
manuscript No.
(will be inserted by the editor)

Revisiting Aggregation for Data Intensive Applications:
A Performance Study

Jian Wen · Vinayak R. Borkar · Michael J. Carey · Vassilis J. Tsotras

Received: date / Accepted: date

Abstract Aggregation has been an important opera-

tion since the early days of relational databases. To-

day’s Big Data applications bring further challenges

when processing aggregation queries, demanding adap-

tive aggregation algorithms that can process large vol-

umes of data relative to a potentially limited memory

budget (especially in multiuser settings). Despite its im-

portance, the design and evaluation of aggregation al-

gorithms has not received the same attention that other

basic operators, such as joins, have received in the liter-

ature. As a result, when considering which aggregation

algorithm(s) to implement in a new parallel Big Data

processing platform (AsterixDB), we faced a lack of “off

the shelf” answers that we could simply read about and

then implement based on prior performance studies.

In this paper we revisit the engineering of efficient
local aggregation algorithms for use in Big Data plat-

forms. We discuss the salient implementation details of

several candidate algorithms and present an in-depth

experimental performance study to guide future Big

Data engine developers. We show that the efficient im-

plementation of the aggregation operator for a Big Data

platform is non-trivial and that many factors, including

memory usage, spilling strategy, and I/O and CPU cost,

should be considered. Further, we introduce precise cost

models that can help in choosing an appropriate al-

gorithm based on input parameters including memory

budget, grouping key cardinality, and data skew.

Keywords Aggregation · Big Data

Jian Wen, Vassilis J. Tsotras
Univ. of California, Riverside
E-mail: wenj@cs.ucr.edu, tsotras@cs.ucr.edu

Vinayak R. Borkar, Michael J. Carey
Univ. of California, Irvine
E-mail: vborkar@ics.uci.edu, mjcarey@ics.uci.edu

1 Introduction

Aggregation has always been a very important opera-

tion in database processing. For example, all 22 queries

in the TPC-H Benchmark [3] contain aggregation. It is

also a key operation for data preprocessing and query

processing in data intensive applications, such as ma-

chine learning on large volume data [7], and web-related

data processing like web-log and page ranking [18], etc.

In the big data scenario where data is spread over a

distributed environment, like Hadoop and many popu-

lar distributed relational databases, aggregation is typ-

ically processed in a map-combine-reduce fashion. Such

a strategy first obtains the local aggregation results,

which are then merged to get the global aggregation

results. Hence, the efficiency of the local aggregation

algorithm is a key factor for the global aggregation per-

formance.

In our effort to support the aggregation operation

in our next generation parallel data processing plat-

form AsterixDB [4], we noticed two new challenges that

big data applications impose on local aggregation algo-

rithms: first, if the input data is huge and the aggrega-

tion is group-based (like the “group-by” in SQL, where

each unique group will have a record in the result set),

the aggregation result may not fit in main memory;

second, in order to allow multiple operations being pro-

cessed simultaneously, an aggregation operation should

work within a strict memory budget provided by the

platform.

Implementing an aggregation operation to address

these challenges is not trivial. Aggregation has not at-

tracted as much attention as other operations like joins,

probably due to its simpler computational logic. Several

aggregation algorithms proposed in literature decades

ago, like pre-sorting the input data [9], or using hash-

ar
X

iv
:1

31
1.

00
59

v1
 [

cs
.D

B
]

 3
1

O
ct

 2
01

3

2 Jian Wen et al.

ing [22], have not been fully studied with respect to

their performance for very large datasets or datasets

with different distribution properties. While some join

processing techniques [13] can be adapted for aggre-

gation queries, they are tuned for better join perfor-

mance. All these existing algorithms lack for details on

how to implement them using strictly bounded mem-

ory, and there is no study about which aggregation algo-

rithm works better for which circumstances. To answer

these questions we present in this paper a thorough

study of single machine aggregation algorithms under

the bounded memory and big data assumptions. Our

contributions can be summarized as:

1. We present detailed implementation strategies for

six aggregation algorithms: two are novel and four

are based on extending existing algorithms. All algo-

rithms work within a strictly bounded memory bud-

get, and they can easily adapt between in-memory

and external processing.

2. We devise precise theoretical cost models for the

algorithms’ CPU and I/O behaviors. Based on input

parameters, such models can be used by a query

optimizer to choose the right aggregation strategy.

3. We deploy all algorithms as operators on the Hyracks

platform [6], a flexible, extensible, partitioned-parallel

platform for data-intensive computing, and evaluate

their performance through extensive experimenta-

tion.

