
TEMPLATE FOR ENTRY
in Encyclopedia of Database Systems:

GRID FILE

Apostolos N. Papadopoulos

Department of Informatics

Aristotle University of
Thessaloniki

Thessaloniki, Greece
papadopo@csd.auth.gr

Yannis Manolopoulos

Department of Informatics
Aristotle Universityof

Thessaloniki
Thessaloniki, Greece

manolopo@csd.auth.gr

Yannis Theodoridis

Department of
Informatics

University of Piraeus
Piraeus, Greece
ytheod@unipi.gr

Vassilis Tsotras

Department of Computer
Science and Engineering
University of California

at Riverside
Riverside, CA, USA
tsotras@cs.ucr.edu

SYNONYMS

DEFINITION [250 or fewer words defining the entry title]

The Grid File is a multidimensional indexing scheme capable to efficiently index database records in a
symmetrical manner, i.e. by avoiding the distinction between primary and secondary keys. The structure
is dynamic and adapts gracefully to its contents under insertions and deletions. A single record retrieval
costs two disk accesses at most (upper bound), whereas range queries and partial match queries are also
executed efficiently. The Grid File can be thought of as a generalization of dynamic hashing (e.g.,
extendible hashing) in multiple dimensions.

HISTORICAL BACKGROUND [500 or fewer words describing when/why the concept or technique
developed]

Until the 80’s there have been proposed many file structures for the processing of single attribute queries,
i.e. queries on the primary key or any secondary key for which a corresponding index has been built.
Multi-attribute queries are the ones where the user seeks objects that satisfy constraints (such as equality
or range) on several attributes. Such queries can be executed by accessing all the corresponding indices (if
they exist) and combine the partial results, or resort to sequential scanning.

To speed up the processing of multiple attribute queries a better solution is to create an index that leads
the search directly to the objects of interest. Such an index can be designed if we envision a data record
with k attributes as a point in a k-dimensional space. A multi-attribute range query would then be a hyper-
rectangle in this k-dimensional space and the answer to it would be all points inside this rectangle. Access
methods that can handle multi-dimensional points are called Point Access Methods (PAMs). Bentley in
1975 proposed such a basic PAM, which is called k-dimensional tree or k-d tree [2]. The Grid File is yet
another structure designed to handle similar cases, proposed by Nievergelt, Hinterberger and Sevcik in
1984 [9]. Since then, several variations have been proposed in the literature in an effort to optimize its
space and time performance behavior.

SCIENTIFIC FUNDAMENTALS [illustration and elaboration of the entry title definition, and outline
the key points]

The Grid File can be viewed as an access method comprising of two separate parts: (a) the directory, and
(b) the linear scales. To conceive this, assume that we want to index an Employee file using two
attributes, say salary and dept (extension to more dimensions is straightforward). The Grid File imposes a
grid on the two-dimensional attribute space. Each cell in this grid corresponds to one data page. The data
points that “fall” inside a given cell are stored in the cell’s corresponding page. Each cell must thus store a

pointer to its corresponding page. This information is stored in the Grid File’s directory. However, cells
that are empty do not use a page. Rather, two or more cells can share a page (i.e., point to the same page).
The grid adapts to the data density by introducing more divisions in areas where there are more points.

The information of how each dimension is divided (and thus how data values are assigned to cells) is kept
through linear scales. There is one linear scale per dimension (indexed attribute). Each linear scale is a
one-dimensional array that divides the values on a particular dimension in such a way that records
(points) are uniformly distributed across cells. An example of a Grid File on the “Dept” and “Salary”
attributes appears in Figure 1. The dotted lines indicate cells that share a data page.

Linear scale on
“Dept”

4
3
2
1
0

12
9-11
5-8
4

1-3

4
3
2
1
0

0 1 2 3 4 5 6

Grid Directory

< 10K
0

11-30K
1

31-50K
2

51-60K
3

61-90K
4

91-100K
5

> 101K
6

Linear scale on
“Salary”

pointers to
same data page

Figure 1. A Grid File.

Searching for a record with given attribute values involves two operations: (a) the Grid File’s directory is
searched to locate the cell that the record is hosted (b) the cell’s pointer is followed to access the
corresponding data page (say A) and (c) the record is searched only in data page A. If the record is found
in A then the search terminates successfully, otherwise the search for the specific record is unsuccessful
(i.e., the record does not exist). The Grid File can also address multi-dimensional range queries by
selecting from each dimension’s linear scale the appropriate cells. For example, such a query may ask for
all employee records with the salary attribute ranging between 10K and 40K and the dept attribute
ranging between 2 and 6. Again, the first step examines the directory and determines the cells that are
intersected by the query range in both attributes, then the corresponding pointers to data pages are
collected and finally the data pages are examined for relevant records. Apparently, the accessed cells may
also contain some records outside the query range. These records are evidently eliminated from further
consideration and they are not returned as part of the query answer.

