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Abstract

Assume that each object in a database has m grades, or scores, one for each of m attributes.
For example, an object can have a color grade, that tells how red it is, and a shape grade, that
tells how round it is. For each attribute, there is a sorted list, which lists each object and its grade
under that attribute, sorted by grade (highest grade first). Each object is assigned an overall grade,
that is obtained by combining the attribute grades using a fixed monotone aggregation function, or
combining rule, such as min or average. In this overview, we discuss and compare algorithms for
determining the top k objects, that is, k objects with the highest overall grades.

1 Introduction

It is becoming increasingly important for database systems to be able to access multimedia data, such
as images and video, from a variety of data repositories. Such data is inherently fuzzy. For example, we
do not say that a given image is simply either “red” or “not red”. Instead, there is a degree of redness,
which ranges between 0 (not at all red) and 1 (totally red). In response to a query asking for red objects,
a multimedia system might typically assign such a redness score to each object. The result of the query
is then a “graded” (or “fuzzy”) set [Zad69]. A graded set is a set of pairs (x, g), where x is an object,
and g (the grade) is a real number in the interval [0, 1]. Graded sets are usually presented in sorted
order, sorted by grade.

What graded set should correspond to a compound query, that might ask, for example, for objects
that are both red and round? Here we make use of an aggregation function (or scoring function),
that combines the redness score and the roundness score to obtain an overall score. Among the most
commonly used aggregation functions are the min (the standard aggregation function corresponding to
a conjunction in fuzzy logic [Zad69]) and the average. There is a large literature on choices for the
aggregation function (see Zimmermann’s textbook [Zim96] and the discussion in [Fag99]).

Assume that there are m attributes, and that the aggregation function is the m-ary function t. If
x1, . . . , xm (which we usually assume are each in the interval [0, 1]) are the grades of object R under each
of the m attributes, then t(x1, . . . , xm) is the (overall) grade of object R. We shall often abuse notation
and write t(R) for the grade t(x1, . . . , xm) of R. We say that an aggregation function t is monotone

∗Database Principles Column. Column editor: Leonid Libkin, Department of Computer Science, University of Toronto,
Toronto, Ontario M5S 3H5, Canada, email libkin@cs.toronto.edu.

1



if t(x1, . . . , xm) ≤ t(x′1, . . . , x
′
m) whenever xi ≤ x′i for every i. Certainly monotonicity is a reasonable

property to demand of an aggregation function: if for every attribute, the grade of object R′ is at least
as high as that of object R, then we would expect the overall grade of R′ to be at least as high as that
of R. We shall restrict our attention to monotone aggregation functions. Our goal is to find the top k
objects for some fixed choice of k, that is, the k objects R with the highest overall grades t(R). In this
paper, we shall discuss and compare algorithms for finding the top k objects.

In Section 2, we discuss the kind of database systems we are dealing with, which are middleware.
In Section 3, we formally define our setup. In Section 4, we present three algorithms for obtaining the
top k answers, namely the “naive algorithm”, “Fagin’s Algorithm”, and the “threshold algorithm”. In
Section 5, we present an approximate version of the threshold algorithm, which is appropriate when
we care only about the “approximately” top k answers. In Section 6, we consider situations where
sorted access is impossible for certain of the sorted lists. In Section 7, we present algorithms that are
appropriate when random accesses are expensive or impossible. In Section 8, we give a summary.

2 Middleware

Because of the many varieties of data that a multimedia database system must handle, such a system
may often really be “middleware”. That is, the system is “on top of” various subsystems, and integrates
results from the subsystems. A single query to a middleware system can access data in a number of
different subsystems. An example of a nontraditional subsystem that a middleware system might access
is QBIC [NBE+93], which can search for images by various visual characteristics such as color and
texture.

What can we assume about the interface between a middleware system and a subsystem such as
QBIC? In response to a query, such as a query that asks for red objects, we can assume that the
subsystem will output the graded set consisting of all objects, one by one, each along with its grade,
in sorted order based on grade, until the middleware system tells the subsystem to stop. Then the
middleware system could later tell the subsystem to resume outputting the graded set where it left off.
Alternatively, the middleware system could ask the subsystem for, say, the top 10 objects in sorted order,
each along with its grade, then request the next 10, etc. We refer to such types of access as “sorted
access”.