Note that this paper is the first part of a two-part

big data aggregation study; here we address the “map”

phase with extensive study of local aggregation algo-

rithms. The result of this study provides a foundation

for proper local aggregation algorithms as the compo-

nent of a global aggregation strategy for the next, “re-

duce” phase, study.

The rest of the paper is organized as follows: Sec-

tion 2 presents related research, while Section 3 dis-

cusses the processing environment for our aggregation

algorithms. Section 4 describes in detail all algorithms

and Section 5 presents their theoretical performance

analysis. The experimental evaluation results appear in

Section 6. Section 7 discusses the algorithm selection

strategy in AsterixDB, and Section 8 concludes the pa-

per. In the Appendix we list the theoretical details of

the basic component models used in our cost model

analysis in Section 5.

2 Related Work

In our search for efficient local aggregation algorithms

for AsterixDB, we noticed that aggregation has not

drawn much attention in the study of efficient algo-

rithms using tightly bounded memory. The well-known

sort-based and hash-based aggregation algorithms dis-

cussed in [9], [5], [19] and [23] provide straight-forward

approaches to handle both in-memory and external ag-

gregations, but these algorithms use sorting and hash-

ing in a straight-forward way and there is space to fur-

ther optimize the CPU and I/O cost. [11] discussed

three approaches for aggregations that may not fit into

memory, namely nested-loop, sort-based and hash-based.

It suggests that the hash-based approach using hybrid-

hash would be the choice when the input data can be

greatly collapsed through aggregation. Our study of the

hybrid-hash algorithm reveals that its hashing and par-

titioning strategy can be implemented in different ways,

leading to different performance behaviors. These have

not been discussed in the original paper, and precise

cost models are also missing for the proper selection of

aggregation algorithms under different configurations.

[13] presented optimizations for hybrid-hash-based al-

gorithms, including dynamic destaging, partition tun-

ing and many best-practice experiences from the expe-

rience of SQL Server implementation. However, this pa-

per focuses more on optimization related to joins rather

than aggregations. [22] tried to address the problem of

efficient parallel aggregation algorithms albeit for SQL,

as we are doing for the AsterixDB project. For the lo-

cal aggregation algorithm, they picked a variant of the

hybrid-hash aggregation algorithm that shares its hash-

ing space among all partitions. But no optimization has

been done with other aggregation algorithms. More re-

cently, [8] examined thread-level parallelism and pro-

posed an adaptive aggregation algorithm optimized for

cache locality by sampling and sharing the hash table

in cache. However, in order to reveal the performance

benefits from using the CPU cache, only in-memory ag-

gregation algorithms were addressed. We think that for

an external aggregation algorithm, it is important to

address the I/O efficiency first, and then to optimize

the CPU behavior for each in-memory run of the ag-

gregation. [24] studied several in-memory aggregation

algorithms for efficient thread-level parallelism and re-

ducing cache contention. Similar to our proposed Pre-

Partitioning algorithm, the PLAT algorithm in their

paper partitions the input data based on their input

order and fills up the per-thread hash table first. How-

ever, PLAT processes records in memory even after the

hash table is full, based on the assumption that the in-

put data can be fit into memory. In our algorithm we

explore the case where the memory is not enough for

in-memory aggregation, so disk spilling happens after

the hash table is full. In our experiments we also ob-

serve significant hash miss cost in our Pre-Partitioning

Revisiting Aggregation for Data Intensive Applications:A Performance Study 3

algorithm, and we use an optimized hash table design

to solve this problem.

3 Processing Environment

We now proceed to describe the main characteristics of

the aggregation operation that we consider as well as

the assumptions about the data and resources used.

3.1 Aggregate Functions

Our focus is on aggregate functions [9] such as ag-

gregation combined with the “GROUP-BY” clause in

SQL. As an example, consider the “big data” dataset

UserVisits from [18]; it contains a visit history of web

pages with the attributes shown in Table 1.

Attribute Name Description
sourceIP the IP address (the source of the visit)
destURL the URL visited
adRevenue the revenue generated by the visit
userAgent the web client the user used
countryCode the country the visit is from
languageCode the language for the visit
searchWord the search keyword
duration the duration of the visit

Table 1 Attributes in UserVisits dataset.

