Skyline with Presorting

Jan Chomicki!

! University at Buffalo
Buffalo, NY 14260-2000 USA
chomicki@cse.buffalo.edu

Abstract

Parke Godfrey?3

The skyline, or Pareto, operator selects those tuples that
are not dominated by any others. Extending relational sys-
tems with the skyline operator would offer a basis for han-
dling preference queries. Good algorithms are needed for
skyline, however, to make this efficient in a relational set-
ting. We propose a skyline algorithm, SFS, based on pre-
sorting that is general, for use with any skyline query, effi-
cient, and well behaved in a relational setting.

1 Introduction

In [2], the skyline operator, and a corresponding skyline
of clause, were proposed, for the relational engine and for
SQL, respectively.

select ... from ... where ...
group by ... having ...
skyline of a; [min | max | diff], ...,
ay, [min | max | diff]

Skyline chooses each tuple which is not dominated by any
other tuple; that is, no other tuple is better over each of the
designated attributes. The diff directive works as a group
by within the skyline, and the skyline for each group of diff
attributes’ values is found. The notion of skyline is the same
as that of finding the Pareto optimal tuples with respect to
criteria. Thus, this is also called the Pareto operator.

Skyline has prompted much interest recently, as people
see its potential as a basis for—or at least a major com-
ponent of—efforts to provide preference queries over rela-
tional database systems [1, 3, 6, 7, 8]. Skyline queries can
be translated into current SQL, but the resulting queries are
inefficient to execute. To handle skyline queries well, the
skyline operator would have to be built into the query opti-
mizer, and good algorithms for skyline implemented.

We are seeking to devise algorithms for skyline with
good performance, which are well-behaved in a relational
setting, and which will work in all general cases. In [9, 10],
skyline algorithms that exploit indexes are introduced. They
are not general though, as the index structures are particular
to skyline, they will only help for specific queries but not

2The College of William and Mary
Williamsburg, VA 23187-8795 USA
godfrey@cs.wm.edu

Dongming Liang?
3York University
Toronto, ON M3J 1P3 CANADA
{jarek, liang}ecs.yorku.ca

Jarek Gryz?

others, and they are not composable with other relational
operations as selections. In [2], two basic algorithms are ex-
plored: a divide-and-conquer-based approach (D&C); and a
block-nested loops approach (BNL). D& C was shown to be
preferable for higher dimensional (over five) queries. How-
ever, BNL was better for the mid-range of dimensions, and
better uniformally on 1/0. D&C would not scale well for
larger datasets—or smaller buffer pools—than used in [2].
This leaves BNL as the only viable option of the approaches
explored as a general, relational algorithm for skyline. We
show that BNL can be revised via presorting to build a
more effective algorithm, We call our algorithm sort-filter-
skyline, SFS. Please see [4] for a full version of this paper.
In [5], we explore cardinality estimation for skyline queries,
which would be needed in the query optimizer’s cost model.

2 Sort-Filter-Skyline Algorithm

In [2], a multi-pass algorithm for skyline computation is
introduced, skyline BNL, which is reminiscent of the basic
block-nested-loops join algorithm, BNL works as follows,
We start with the table of tuples from which the skyline is
to be determined. This may, of course, be an intermediary,
temporary table Tg created during the SQL query employ-
ing the skyline clause.

BNL keeps a window in the buffer pool for collecting
candidate skyline tuples. It commences with T as the input
of the initial pass. The window is initially empty. (Let us
refer to the current pass by the input that is being currently
processed, say T;.) A page of tuples is read from T;. Each
tuple, Q, from the page is compared with each tuple, S, in
the window. If S dominates Q, then Q is discarded. If Q
dominates S, then S is discarded from the window. Q is
compared with the rest of the window tuples to see what
else Q dominates and hence is discarded. Q is then added
to the window itself as a candidate skyline tuple. Otherwise,
Q is incomparable with all the tuples in the window. In this
case again, Q should be added to the window itself as a
candidate skyline tuple. If there is room in the window, Q
is added. Otherwise, Q is written to temporary table T .

Once BNL comes to the end of T;, some of the skyline
tuples can be identified. If T,y is empty, the algorithm

TEEE ':a

COMPUTER

Proceedings of the 19th International Conference on Data Engineering (ICDE‘03,)717
SOCIETY

1063-6382/03 $ 17.00 © 2003 IEEE

is finished. All tuples in the window are skyline. Other-
wise, those tuples which were written to the window before
the first tuple was written to T,4; are skyline. BNL re-
moves and reports those, but leaves the remaining tuples in
the window for the next pass. The process is started again
with T, as the current input.

The skyline BNL in [2] makes an optimization to the
description above: once a tuple in the window has gone
through a full “cycle” of comparisons, it is output as a sky-
line tuple. There is no need to wait to the end of the pass for
each S. This can be done with appropriate bookkeeping.