There is another way that we could expect the middleware system to interact with the subsystem.
Specifically, the middleware system could ask the subsystem the grade under a given attribute (such as
redness) of any given object. We refer to this as “random access”.

Because of the limited modes of access to subsystems, issues of efficient query evaluation in a mid-
dleware system are very different from those in a traditional database system. In fact, it is not even
clear what “efficient” means in a middleware system.

We now give the performance cost of an algorithm, as defined in [Fag99]. This measure of cost
corresponds intuitively to the amount of information that an algorithm obtains from the database. The
sorted access cost is the total number of objects obtained from the database under sorted access. For
example, if there are only two lists, and some algorithm requests altogether the top 100 objects from
the first list and the top 20 objects from the second list, then the sorted access cost for this algorithm is
120. Similarly, the random access cost is the total number of objects obtained from the database under
random access. The middleware cost is taken to be cS · s + cR · r, where s is the sorted access cost, r
is the random access cost, and where cS and cR are positive constants.1 The middleware cost is not
a measure of total system cost, since it ignores the costs inside of a “black box” like QBIC. There are

1In [Fag99], the middleware cost is taken for convenience to be simply s + r, the sum of the sorted access cost and the
random access cost. It is then noted that these two notions of middleware cost (namely, s+ r and cS · s+ cR · r) are within
constant multiples of each other.
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situations (such as in the case of a query optimizer) where we want a more comprehensive cost measure.
Finding such cost measures is an interesting issue, that requires further study.

As in [Fag99], we shall identify a query with a choice of the aggregation function t. The user is
typically interested in finding the top k answers, where k is a given parameter (such as k = 1, k = 10,
or k = 100). This means that we want to obtain k objects (which we may refer to as the “top k
objects”) with the highest grades on this query, along with their grades (ties are broken arbitrarily).
For convenience, throughout this paper we will think of k as a constant value, and we will consider
algorithms for obtaining the top k answers in databases that contain at least k objects.

3 The Model

We now describe the model more formally. We assume that each database consists of a finite set of
objects. We shall typically take N to represent the number of objects. Associated with each object R are
m fields x1, . . . , xm, where xi ∈ [0, 1] for each i. We may refer to xi as the ith field of R. The database
can be thought of as consisting of a single relation, where one column corresponds to the object id, and
the other columns correspond to m attributes of the object. Alternatively, the way we shall think of
a database in this paper is as consisting of m sorted lists L1, . . . , Lm, each of length N (there is one
entry in each list for each of the N objects). We may refer to Li as list i. Each entry of Li is of the
form (R, xi), where xi is the ith field of R. Each list Li is sorted in descending order by the xi value.
We take this simple view of a database, since this view is all that is relevant, as far as our algorithms
are concerned. We are taking into account only access costs, and ignoring internal computation costs.
Thus, in practice it might well be expensive to compute the field values, but we ignore this issue here,
and take the field values as being given.

We consider two modes of access to data. The first mode of access is sorted (or sequential) access.
Here the middleware system obtains the grade of an object in one of the sorted lists by proceeding
through the list sequentially from the top. Thus, if object R has the `th highest grade in the ith list,
then ` sorted accesses to the ith list are required to see this grade under sorted access. The second mode
of access is random access. Here, the middleware system requests the grade of object R in the ith list,
and obtains it in one random access. If there are s sorted accesses and r random accesses, then the
sorted access cost is cSs · s, the random access cost is cR · r, and the middleware cost is cS · s + cR · r
(the sum of the sorted access cost and the random access cost), for some positive constants cS and cR.

4 Algorithms

Our focus in this paper is on algorithms for determining the top k answers. In this section, we present
three algorithms.