An example GROUP BY aggregation appears in the fol-

lowing SQL query, which for each sourceIP address

(representing a unique user), computes the total adver-

tisement revenue and the total number of visits:

SELECT sourceIP, SUM(adRevenue), COUNT(*)

FROM UserVisits

GROUP BY sourceIP

The by-list (the GROUP BY clause in the example)

specifies the grouping key, while the aggregate func-

tion(s) (SUM and COUNT in the example) specify the way

to compute the grouping state. The grouping state

in the above example has two aggregated values (sum

and count). The result of the aggregation (the group

record or group for short) contains both the grouping

key and the grouping state.

Many commonly-used aggregate functions, like the

SUM and COUNT in the example, can be processed in

an accumulating way, i.e., for each group, only a sin-

gle grouping state (with one or more aggregate val-

ues) needs to be maintained in memory, no matter how

many records belong to this group. Similar bounded-

state aggregate functions include AVERAGE, MIN, and

MAX. Many other aggregate functions, like finding the

longest string of a given field per group (i.e., “find the

longest searchWord for each sourceIP in the UserVisits

dataset”), can be considered as bounded-state functions

if the memory usage of the grouping state is bounded

(for example the searchWord could be at most 255 char-

acters long, which is a common constraint in relational

databases). A query with multiple aggregate functions

on the same group-by condition is also bounded on the

state, as far as each of them is a bounded-state func-

tion. So all our discussion in the paper also applies to

this case.

However, there are aggregate functions that are not

in the bounded-state category. An example is LISTIFY

(supported in AsterixDB) which for each group returns

all records belonging to that group in the form of a

(nested) list. Since the size of the grouping state de-

pends on the number of group members, its memory

usage could be unbounded. In this paper we concen-

trate primarily on bounded-state aggregate functions,

as those are the most common in practice. Note that

the simpler, scalar aggregation can be considered as an

aggregate function with a single group (and thus all

algorithms we will discuss can be applied to scalar ag-

gregation directly).

3.2 Data and Resource Characteristics

We assume that the size of the dataset can be far larger

than the available memory capacity, so full in-memory

aggregation could be infeasible. Whether our algorithms

use in-memory or external processing depends on the

total size of the grouping state, which is decided by the

number of unique groups in the dataset (grouping key

cardinality), and also the size of the grouping state. An

efficient aggregation algorithm should be able to apply

in-memory processing if all unique groups can fit into

memory, and shift dynamically to external processing

otherwise.

This paper assumes a commonly-used frame-based

memory management strategy, which has been imple-

mented in the Hyracks [6] data processing engine where

all our algorithms are implemented. The Hyracks en-

gine manages the overall system memory by assigning

a tightly bounded memory budget to each query, in or-

der to support parallel query processing. We will use

M to denote the memory budget (in frames or memory

pages) for a particular aggregation query, R to denote

the size of the input data in frames, and G the size of

the result set in frames.

For aggregation algorithms that utilize a hash table,

current Hyracks operators use a traditional separate

chaining hash table with linked lists [16]. The memory

assigned to a hash table is used by a slot table and

a list storage area. The slot table contains a fixed

4 Jian Wen et al.

number of slots H (i.e., it is static hashing; H is also

referred to as the slot table size). Each non-empty

slot stores a pointer to a linked list of group records

(whose keys were hashed to that slot). The list stor-

age area stores the actual group records in these linked

list(s). Group records from different slots can be stored

in the same frame. A new group is hashed into a slot by

being inserted to the head of the linked list of that slot

(or creating a new linked list if the slot was empty). An

already-seen group is aggregated by updating its group

record in the linked list.

Fig. 1 An In-memory Hash Table.

An in-memory hash table is full when no new group

record can fit in the list storage area based on its given

memory budget. Figure 1 shows such an in-memory

hash table with a budget of M frames (for both the

slot table and the list storage area), where h frames are

occupied by the slot table.

4 Aggregation Algorithms

This section takes an in-depth look at six candidate

aggregation algorithms: the Sort-based, the Hash-Sort,

and four hybrid-hash-based algorithms (Original Hybrid-

Hash, Shared Hashing, Dynamic Destaging, and Pre-

Partitioning). The Hash-Sort and Pre-Partitioning al-

gorithms are novel, while the others are based on adapt-

ing approaches discussed in the previous literature. Ta-

ble 2 gives an overview of these algorithms.

