents from
relational databases. Our holistic join strategy for query
twig patterns can leverage these previous techniques.
The representation of positions of XML elements (DocId,

StartPos : EndPos, LevelNum) is essentially that of Con-
sens and Milo, who considered a fragment of the PAT text
searching operators for indexing text databases [6, 7], and
discussed optimization techniques for the algebra. This rep-
resentation was used to compute containment relationships

between \text regions" in the text databases. The focus of
that work was on theoretical issues, without elaborating on
eÆcient algorithms for computing these relationships.
Finally, the recent works of Zhang et al. [27] and Al-

Khalifa et al. [1] are closely related to ours. They proposed
binary structural join algorithms as primitives for matching
query twig patterns. Our Algorithm PathMPMJ is a general-
ization of the MPMGJN algorithm of [27] to match query
paths, and Algorithms PathStack and TwigStack are gen-
eralizations of the stack-based algorithms of [1] to match
query paths and query twig patterns, respectively.

7. CONCLUSION
In this paper we developed holistic join algorithms for

matching XML query twig patterns, a core operation cen-
tral to much of XML query processing, both for native XML
query processor implementations and for relational XML
query processors. In particular, Algorithm TwigStack was
shown to be I/O and CPU optimal for a large class of query
twig patterns, and practically eÆcient.
There is more to eÆcient XML query processing than is

within the scope of this paper. We have initiated e�orts
to address some of these issues. One such issue involves
the use of axes like following-sibling in XPath expres-
sions, in addition to the more commonly used child and
descendant axes (used in this paper to specify twig pat-
terns). How can we compute answers to XPath expressions
with such axes? Another issue involves the piecing together
of holistic twig joins with value-based joins (including links
across documents) to build e�ective query plans.
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Figure 17: PathStack versus TwigStack on a real data set
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Figure 18: Using XB-trees: (a), (b) with synthetic data sets, and (c) with unfolded DBLP data
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