4.1 The Naive Algorithm

There is an obvious naive algorithm for obtaining the top k answers. Under sorted access, it looks at
every entry in each of the m sorted lists, computes (using t) the overall grade of every object, and returns
the top k answers. The naive algorithm has linear middleware cost (linear in the database size), and
thus is not efficient for a large database.
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4.2 Fagin’s Algorithm

The first algorithm for our problem to appear in the literature2 is now often called “Fagin’s Algorithm”
[Fag99], which we shall modestly refer to as FA. Chaudhuri and Gravano [CG96] consider ways to
simulate FA by using “filter conditions”, which might say, for example, that the color score is at least
0.2. FA works as follows.

1. Do sorted access in parallel to each of the m sorted lists Li. (By “in parallel”, we mean that we
access the top member of each of the lists under sorted access, then we access the second member
of each of the lists, and so on.) Wait until there are at least k “matches”, that is, wait until there
is a set H of at least k objects such that each of these objects has been seen in each of the m lists.

2. For each object R that has been seen, do random access as needed to each of the lists Li to find
the ith field xi of R.

3. Compute the grade t(R) = t(x1, . . . , xm) for each object R that has been seen. Let Y be a set
containing the k objects that have been seen with the highest grades (ties are broken arbitrarily).
The output is then the graded set {(R, t(R)) |R ∈ Y }.

FA is correct for monotone aggregation functions t (that is, the algorithm successfully finds the top
k answers) [Fag99]. If there are N objects in the database, and if the orderings in the sorted lists are
probabilistically independent, then the middleware cost of FA is O(N (m−1)/mk1/m), with arbitrarily
high probability [Fag99]. We shall not discuss the probability model of [Fag99], including the notion of
“independence”, since it is off track, and is not needed for our subsequent discussions of other algorithms.

An aggregation function t is strict [Fag99] if t(x1, . . . , xm) = 1 holds precisely when xi = 1 for
every i. Thus, an aggregation function is strict if it takes on the maximal value of 1 precisely when each
argument takes on this maximal value. We would certainly expect an aggregation function representing
the conjunction to be strict (see the discussion in [Fag99]). In fact, it is reasonable to think of strictness
as being a key characterizing feature of the conjunction. It can be shown that the algorithm FA is
optimal with high probability in the worst case if the aggregation function is strict, and if the orderings
in the sorted lists are probabilistically independent [Fag99].

4.3 The Threshold Algorithm

Although FA is optimal in a certain sense, there are many situations where FA performs rather poorly.
In [Fag99], it was noted that there are no guarantees when the aggregation function is not strict. As the
most obvious example, assume that the aggregation function is constant; in this case, there is a trivial
algorithm that gives us the top k answers (any k objects will do) with O(1) middleware cost. By contrast,
FA, whose access pattern is oblivious to the choice of aggregation function, has Ω(N (m−1)/mk1/m)
middleware cost. As a more interesting example, when the aggregation function is max (which is not
strict), it is shown in [Fag99] that there is a simple algorithm that makes at most mk sorted accesses
and no random accesses that finds the top k answers.

The problems with FA run deeper than simply the fact that it may perform badly when the aggre-
gation function is not strict. Even when the aggregation function is strict, there may be some databases
where FA is much too conservative. Several groups [NR99, GBK00, FLN02] independently found a new
algorithm, which is called the “threshold algorithm” in [FLN02]. As we shall discuss, the threshold
algorithm is essentially optimal (up to a constant factor) over every database.

Amnon Lotem first defined TA, and did extensive simulations comparing it to FA, as a project in
a database course taught by Michael Franklin at the University of Maryland–College Park, in the Fall
of 1997. A few years later, Michael Franklin brought the existence of this work to the attention of the

2This algorithm first appeared in the PODS ’96 conference version of [Fag99].
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author. This led to a collaboration that produced the paper [FLN02]. Nepal and Ramakrishna [NR99]
were the first to publish an algorithm that is equivalent to TA. They essentially restricted attention to the
situation where the aggregation function is the min (for more details on their restriction, see [FLN02]).
Güntzer, Balke, and Kiessling [GBK00] also define an algorithm that is equivalent to TA. They call this
algorithm “Quick-Combine (basic version)” to distinguish it from their algorithm of interest, which they
call “Quick-Combine”. The difference between these two algorithms is that Quick-Combine provides a
heuristic rule that determines which sorted list Li to do the next sorted access on. The intuitive idea is
that they wish to speed up TA by taking advantage of skewed distributions of grades. They do extensive
simulations to compare Quick-Combine against FA. Unlike TA, which as we shall discuss, is optimal in
a strong sense (“instance optimal”), it turns out that Quick-Combine is not instance optimal.