The /O expense of BNL depends on the number of
passes made and the size of the passes. The size of first
pass, Tg, is clearly the full initial input table. Unlike the
join BNL, the skyline BNL has an advantage in that each
subsequent pass, T;41, can become significantly smaller,
since many tuples will be discarded during the current pass,
T;. The performance of skyline BNL depends much on
how efficient the discarding is. Note however, BNL has
no means to affect the discarding effectiveness. If the allo-
cated window is large enough to hold all the skyline tuples,
BNL might work in a single pass. With larger (but still quite
small) windows, though, BNL becomes CPU-bound rather
than 1/O-bound, because the window comparison operations
are expensive.

Furthermore, BNL is not guaranteed to work in a single
pass when the window is large enough to hold all the sky-
line tuples. For example, consider the input of (4, 3), (3,4),
{1,6), (2,7), and {5, 5), in that order. The number of sky-
line tuples, #S, is two ({2, 7) and (5, 5)). Let the window
size in number of tuples, #W, be two also. BNL needs two
passes to find both. More generally, BNL is not guaranteed
to complete in the optimal number of passes, [#S/#W],
and there are cases when BNL will take significantly more
passes than optimal.

We sought to devise a more efficient skyline algorithm.
For this, we exploited the following observation.

Theorem Any total order of the tuples of R with respect
to any monotone scoring function (ordered from highest to
lowest score) is a topological sort with respect to the skyline
dominance partial relation.

Our sort-filter-skyline algorithm, SFS, works as follows.
It is multi-pass as is BNL, and likewise keeps a window
to collect skyline tuples. The table is sorted first in some
topological sort compatible with the skyline criteria. Let
the sorted table be Ty. The algorithm proceeds as BNL,
except now, when a tuple is added to the window during
pass T;, we know that it is skyline. No tuple following it in
T; can dominate it, by the theorem above. Thus the tuple
can be output as skyline immediately, and a copy placed in
the window. Window operations in SFS are less expensive,
since no replacement checking is needed.

SFS has the following advantages over BNL.

1. There are good optimizations applicable to SFS, but
not to BNL.
2. SFS is well behaved in a relational engine setting.
BNL is badly behaved.
o SFS is guaranteed to work within the optimal
number of passes, while BNL is not.
e SFSis not CPU-bound, as is BNL.
3. SFS provides an ordering, which is potentially useful
within the query plan.
4. SFS does not block on output, so is output-pipelinable.
Since when a tuple is added to the window in SFS, it
is known to be skyline, only the attributes involved in the
skyline criteria need be projected. BNL must keep the entire
tuple since it will not know until later whether it qualifies as
skyline. Thus, SFS can keep many more (projected) tuples
(#W) in the same-sized window than BNL. Since SFS has
an initial sorting phase, we can control the effectiveness of
discarding. In particular, we found that sorting by

k
E(t) =) In(tla] + 1)
i=1

where the a;’s are the normalized skyline conditions, yields
the most effective discarding. This is sorting the tuples by
an entropy function. The higher a tuple’s entropy, the more
tuples it likely dominates. Hence high-scoring skyline tu-
ples will discard more tuples per pass. With sorting on E,
SFS discards more effectively than BNL. More importantly
perhaps is that we cannot control how an input table is or-
dered in a relational setting. (It is quite likely that the input
is ordered somehow. All base tables will have a clustered
index.) Since SFS necessarily presorts, the ordering of the
input is immaterial. BNL does not presort, however, so is
vulnerable to how the input is ordered. In fact, we show
when the input is ordered from lowest to highest with re-
spect to E (which we call RE for reverse entropy order-
ing), BNL has pathological performance. The RE ordering
forces BNL to make exceedingly more passes than the op-
timal. For SFS, since any tuple that is added to the window
is guaranteed to be skyline, SFS is guaranteed to perform in
the optimal number of passes. Lastly, the use of diff in sky
line of is beneficial for SFS. We shall presort the data based
first on the diff attributes, then the other skyline attributes.
SFS will flush the window whenever the diff attributes’ val-
ues change. BNL cannot exploit this because the input is
not sorted for it.

In addition to BNL’s pathological cases, larger window
allocations lead to CPU-boundedness and greatly dimin-
ished performance. SFS does not suffer from this; in-
creased window allocation leads to increased performance
to a point, and then levels off nicely.