4.1 Sort-based Algorithm

The classic Sort-based aggregation algorithm includes

two phases, sort and aggregate. Figure 2 depicts the

algorithm’s workflow. The sort phase sorts the data on

the grouping key (using a sort-merge approach), while

the aggregate phase scans the sorted data once to pro-

duce the aggregation result. In detail:

– Phase 1 (External Sort): (i) Sort: Data is fetched

into memory in frames. When the memory is full,

Fig. 2 Sort-based Algorithm

Algorithm Using Sort? Using Hash?

Sort-based [9],[5],[19], [23] Yes No
Hash-Sort (New) Yes Yes

Original Hybrid-Hash [21] No Yes
Shared Hashing [22] No Yes

Dynamic Destaging [13] No Yes
Pre-Partitioning (New) No Yes

Table 2 Overview of all six algorithms.

all in-memory records are sorted using the Quick-

sort algorithm [20], and flushed into a run file. If

the total projected input data size is less than the

memory size, the sorted records are maintained in

memory and no run is generated. Otherwise, runs

are created until all input records have been pro-

cessed. (ii) Merge: Sorted runs are scanned in mem-

ory, with each run having one frame as its loading

buffer. Records are merged using a loser-tree [16].

If the number of runs is larger than the number of

available frames in memory, multiple levels of merg-

ing are needed (and new runs may be generated dur-

ing the merging).

– Phase 2 (Group): Each output record of the last

round of merging in Phase 1 (i.e., when the number

of runs is less than or equal to the available frames in

memory) will be aggregated on-the-fly, by keeping

just one group as the current running group in mem-

ory and comparing the merge output record with the

running group: if they have the same grouping key,

they are aggregated; otherwise, the running group

is flushed into the final output and replaced with

the next merge output record. This continues until

all records outputted from Phase 1 are processed.

(a) Sort in Phase 1 (b) Group in Phase 2

Fig. 3 Memory structure in the Sort-based algorithm.

The algorithm uses only the available memory bud-

get M , since (i) the in-place Quicksort algorithm [20]

sorts M−1 frames with one frame as the output buffer,

and (ii) for merging, at most M−1 runs will be merged

in a single merge round, and multiple-level merging will

ensure this if the number of runs is larger than M − 1.

The group phase is pipelined with the last round of

merging and it needs to maintain only one running

group in memory (since the input records of this phase

are provided in sorted order on the grouping key).

Revisiting Aggregation for Data Intensive Applications:A Performance Study 5

4.2 Hash-Sort Algorithm

The main disadvantage of the Sort-based algorithm is

that it first scans and sorts the whole dataset. For a

dataset that can be collapsed during aggregation, ap-

plying aggregation at an early stage would potentially

save both I/O and CPU cost. The Hash-Sort algorithm

that we developed for AsterixDB takes advantage of

this observation by performing some aggregation be-

fore sorting. Figure 4 illustrates the workflow of this al-

gorithm. Specifically, the Hash-Sort algorithm contains

two phases, as described below:

Fig. 4 Hash-Sort Algorithm

– Phase 1 (Sorted Run Generation): An in-memory

hash table is initialized using M−1 frames while the

remaining frame is used as an output buffer. Input

records are hashed into the hash table for aggrega-

tion. A new grouping key creates a new entry in the

hash table, while a grouping key that finds a match

is aggregated. When the hash table becomes full,

the groups within each slot of the table are sorted

(per slot) on the grouping key using in-place Quick-

sort, and the sorted slots are flushed into a run file

in order of slot id (i.e., records in each run are stored

in (slot-id, grouping key) order). The hash table

is then emptied for more insertions. This continues

until all input records have been processed. If all

groups manage to fit into the hash table, the ta-

ble is then directly flushed to the final output (i.e.,

Phase 2 is not applicable).

– Phase 2 (Merge and Group): Each generated run is

loaded using one frame as its loading buffer, and an

in-memory loser-tree priority queue is built on the

combination of (slot-id, grouping key) for merg-

ing and aggregation. The first group record popped

is stored in main memory as the running group. If

the next group popped has the same grouping key, it

is aggregated. Otherwise, the running group is writ-

ten to the output and is replaced by the new group

(just popped). This process continues until all runs

have been consumed. Similar to the Sort-based al-

gorithm, at most M −1 runs can be merged in each

round; if more runs exist, multiple-level merging is

employed.

This algorithm also uses a bounded memory budget.

Figure 5 shows the memory configuration in its two

phases. In the first phase the in-memory hash table uses

(a) Phase 1 (b) Phase 2

Fig. 5 Memory structure in the Hash-Sort algorithm.

exactly M − 1 frames of the memory, and the table is

flushed and emptied when it is full. Sorting (although

slot-based) and merging are similar to the Sort-based

algorithm in terms of memory consumption.