We now present the threshold algorithm (TA).

1. Do sorted access in parallel to each of the m sorted lists Li. As an object R is seen under sorted
access in some list, do random access to the other lists to find the grade xi of object R in every
list Li. Then compute the grade t(R) = t(x1, . . . , xm) of object R. If this grade is one of the k
highest we have seen, then remember object R and its grade t(R) (ties are broken arbitrarily, so
that only k objects and their grades need to be remembered at any time).

2. For each list Li, let xi be the grade of the last object seen under sorted access. Define the threshold
value τ to be t(x1, . . . , xm). As soon as at least k objects have been seen whose grade is at least
equal to τ , then halt.

3. Let Y be a set containing the k objects that have been seen with the highest grades. The output
is then the graded set {(R, t(R)) |R ∈ Y }.

TA is correct for each monotone aggregation function t [FLN02]. We now show that the stopping
rule for TA always occurs at least as early as the stopping rule for FA (that is, with no more sorted
accesses than FA). In FA, if R is an object that has appeared under sorted access in every list, then by
monotonicity, the grade of R is at least equal to the threshold value. Therefore, when there are at least
k objects, each of which has appeared under sorted access in every list (the stopping rule for FA), there
are at least k objects whose grade is at least equal to the threshold value (the stopping rule for TA).

We note that Natsev et al. [NCS+01] observe that the scenario we have been discussing can be
thought of as taking joins over sorted lists where the join is over a unique record ID present in all the
sorted lists. They generalize by considering arbitrary joins.
Instance Optimality of TA: It is shown in [FLN02] that TA is optimal in a strong sense, which we
now define. Let A be a class of algorithms, let D be a class of databases, and let cost(A,D) be the
middleware cost incurred by running algorithm A over database D. An algorithm B is instance optimal
over A and D if B ∈ A and if for every A ∈ A and every D ∈ D we have

cost(B,D) = O(cost(A,D)). (1)

Equation (1) means that there are constants c and c′ such that

cost(B,D) ≤ c · cost(A,D) + c′ (2)

for every choice of A ∈ A and D ∈ D. We refer to c as the optimality ratio. Intuitively, instance
optimality corresponds to optimality in every instance, as opposed to just the worst case or the average
case.

FA is optimal in a high-probability worst-case sense under certain assumptions. TA is optimal in a
much stronger sense, and without any underlying probabilistic model or probabilistic assumptions: it is
instance optimal, for several natural choices of A and D [FLN02] (unless otherwise stated, throughout
this overview paper, whenever we speak of instance optimality, we shall take D to be the class of all
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databases). In particular, an important case where TA is instance optimal occurs when A is the class of
algorithms that would normally be implemented in practice (since the only algorithms that are excluded
are those that make wild guesses, which are random accesses on an object not previously encountered by
sorted access). Instance optimality of TA holds in this case for all monotone aggregation functions. By
contrast, as we discussed, high-probability worst-case optimality of FA holds only under the assumption
of strictness of the aggregation function.

Another advantage of TA over FA is that TA requires only bounded buffers, whose size is independent
of the size of the database. By contrast, FA requires buffers that grow arbitrarily large as the database
grows, since FA must remember every object it has seen in sorted order in every list, in order to check
for matching objects in the various lists.

5 Turning TA into an Approximation Algorithm, and Allowing
Early Stopping

TA can easily be modified to be an approximation algorithm. It can then be used in situations where we
care only about the approximately top k answers. Thus, let θ > 1 be given. Define a θ-approximation
to the top k answers (for t over database D) to be a collection of k objects (and their grades) such
that for each y among these k objects and each z not among these k objects, θt(y) ≥ t(z). To find a
θ-approximation to the top k answers, modify the stopping rule of TA in Step 1 to say “As soon as at
least k objects have been seen whose grade is at least equal to τ/θ, then halt.” This approximation
algorithm is called TAθ.