Inserting a new record in this method is straightforward. First, the two linear scales are searched so as to
map the record’s salary and dept attribute values in each dimension. This mapping provides a cell in the
directory. This cell is then accessed and using its pointer, the appropriate page, say A, for the new record
is found. If this page has enough space to accommodate the new record the insertion process is complete.
Otherwise, a new page B is allocated. If page A was pointed by more than one cells, the pointers of these
cells are rearranged so as some will point to page A and some to page B (and the records of page A are
redistributed accordingly between A and B). If page A was pointed by a single cell and overflows, a
reorganization of the Grid File is needed. This reorganization will expand the directory and the scales by
introducing a new column (or row) of cells.

In the sequel, we illustrate the insertion process by an example given in Figure 2. White dots correspond
to existing records, whereas black dots are used to indicate new records being inserted to the Grid File.
We assume that each data page can host at most three records. Practically, this number is larger in real

applications and depends on the size of the data page and the number of attributes. We assume that
initially the Grid File is empty (does not contain any records). The first three records can be easily
accommodated in the single data page A pointed by the single cell of the directory (corresponding to the
whole data space), as it is illustrated in Figure 2(a). The next inserted record is d. However, the new
record can not be hosted by data page A because its capacity is exceeded. Therefore, another data page B
is allocated and records are distributed to the two data pages as it is shown in Figure 2(b). The next two
insertions for records e and f do not cause any reorganization since the new records can be easily
accommodated in the corresponding data pages pointed by the cells. This case is illustrated in Figure 2(c).
Finally, the insertion of record g causes an overflow in data page A. The corresponding cell is split again
using the other attribute and one more data page is allocated and records are distributed accordingly. The
final shape of the Grid File is given in Figure 2(d).

a

b

c

a, b, c
a

b

c
c, d

d a, b

A

A

B
a

b

c
c, d, f

d a, b, e A

B
e

f

a

b

c

c, d, f

d b, g A

B

e

fg

a, e C

(a) insertion of a, b and c (b) insertion of d (c) insertion of e and f (d) insertion of g
Figure 2. Insertions in the Grid File.

Deletions are also supported, but they are handled differently. Initially, the deleted record is located using
the directory and the corresponding data page is determined. If the record is found it is deleted from the
data page. Instead of overflowing data pages deletions may cause the underutilization effect which means
that several data pages may contain too few records. Therefore, appropriate merging operations are
required to maintain the storage utilization of the Grid File at an acceptable level. For a detailed
description of the methods used for merging as well as for splitting the reader is directed to reference [8].

The Grid File has a set of nice properties: (1) it is based on simple mechanisms for insertion, deletion and
search, (2) it guarantees only two disk accesses for exact match queries (one for the directory and one for
the data page), and, (3) it treats all indexed attributes symmetrically which leads to simple directory
management policies. However, it has a set of serious disadvantages such as: (1) it introduces a space
overhead for the directory, which can be large for high-dimensional spaces, (2) it has an extra update
overhead, since a reorganization affects many cells and not only the cell with the overflowing page, and,
(3) it suffers from performance degradation if the attributes are correlated, since the uniform scheme for
performing splits is not adequate to guarantee performance efficiency.

Towards improving the behavior of the Grid File several research efforts have been performed. We
briefly highlight some of them in the following lines. One of the first variations, the BANG File, has
been proposed by Freeston [4]. The BANG File is based on a self-balanced tree-based directory which
better reflects changes of the data distribution. To achieve better storage utilization the Twin Grid File has
been proposed by Hulflesz, Six and Widmayer in [6]. The new scheme is as efficient as the original Grid
File during range query processing but shows significant improvements regarding storage utilization.
Blanken et al proposed the Generalized Grid File [3] which offers fast access for single attribute queries.
The Multilevel Grid File [13] is another research effort to improve the performance of the original
structure for exact-match, partial-match and range queries. This new scheme uses multiple grid levels and
succeeds in better directory management and more efficient query processing than the original structure.