4.3 Hybrid-Hash Variants

Hybrid-hash algorithms assume that the input data can

eventually be partitioned so that one partition (the

resident partition) can be completely aggregated in-

memory, while each of the other partitions (spilling

partitions) is flushed into a run and loaded back later

for in-memory processing. I/O is thus saved by avoiding

writing and re-reading the resident partition. Specif-

ically, there are (P + 1) partitions created, with the

resident partition (typically partition 0) being aggre-

gated in-memory using M −P frames, and the other P

partitions being spilled using P frames as their output

buffers. The required number of spilling partitions P

can be calculated for a given memory budget M assum-

ing that (i) the full memory can contain an in-memory

hash table for the resident partition plus one frame for

each spilling partition, and (ii) the size of each spilling

partition is bounded by the memory size (and can thus

be processed in-memory in the next step). The follow-

ing formula gives a formal description of this partition

strategy:

M − P = G ∗ F − (M − 1) ∗ P

⇒ P =
G ∗ F −M
M − 2

(1)

where F is a fudge factor used to reflect the over-

head from both the hash table and other structures

(more about the fudge factor will be discussed in Sec-

tion 6.7). This formula indicates that the total input

data is processed as one resident partition (occupy-

ing M − P frames for in-memory aggregation), and P

spilled partitions (each will fit into memory using M−1

frames). The above formula appeared in [21] for joins;

we adapt it here for aggregation, so it uses the result

set size G instead of the input size R, because records

from the same group will be aggregated and collapsed.

6 Jian Wen et al.

All hybrid-hash algorithms in this paper process

data recursively using two main phases as illustrated

in Figure 6. In detail,

Fig. 6 General Hybrid-hash algorithm structure.

– Phase 1 (Hash-Partition): If the input data is too

large to be hybrid-hash processed in one pass (G ≥
M2), all memory is used to partition the input data

into smaller partitions (grace partitioning in Grace

Join [15]), and for each partition one run file is gen-

erated. Otherwise (G < M2), partition 0 is imme-

diately aggregated using an in-memory hash table.

At the end of this phase, partition 0 will be either

flushed into a run file (if its aggregation is not com-

pleted due to the incorrect estimation on partition-

ing) or directly flushed to the final output (other-

wise).

– Phase 2 (Recursive Hybrid-Hash): Each run file gen-

erated above is recursively processed by applying

the hash-partition algorithm of Phase 1. The al-

gorithm terminates if there are no runs to be pro-

cessed. To deal at runtime with grouping key value

skew, if a single given run file’s output is more than

80% of the input file that it was partitioned from, or

the number of grace partitioning levels exceeds the

number of the levels that would have been needed

for the Sort-based algorithm, this particular run file
will be processed next using the Hash-Sort algo-

rithm (instead of recursive hybrid-hash) as a fall-

back to avoid deep recursion.

Clearly, hybrid-hash algorithms need G as an input

parameter in order to manage memory space optimally.

While the aim is to fully aggregate the resident parti-

tion in memory (when G < M2), this is not guaranteed

under strictly bounded memory by the existing hybrid-

hash approaches we have seen, including the Original

Hybrid-Hash [21], the Shared Hashing [22] and the Dy-

namic Destaging [12] algorithms. Thus in AsterixDB

we propose a new approach using Pre-Partitioning that

guarantees the completion of resident partition in mem-

ory. The details of these variants are described in the

following subsections.

4.3.1 Original Hybrid-Hash

In this algorithm, adapted from [21], if an input record

is hashed to partition 0, then it is inserted into the

in-memory hash table for aggregation, otherwise it is

moved to an output buffer for spilling. Figure 7 depicts

the memory structure of this algorithm. Ideally parti-

tion 0 should be completely aggregated in-memory and

directly flushed to the final output; however if the hash

table becomes full, groups in the list storage area are

simply flushed into a run (i.e., partition 0 also becomes

a spilling partition).

Fig. 7 Memory Structure in the Original Hybrid-hash Algo-
rithm.

Note that the proper choice of the number of spilled

partitions P depends on the result size G which is un-

known and can only be estimated. An incorrect estima-

tion of G may result in partition 0 being too large to fit

into memory and finally being spilled. While this may

cause more I/O, the memory usage of this algorithm is

still tightly bounded, since at most M frames are used

during the whole procedure.