If θ > 1 and the aggregation function t is monotone, then TAθ correctly finds a θ-approximation
to the top k answers for t [FLN02]. It is also shown in [FLN02] that when we restrict attention to
algorithms that do not make wild guesses, TAθ is instance optimal.

It is straightforward to modify TAθ into an interactive process where at all times the system can
show the user the current top k list along with a guarantee about the degree of approximation to the
correct answer. At any time, the user can decide, based on this guarantee, whether he would like to
stop the process. Thus, let β be the grade of the kth (bottom) object in the current top k list, let τ
be the current threshold value, and let θ = τ/β. If the algorithm is stopped early, we have θ > 1. It
is easy to see that the current top k list is then a θ-approximation to the top k answers. Thus, the
user can be shown the current top k list and the number θ, with a guarantee that he is being shown a
θ-approximation to the top k answers.

6 Restricting Sorted Access

Bruno, Gravano, and Marian [BGM02] discuss a scenario where it is not possible to access certain of
the lists under sorted access. They give a nice example where the user wants to get information about
restaurants. The user has an aggregation function that gives a score to each restaurant based on how
good it is, how inexpensive it is, and how close it is. In this example, the Zagat-Review web site gives
ratings of restaurants, the NYT-Review web site gives prices, and the MapQuest web site gives distances.
Only the Zagat-Review web site can be accessed under sorted access (with the best restaurants at the
top of the list).

Let Z be the set of indices i of those lists Li that can be accessed under sorted access. We assume
that Z is nonempty, that is, that at least one of the lists can be accessed under sorted access. We take
m′ to be the cardinality |Z| of Z (and as before, take m to be the total number of sorted lists). As
in [FLN02], define TAZ to be the following natural modification of TA, that deals with the restriction
on sorted access. In the case where |Z| = 1, algorithm TAZ is essentially the same as the algorithm
TA-Adapt in [BGM02].
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1. Do sorted access in parallel to each of the m′ sorted lists Li with i ∈ Z. As an object R is seen
under sorted access in some list, do random access as needed to the other lists to find the grade
xi of object R in every list Li. Then compute the grade t(R) = t(x1, . . . , xm) of object R. If this
grade is one of the k highest we have seen, then remember object R and its grade t(R) (ties are
broken arbitrarily, so that only k objects and their grades need to be remembered at any time).

2. For each list Li with i ∈ Z, let xi be the grade of the last object seen under sorted access. For
each list Li with i 6∈ Z, let xi = 1. Define the threshold value τ to be t(x1, . . . , xm). As soon as at
least k objects have been seen whose grade is at least equal to τ , then halt.3

3. Let Y be a set containing the k objects that have been seen with the highest grades. The output
is then the graded set {(R, t(R)) |R ∈ Y }.

TAZ is correct, and is instance optimal when we restrict attention to algorithms that do not make
wild guesses [FLN02].

7 Restricting Random Access

There are some scenarios where the middleware system is not allowed random access to some subsystem.
An example might occur when the middleware system is a text retrieval system, and the subsystems
are search engines. Thus, there does not seem to be a way to ask a major search engine on the web
for its internal score on some document of our choice under a query. To deal with such scenarios, two
groups [FLN02, GBK01] have devised modifications of TA that do no random access. The algorithm of
[FLN02], which they call NRA (“no random accesses”) is instance optimal when we restrict attention to
algorithms that do not make random accesses. We shall give the algorithm NRA shortly.

There are other scenarios where random access is not impossible, but simply expensive. An example
arises when the costs correspond to disk access (sequential versus random). Also, Wimmers et al.
[WHRB99] discuss a number of systems issues that can cause random access to be expensive. Then we
would like the optimality ratio to be independent of the ratio cR/cS (recall that cR is the cost of a single
random access, and cS is the cost of a single sorted access). That is, if we allow cR and cS to vary,
instead of treating them as constants, we would still like the optimality ratio to be bounded. Shortly, we
shall give an algorithm (which depends on cR/cS) that is a combination of TA and NRA. This algorithm
is called CA (“combined algorithm”) in [FLN02]. Under natural restrictions on the aggregation function
and the class of databases, CA is instance optimal, with optimality ratio independent of cR/cS .