In addition to the variations proposed in the literature, there are efforts to use the Grid File in a parallel
environment, towards more efficient data management. In [14] the authors study the problem of
partitioning a Grid File to multiple disk devices towards more efficient search. When a data page split is

performed, the new data page is carefully allocated to a disk. Since disks can be accessed in parallel,
several data pages can be read simultaneously during range query processing, offering significant
performance improvements in comparison to a single-disk system. More complex queries on Grid Files,
like spatial joins, have been also parallelized [7] towards reduced query response times. A different
approach has been followed by [8]. The authors have proposed a method to load a Grid File in parallel.
The data file is initially partitioned to the available processors using dynamic programming and sampling,
and then each processor builds its own part of the Grid File.

KEY APPLICATIONS [current and potential users]

Spatial Databases

In Spatial Databases it is commonly required to join spatial data sets or perform nearest neighbor
searches. Several algorithms have been proposed for such operations by adopting the Grid File as the
underlying access method [1].

Data Mining

The Grid File can be, also, used for clustering data sets to identify correlation characteristics of the
underlying value space. This stems from its ability to group patterns into blocks and cluster them with
respect to the blocks by a topological neighbor search algorithm [12].

Data Warehouses

The Grid File can be used for efficient data cube storage in warehouses [11].

FUTURE DIRECTIONS*

The Grid File has eventually come up as a popular theoretical access method. However, although is has
been widely honored in theory, in practice it has not been used by the database industry. Also, the fact
that an entry for the Grid File exist in Wikipedia [5] shows that the subject is rather stabilized.

EXPERIMENTAL RESULTS *

A detailed performance evaluation of the Grid File can be found in [9], where the authors offer a detailed
experimental section studying the properties of the structure regarding capacity of data pages, directory
size and evaluation of splitting and merging policies. Moreover, interesting experimental results can be
found in [3, 6] which compare the original Grid File with the corresponding variation proposed in each
work.

CROSS REFERENCES [Other topics in the Encyclopedia which may be of interest to the reader of this
entry. It is encouraged to redirect the readers to an overview entry in the subject area]

EXTENDIBLE HASHING

K-D TREES

MULTIDIMENSIONAL INDEXING

RANGE QUERY

SPATIAL JOIN

RECOMMENDED READING* [Between 5 and 15 citations to important literature, e.g., in journals,
conference proceedings, and websites]

[1] Becker L., Hinrichs K., Finke U. (1993): A New Algorithm for Computing Joins with Grid Files.
ICDE 1993: 190-197.

[2] Bentley, J.L. (1975): Multidimensional Binary Search Trees Used for Associative Searching.
Communications of the ACM, 18(9):509-517.

[3] Blanken H.M., Ijbema A., Meek P., van den Akker B. (1990): The Generalized Grid File:
Description and Performance Aspects. ICDE Conference 1990: 380-388.

[4] Freeston M. (1987): The BANG File: A New Kind of Grid File. SIGMOD Conference 1987: 260-
269.

[5] Grid File. Lemma at Wikipedia. http://en.wikipedia.org/wiki/Grid_file.

[6] Hutflesz A., Six H.-W., Widmayer P. (1988): Twin Grid Files: Space Optimizing Access
Schemes. SIGMOD Conference 1988: 183-190.

[7] Kim J.-D, Hong B.-H. (1999): Parallel Spatial Join Algorithms using Grid Files. DANTE
Conference 1999: 226-234.

[8] Li J., Rotem D., Srivastava J. (1993): Algorithms for Loading Parallel Grid Files. SIGMOD
Conference 1993: 347-356.

[9] Nievergelt, J., Hinterberger, H., Sevcik K.K. (1984): The Grid File: an Adaptable, Symmetric
Multikey File Structure, ACM Transactions on Database Systems, 9(1):38-71.

[10] Lim, Y., Kim, M. (2004): A Bitmap Index for Multidimensional Data Cubes. DEXA Conference
2004: 349-358.

[11] Luo, C., Hou, W.C., Wang, C.F., Wang, H., Yu X. (2006): Grid File for Efficient Data Cube
Storage. Computers and their Applications, pp.424-429.

[12] Schikuta, E., Erhart, M. (1997): The BANG-Clustering System: Grid-Based Data Analysis, IDA,
p.513, 1997.

[13] Whang K.-Y., Krishnamurthy R. (1991): The Multilevel Grid File - A Dynamic Hierarchical
Multidimensional File Structure. DASFAA Conference 1991: 449-459.

[14] Zhou Y., Shekhar S., Coyle M. (1994): Disk Allocation Methods for Parallelizing Grid Files.
ICDE Conference 1994: 243-252.

http://en.wikipedia.org/wiki/Grid_file

