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Objective

e Spatial joins with
no pre-computed spatial indices.

e No existing solutions.

e Approach: construct spatial
index structure at join time.



Previous Spatial Joins

Cannot use .re!ational join alg.
— Spatial data lack total order.

— Spatial joins are more than natural joins.

Use spatial indices designed for spatial
selections.

— E.g. R-trees, R*-trees, ...
Spatial indices must exist for datasets at
time of join

[Beckmann et al. 90, Brinkhoff et al. 93, Falout-
sos et al. 87, Gunther 93, Guttman 84, Sellis et al. 87].

Expensive to construct dynamically.



Spatial Join

e Spatial data:
Data with spatial extent.
E.g.: points, lines, regions ....

e Spatial Join:
Given spatial data sets A and B, find all
(a,b), a € A and b € B, such that

spatial_predicate(a,b) = TRUE

e Commonly encountered predicate:
overlap(a,b).
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Background: Tree Matching

e R-tree join algorithm [Brinkhoff et al. 93]:
Between two pre-computed R-trees

1. Two nodes match iff their mbrs
overlap.

2. Recursively descend both trees
finding pairs of matching nodes.

3. Report results at the leaf level.
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Background: R-Trees

e B-tree-like data structure.

e Node contains array of (mbr, cp).

— Minimal bounding box: |

¢ EXxpensive to construct when large.

— Possibility of memory thrashing.
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Problem with Pre-computed
| Indices

e Spatial indices not exist for all datasets.

e Queries with non-spatial selections.

— E.g. Find all government-owned
buildings that overlap residential areas.

e Queries with multiple spatial joins.

— Input many be intermediate results.
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Our Approach:
Seeded Trees

e Dynamically build indices at join time.

e Principles:
1. Index optimized for join, not selection.
2. Exploit information about join.

3. Low construction costs.

e \Working assumption:
— R-tree exists for one dataset.

— Construct a seeded tree to join R-
tree.



Joins vs. Selections
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Seeded Tree Structure

e Tailored for join with a given R-tree.
e Upper levels: Seed levels.
¢ Grown level: grown subtrees are R-trees.

e Slots
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Seeded Tree Life Cycle

e Tree construction
— Seeding phase
- — growing phase

— Cleanup phase

e [ree matching
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Seeding Phase

e Copy upper n levels of R-tree.

e Copied nodes may be transformed.

Seeding tree
(R-tree) Seeded tree
copy upper levels /
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Growing Phase:
Build Linked Lists

e Insert each object through seed levels,
choosing appropriate slot.

e Build linked lists at the slots.

e When buffer full, batch-write
linked lists to disk.
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Growing Phase:
Build Grown Subtrees

e Convert linked lists into grown subtrees.

e Construct one subfree at a time.

— Avoids memory thrashing.

e Construct subtree under ¢ using linked lists
attached to s.

Belong to
the same
siot

~ (in disk)

14



Tree Construction
Buffer & I/O Management

e Building linked lists: write batches.

e building grown subtrees:

— Read units: linked lists

— Write units: subtrees

— At most needs 1 linked list & 1 subtree
in buffer. /
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Cleanup Phase and
Tree Matching

e Cleanup Phase: housing keeping.
— Final adjustment of mbrs if necessary.

— Delete empty slots.

e Tree matching: produce join result.
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Seed-Level Filtering

e Object overlaps some leaf of tree
= overlaps some node in each level.

e With copy-seeding if object overlaps no
seed level

— It overlaps no leaf of the seeding tree.

— Don‘t consider it anymore.

¢ Reduces seeded tree size.
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Experiments

STJ (Seeded Tree Join): construct a seeded
tree, and match with existing R-tree.

RTJ (R-Tree Join) : construct an R-tree,
and match with existing R-tree. (variation
of [Brinkhoff et al. 93])

BFJ (Brute Force Join) : perform a series
of window queries (i.e. spatial selections).

Experiment series 1:

— vary data set size.

Experiment series 2:

— vary degree of spatial clustering.
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Experiment Series 1:
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Experiment Series 2:
Total Costs
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Experiment Series 2:

Construction Cost
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Experiment Series 2:
Matching Cost
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Conclusions

New method to address situations where
existing spatial indices are not applicable.

Dynamic index construction at very low
cost.

Significant performance win over other
methods.

Dynamically constructing indices for joins
= Doable for spatial databases.

Extensions:
— 2-seeded tree joins.

— Reducing matching costs — spatial hash
joins.
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New Problem
2-Seeded-Tree Join

e NO spatial index for either dataset.
e Must dynamically construct 2 seeded trees.

e Difficulty:
No R-tree to copy seed levels from.

e Solution: Don’'t copy!

— Bootstrap seeding: determine topol-
ogy and contents of seed levels from
dataset.
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Costs of 2-ST Joins

e Comparison unfair to seeded tree joins.

— Two indices: given 2 pre-computed RT.

— One index: given 1 pre-computed RT, build 1
ST.

— No indices: build 2 ST.
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Spatial Hash Join

Relational hash join paradigm.

Bootstrap Seeding to produce hash func-
tion.

Solve multiple overlap problem.

Good performance in our experiment.
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Copying Strategies

C1: COpy mbrs.
C5: Copy the center points of mbrs.
C3: Copy center points of mbrs at slot level.

At other levels, mbr fields contain the true
minimum bounding boxes of its children.
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Update Strategies

- No updates after insertions.

- Update mbrs after each insertion to

enclose inserted data objects and
original seed mbrs.

. Same as Uy, but updated mbrs enclose

only inserted data, not seed mbrs.

: Update mbrs at slot level as in Uy, Other
mbrS untouched.

- Update slot level mbrs as in Us. Other mbrs
untouched.
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