In focusing on scenarios where random accesses are expensive or impossible, the criteria are changed
in [FLN02] for the desired output. The criterion used so far has been that the output be the “top k
answers”, which consists of the top k objects, along with their (overall) grades. In the scenarios we
are now considering, a weaker requirement is specified in [FLN02], namely, that the output consist of
the top k objects, without their grades. The reason is that, since random accesses are expensive or
impossible, there are instances where it is much cheaper to find the top k objects without their grades.
This is because, as is shown by example in [FLN02], we can sometimes obtain enough partial information
about grades to know that an object is in the top k objects without knowing its exact grade. The new
requirement, as stated, says only that the output must consist of the top k objects, with no information
being given about the sorted order (sorted by grade). If we wish to know the sorted order, this can
easily be determined by finding the top object, the top 2 objects, etc.

3Even though there are at least k objects, it is possible [FLN02] that after seeing the grade of every object in every
list, and thus having done sorted access to every object in every list Li with i ∈ Z, there are not at least k objects with a
grade that is at least equal to the final threshold value τ . In this situation, TAZ halts after it has seen the grade of every
object in every list. This situation cannot happen with TA.
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Before we can present the algorithms NRA and CA, we need to define some notions corresponding
to lower and upper bounds on the overall grade an object can attain, based on the information available
at the time.

Given an object R and subset S(R) = {i1, i2, . . . , i`} ⊆ {1, . . . ,m} of known fields of R, with values
xi1 , xi2 , . . . , xi`

for these known fields, define WS(R) to be the minimum (or worst) value the aggregation
function t can attain for object R. When t is monotone, this minimum value is obtained by substituting
for each missing field i ∈ {1, . . . ,m}\S the value 0, and applying t to the result. For example, if
S = {1, . . . , `}, then WS(R) = t(x1, x2, . . . , x`, 0, . . . , 0).

What about upper bounds? The best value an object can attain depends on other information we
have. We will use only the bottom values in each field, defined as in TA: xi is the last (smallest) value
obtained via sorted access in list Li. Given an object R and subset S(R) = {i1, i2, . . . , i`} ⊆ {1, . . . ,m}
of known fields of R, with values xi1 , xi2 , . . . , xi`

for these known fields, define BS(R) to be the maximum
(or best) value the aggregation function t can attain for object R. When t is monotone, this maximum
value is obtained by substituting for each missing field i ∈ {1, . . . ,m}\S the value xi, and applying t to
the result. For example, if S = {1, . . . , `}, then BS(R) = t(x1, x2, . . . , x`, x`+1, . . . , xm).

We now give the algorithm NRA, which makes no random accesses.

1. Do sorted access in parallel to each of the m sorted lists Li. At each depth d (when d objects have
been accessed under sorted access in each list):

• Maintain the bottom values x
(d)
1 , x

(d)
2 , . . . , x

(d)
m encountered in the lists.

• For every object R with discovered fields S = S(d)(R) ⊆ {1, . . . ,m}, compute the values
W (d)(R) = WS(R) and B(d)(R) = BS(R). (For objects R that have not been seen, these
values are virtually computed as W (d)(R) = t(0, . . . , 0), and B(d)(R) = t(x1, x2, . . . , xm),
which is the threshold value.)

• Let T
(d)
k , the current top k list, contain the k objects with the largest W (d) values seen so

far (and their grades); if two objects have the same W (d) value, then ties are broken using
the B(d) values, such that the object with the highest B(d) value wins (and arbitrarily among
objects that tie for the highest B(d) value). Let M

(d)
k be the kth largest W (d) value in T

(d)
k .

2. Call an object R viable if B(d)(R) > M
(d)
k . Halt when (a) at least k distinct objects have been

seen (so that in particular T
(d)
k contains k objects) and (b) there are no viable objects left outside

T
(d)
k , that is, when B(d)(R) ≤ M

(d)
k for all R 6∈ T

(d)
k . Return the objects in T

(d)
k .

NRA is correct for each monotone aggregation function t [FLN02]. Further, as we noted, it is instance
optimal when we restrict attention to algorithms that do not make random accesses.