4.3.2 Shared Hashing

The hybrid-hash algorithm proposed in [22] creates the

same partitions as the Original Hybrid-Hash does, but

the in-memory hash table is shared by all partitions.

This sharing allows for aggregating data from both par-

tition 0 and the other P partitions. Effectively, the

Shared Hashing algorithm initially treats all partitions

as ‘resident’ partitions. In order to use as much of mem-

ory for aggregation for all partitions, and also to re-

serve enough output buffers for spilling partitions, the

list storage area of the hash table is divided into two

parts: the non-shared part contains P frames for the P

spilling partitions, while the remaining frames (shared

part) are assigned to partition 0 but initially shared

by all partitions. Using this layout, the P frames for

spilling partitions can also be used for hashing and

grouping before the memory is full, and then for spilling

output buffers after that. Figure 8 illustrates the mem-

ory structure of this stage. P1 and P2 are the frames

allocated to partition 1 and 2 respectively so they are

not shared. Other frames (marked as Px) are assigned

to partition 0, but also shared by partition 1 and 2 be-

fore any spilling. Spilling is triggered when a new group

record arrives to one partition and there is no space

available for more data from that partition (including

Revisiting Aggregation for Data Intensive Applications:A Performance Study 7

the shared frames). The first two spillings are handled

differently from future ones, as described below:

Fig. 8 Memory structure before the first spilling of the
Shared Hashing algorithm.

– First Spilling: When the first spilling is triggered

(from any partition) by lack of additional space,

all P spilling partitions are flushed. Each frame in

the (soon-to-be) non-shared part is first flushed into

a run for its corresponding partition using parti-

tion 0’s output buffer. After flushing, the non-shared

frames will become the output buffers for the P

spilling partitions. Then the shared part is scanned.

Group records from all spilling partitions are moved

to the corresponding partition’s output buffer for

spilling, while groups of partition 0 are rehashed into

a new list storage area built upon recycled frames

(i.e., a frame in the shared part is recycled when

all its records have been completely scanned and

moved) and clustered together. Figure 9 depicts the

memory structure when the scan is processed. After

the first spilling the new list storage area belongs

only to partition 0, and there is one output buffer

for each spilling partition; the memory structure is

now the same as the Original Hybrid-Hash showed

in Figure 7.

Fig. 9 Memory structure during the first spilling of the
Shared Hashing algorithm.

– Second Spilling: When the new list storage area has

no more space for new group records from partition

0, partition 0 will be spilled. Its groups are flushed

to a run file, and the frames they occupied are re-

cycled. From now on, a single frame is reserved as

the output buffer for partition 0 as well, and it is

directly spilled like the other partitions.

The above algorithm uses bounded memory. Before

the first spilling, the entire M -frame memory allocation

is used as an in-memory hash table. When scanning the

shared part in the first spilling, non-shared frames are

reserved for the P spilling partitions, and frames re-

cycled from the shared part are used for the new list

storage area to cluster the partition 0 groups. After the

second spilling the out-buffer frames for spilling parti-

tions are obviously always memory-bounded.

4.3.3 Dynamic Destaging

Unlike the previous two approaches, where the mem-

ory space for partition 0 is pre-defined (based on For-

mula 1), the Dynamic Destaging algorithm [12] dynam-

ically allocates memory among all partitions, and spills

the largest resident partition when the memory is full.

After all records have been processed, partitions that

remain in memory can be directly flushed to the final

output (i.e., they are all resident partitions). This algo-

rithm has two stages:

– Stage 1 (Initialization): An in-memory hash table

is built so that one frame is reserved for the resi-

dent partition and each of the P spilled partitions

in the list storage area, and the remaining frames

are managed in a buffer pool. All partitions are ini-

tially considered to be resident partitions. Figure 10

(a) depicts the memory structure after this stage.

– Stage 2 (Hash-and-Partition): Each input record is

hashed and aggregated into the frame of the corre-

sponding partition. When a frame becomes full, a

new frame is allocated from the pool for this par-

tition to continue its aggregation. If no frame can

be allocated, the largest (still) resident partition

is spilled into a run file. Frames that this parti-

tion occupied are recycled, and a single frame is

now reserved as its output buffer. Additional records

hashed to such a spilled partition will be directly

copied to its output buffer for spilling (i.e., no ag-

gregation happens for a spilled partition and no ad-

ditional frames will be allocated for that partition

in the future). Figure 10 (b) illustrates the memory

structure after some partitions are spilled.
Following [12], for computing the initial number of

spilled partitions P , our implementation allocates be-

tween 50-80% of the available memory (i.e., 50% if the

computed P value is less than 50% and 80% if the com-

puted P is larger than 80%), in order to balance the size

of the in-memory and spilling partitions (i.e., so the par-

tition size is not too large or too small). Small runs cre-

ated due to possible over-partitioning are merged and

processed together in a single in-memory hash aggre-

gation round, if the merged run can be fully processed

in-memory (mentioned as partition tuning in [12]).