We ran experiments over a million tuple table. Each tu-
ple is 100 bytes, consisting of ten integer attributes (four

718 m

Proceedings of the 19th International Conference on Data Engineering (ICDE’03) COMPUTER
1063-6382/03 $ 17.00 © 2003 IEEE SOCIETY

1400 5000
1200
1000
800
800 [
400
200 |

SO nowr
1 10 100
Window (#pages)

BNL w/RE
BNL
SFS

BNL w/RE
BNL

4000 |- SFS

s

3000 |-

Time {sec)
Time (sec)

2000 |-

1000 1~
1000 1 10 100
Window (#pages)

1000

(a) 5 dim. (b) 7 dim.

Figure 1. Times for SFS versus BNL.

bytes each) and a sixty byte string, making for a 100MB
dataset. A page for us is 4096 bytes, so 40 tuples fit per
page. We use the integer columns for skyline dimensions.
The data was randomly generated, the values are unifor-
mally distributed, and the columns are pair-wise indepen-
dent. Our testing program is written in C++. We implement
both SFS and BNL in the same code-base for comparison.
If-then-else statements switch to specifics for SFS or BNL
from the main routine, as needed. We implement the ba-
sic BNL algorithm from [2]. We do not implement any of
the optimizations discussed in [2], as the basic BNL and the
optimized versions track quite closely in their experiments.
We ran the experiments on a AMD Athlon 900-MHz PC
with 384-MB main memory and a 40-gigabyte disk (7200-
rpm, UDMA 100), running Microsoft Windows 2000.

Figure 1 shows timing results for BNL and SFS for
the million tuple random dataset for a five- and a seven-
dimension skyline query. The SFS algorithm used employs
the optimizations discussed above: the table is pre-sorted
with E; and the tuples for the window are projected to just
the 40-bytes of the integers values. The sorting time for
SFS is included. The external sort cost 37 seconds each
time. BNL was run on the input in the order of the randomly
generated data (BNL) and on the same input but sorted with
RE (BNL w/ RE). Actual performance of BNL in a real
relational environment could be expected to fall somewhere
in-between. In Figure 1 (b), the line stops for BNL w/ RE
as the times became too large to run to completion.

Figure 2 shows the same experiments, but reports the
number of [/O’s instead. The [/O’s for the initial pass of
the entire table and the I/O’s to report the skyline are not
counted, since these are shared by all algorithms. Where the
lines become vertical is when the window is large enough
to hold all the skyline.

3 Conclusions

SFS is a realistic algorithm for implementation of sky-
line in relational engines. There are numerous improve-

100000 F=

woo| | DhLeRE A (Y
- BNL = o
7 SFS . g 10000 |- — SFS
=3 [g T,
g 1000} S 1000 |- M
g e 3 "y
g 10of . £ 00
k3 5 S
e 10|: = 10

17 " 2y 10 100

1 10 100 1000

Window (#pages) Window (#pages)

(a) 5 dim. (b) 7 dim.

Figure 2. I/O’s for SFS versus BNL.

ments that can be made to SFS, and we are pursuing better
skyline algorithms based upon SFS. While there are advan-
tages in that the sort of the data and the filter-skyline oper-
ation can be scheduled by the query optimizer separately,
the sorting phase and the filter-skyline phase could be com-
bined, as is done in the the standard sort-merge join algo-
rithm. This would reduce overall the number of passes, in-
creasing performance. It would be possible also to combine
the D& C algorithm into the external sort passes to elimi-
nate non-skyline tuples earlier on. This would lead to much
smaller passes during the filter-skyline phase.

References

[1] R. Agrawal and E. L. Wimmers. A framework for expressing
and combining preferences. In SIGMOD, pages 297-306,
2000.

S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline
operator. In /CDE, pages 421-430, 2001.

J. Chomicki. Querying with intrinsic preferences. In EDBT,
2002.

J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline
with presorting. Technical Report CS-2002-04, C.S., York
University, Toronto, ON, Canada, Oct. 2002.
http://www.cs.yorku.ca/techreports/2002/CS-2002-04.html
P. Godfrey. Cardinality estimation of skyline queries. Tech-
nical Report CS-2002-03, C.S., York University, Toronto,
ON, Canada, Oct. 2002.
http://www.cs.yorku.ca/techreports/2002/CS-2002-03. html
V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER:
A system for the efficient execution of multi-parametric
ranked queries. In SIGMOD, pages 259-270, 2001.

W. KieBling. Foundations of preferences in database sys-
tems. In VLDB, Aug. 2002.

W. KieBling and G. Kostler. Preference SQL: Design, im-
plementation, experiences. In VLDB, Aug. 2002.

D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in
the sky: An online algorithm for skyline queries. In VLDB,
Aug. 2002.

K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive
skyline computation. In VLDB, pages 301-310, 2001.

1000

719
1EEE ®
Proceedings of the 19th International Conference on Data Engineering (ICDE’03) COMPUTER
1063-6382/03 $ 17.00 © 2003 IEEE SOCIETY

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