As we noted earlier, Güntzer, Balke, and Kiessling [GBK01] also give an algorithm for the situation
where random accesses are impossible. As with TA, they define a basic algorithm, called “Stream-
Combine (basic version)” and a modified algorithm (“Stream-Combine”) that incorporates a heuristic
rule that tells which sorted list Li to do a sorted access on next. Neither version of Stream-Combine
is instance optimal. The reason that the basic version of Stream-Combine is not instance optimal is
that it considers only upper bounds on overall grades of objects, unlike NRA, which considers both
upper and lower bounds. They require that the top k objects be given with their grades (whereas as
we discussed, in [FLN02] it is not required that the grades be given in the case where random accesses
are impossible). The algorithms of [GBK01] cannot say that an object is in the top k unless that object
has been seen in every sorted list. Note that there are monotone aggregation functions (such as max,
or more interestingly, median) where it is possible to determine the overall grade of an object without
knowing its grade in each sorted list.

We now give the algorithm CA, which is appropriate when random accesses are expensive relative to
sorted accesses.
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1. Do sorted access in parallel to each of the m sorted lists Li. At each depth d (when d objects have
been accessed under sorted access in each list):

• Maintain the bottom values x
(d)
1 , x

(d)
2 , . . . , x

(d)
m encountered in the lists.

• For every object R with discovered fields S = S(d)(R) ⊆ {1, . . . ,m}, compute the values
W (d)(R) = WS(R) and B(d)(R) = BS(R). (For objects R that have not been seen, these
values are virtually computed as W (d)(R) = t(0, . . . , 0), and B(d)(R) = t(x1, x2, . . . , xm),
which is the threshold value.)

• Let T
(d)
k , the current top k list, contain the k objects with the largest W (d) values seen so

far (and their grades); if two objects have the same W (d) value, then ties are broken using
the B(d) values, such that the object with the highest B(d) value wins (and arbitrarily among
objects that tie for the highest B(d) value). Let M

(d)
k be the kth largest W (d) value in T

(d)
k .

2. Call an object R viable if B(d)(R) > M
(d)
k . Every h = bcR/cSc steps (that is, every time the

depth of sorted access increases by h), do the following: pick the viable object that has been
seen for which not all fields are known and whose B(d) value is as big as possible (ties are broken
arbitrarily). Perform random accesses for all of its (at most m − 1) missing fields. If there is no
such object, then do not do a random access on this step.

3. Halt when (a) at least k distinct objects have been seen (so that in particular T
(d)
k contains k

objects) and (b) there are no viable objects left outside T
(d)
k , that is, when B(d)(R) ≤ M

(d)
k for all

R 6∈ T
(d)
k . Return the objects in T

(d)
k .

CA is correct for each monotone aggregation function t [FLN02]. Further, as we noted, under
natural restrictions on the aggregation function and the class of databases, CA is instance optimal, and
has optimality ratio independent of cR/cS [FLN02].

8 Summary

This paper gives an overview of some recent algorithms on aggregating information from various sources,
in order to obtain the overall top k objects. The first such algorithm was “Fagin’s Algorithm”, which
is optimal in a high-probability worst-case sense under certain assumptions. This was supplanted by
the threshold algorithm, which is optimal in a much stronger sense, and without any probabilistic
assumptions: it is instance optimal, as long as we restrict attention to algorithms that do not make
wild guesses (other scenarios are also presented in [FLN02] where the threshold algorithm is instance
optimal). We discuss a version of the threshold algorithm that is appropriate when we care only about
the “approximately” top k answers. We discuss algorithms that are appropriate when sorted access is
impossible for certain of the sorted lists, and algorithms that are appropriate when random accesses are
expensive or impossible. Although we have not considered the issue here, upper and lower bounds are
derived in [FLN02] for the optimality ratio in various circumstances (recall that the optimality ratio is
the constant c in Equation (2)). As an example, it is shown that the optimality ratio of TA when we
restrict attention to algorithms that do not make wild guesses is m + m(m − 1)cR/cS , where m is the
number of sorted lists, and it is shown that no deterministic algorithm has a lower optimality ratio.
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