The Dynamic Destaging algorithm is memory bounded

since memory is dynamically allocated among all parti-

8 Jian Wen et al.

(a) Before spilling (all partitions are resident).

(b) After partition 2 and 3 are spilled.

Fig. 10 Memory structure in the Dynamic Destaging algo-
rithm.

tions. When memory becomes full, a partition is spilled

to recycle space. In the worst case, when all partitions

are spilled, the available memory can be dynamically

allocated among all partitions and used simply as out-

put buffers.

4.3.4 Pre-Partitioning

All of the approaches described so far assume that the

hash function and the distribution of the hash values

into partitions are properly chosen so that resident par-

tition(s) can be completely aggregated in memory. Un-

fortunately, there can be no such guarantee, especially

without precise knowledge about the input data. The

naive approach of partitioning the hash value space

based on Formula 1 will not work if the hash values

used by the input data are not uniformly distributed

in the hash value space. Moreover, these hybrid-hash

aggregation algorithms are all derived from (and thus

influenced by) hybrid-hash joins. One important prop-

erty that distinguishes aggregation from join is that,

in aggregation, the size of a group result is fixed and

is not affected by duplicates. As a result, the memory

requirement for a set of groups is fixed by the cardinal-

ity of the set (while the group size in a join could be

arbitrarily large).

Based on these observations, we developed and im-

plemented in AsterixDB the Pre-Partitioning algorithm.

This algorithm divides the entire memory space simi-

larly to the Original Hybrid-Hash, where M−P frames

are used for an in-memory hash table for partition 0.

But, instead of assigning the groups of partition 0 based

on hash-partitioning, Pre-partitioning considers all groups

that can be inserted into the in-memory hash table (be-

fore the table becomes full) as belonging to partition 0.

After the hash table is full, grouping keys that can-

not be aggregated in the in-memory partition are spilled

Fig. 11 Comparisons of CPU cost among Pre-Partition with
bloom filter, Pre-Partition without bloom filter, and the Orig-
inal Hybrid-Hash.

into the remaining P output frames. In order to de-

cide whether a record should be spilled or aggregated,

each input record needs a hash table lookup to check

whether it can be aggregated or not. This would cause

a much higher hash lookup miss ratio compared with

other hybrid-hash algorithms. To improve the efficiency

of identifying the memory-resident v.s. spilling groups,

we add an extra byte as a mini bloom filter for each

hash table slot. The bloom filter is updated when a

new group is inserted into the slot (before the hash

table becomes full). After the hash table is full, for

each input record a lookup on the bloom filter is first

performed, making a hash table lookup necessary only

when the bloom filter lookup returns true. If the bloom-

filter lookup returns false, it is safe to avoid looking into

the hash table (since a bloom filter could only cause a

false-positive error). For a properly sized hash table (i.e.

where the number of slots is no less than the number

of groups that can be contained in the table), the num-

ber of groups in each slot will be small (less than two

on average), and a 1-byte bloom-filter per slot works

well to reduce hash table lookups with a very low false-

positive error rate. Figure 11 shows the CPU cost of ag-

gregating 1 billion records with around 6 million unique

groups using Pre-Partitioning with bloom filtering, Pre-

Partitioning without bloom filtering, and the Original

Hybrid-Hash algorithms. From the figure we can see

that by applying the bloom filter, the CPU cost of the

Pre-Partitioning algorithm is greatly reduced and be-

comes very close to the cost of the Original Hybrid-Hash

algorithm.

In order to reduce the overhead of maintaining the

bloom filters, in our implementation no bloom filter

lookup is performed before the hash table is full. This

means that there is only the cost of updating the bloom

filters when updating the hash table through a negligi-

ble bit-wise operation. This is because before the hash

table is full, all records are inserted into the hash table

anyway, and the benefit from bloom filters on reducing

the hash misses is very limited (since a hash miss be-

Revisiting Aggregation for Data Intensive Applications:A Performance Study 9

cause of an empty slot can be easily detected without

bloom filter lookup). Furthermore, if the dataset could

be aggregated in memory based on the input parame-

ters, no bloom filter will be needed, and the bloom filter

overhead can be eliminated. Note that the output key

cardinality (G in Formula 1) could be underestimated,

and the bloom filters could be falsely disabled, caus-

ing more CPU cost on hash misses. Pre-Partitioning

still outperforms other hybrid-hash algorithms in this

case because other hybrid-hash algorithms have more

extra I/O cost on spilling the in-memory partition. Sec-

tion 6.6 shows our experiments in this scenario. Fig-

ure 12 shows the two stages of the Pre-Partitioning al-

gorithm:

(a) Partition-0-build: before the hash table is full.

(b) Hash-And-Partition: after the hash table is full.

Fig. 12 Memory Structure in the Dynamic Destaging Algo-
rithm.

– Stage 1 (Partition-0-Build): Using Formula 1, P frames

are reserved as the output buffers (to be used in

Stage 2 for the spilling partitions). The remaining

M −P frames are used as an in-memory hash table

storing groups of partition 0. Input records are in-

serted into this hash table for aggregation until the

list storage area is full. If P > 1, a 1-byte bloom

filter is used for each hash table slot, and all inser-

tions to the hash table update the respective bloom

filters. Figure 12 (a) shows the memory structure of

this stage.

– Stage 2 (Hash-And-Partition): After the hash table

is full, for each input record we check if that record

has been seen before in partition 0 by first perform-

ing a bloom filter lookup; if the bloom filter lookup

is positive, a hash table lookup follows, and it is ag-

gregated if a match is found (no more memory is

needed for this aggregation). Otherwise, this record

is stored into one of the P output frames. When such

a frame becomes full it is spilled. Figure 12 (b) il-

lustrates this procedure. When all records have been

Symbol Description
b Tuple size in bytes
o Hash table space overhead factor (for its slot

table and references of linked list)
p Frame size in bytes
A Collection of sorted run files generated
D(n,m) Dataset with n records and m unique keys
G Output dataset size in frames
Gt Number of tuples in output dataset
H Number of slots in hash table
K Hash table capacity in number of unique groups
M Memory capacity in frames
R Input dataset size in frames
Rt Number of tuples in input dataset
RH Number of raw records inserted into a hash

table before it becomes full

Table 3 Symbols Used in Models

processed, the groups aggregated in the in-memory

hash table are directly flushed to the final output.

The Pre-Partitioning algorithm uses bounded mem-

ory since the in-memory hash table never expands be-

yond the M −P pre-allocated frames. A benefit of this

algorithm is that it allocates as many records to par-

tition 0 as possible (until the in-memory hash table

becomes full, at which time the pre-allocated M − P
frames are fully utilized) and this partition is guaran-

teed to be fully aggregated in-memory. Since the previ-

ous hybrid-hash variants cannot provide this guarantee,

they may not fully utilize the pre-allocated memory for

partition 0 (even if partition 0 could be finished in-

memory).

We have also explored the idea of applying the bloom

filter optimization to other hash-based algorithms dis-

cussed in this paper. However the overhead would be

more significant than the benefit for the other algo-

rithms. This is because a bloom filter is useful to avoid

hash collisions (i.e. using a bloom-filter may avoid the

hash lookup leading to a hash miss). However, with

properly sized hash tables and assuming good hashing

functions, most of the hash table insertions will not

cause a hash collision, so the bloom filter does not help

much reduce the collisions but introduces more memory

overhead for the hash table.

5 Cost Models

We proceed by introducing applicable cost models

for all six aggregation algorithms discussed in this pa-

per. For simplicity we assume that the grouping keys

are uniformly distributed over the input dataset. More-

over, for the hybrid-hash algorithm models it is as-

sumed that the input parameters (size of input file,

10 Jian Wen et al.

number of unique keys etc.) are precise. The analysis

focuses on the CPU comparison cost (for sorting and

hashing) and the I/O cost (read and write I/Os). For

simplicity, we omit the CPU and I/O costs for scan-

ning the original input file and flushing the final result

since they are the same for all algorithms (any may be

pipelined). We also omit the pointer swapping cost in

sorting and merging since it is bounded by the com-

parison cost (for a random dataset, the swap count is

around 1/3 of the total comparisons [20]).

In our analysis, we use the following basic compo-

nent models that are common for all algorithms, namely:

the input, sort, merge and hash components. The de-

tails of these component models can be found in the

Appendix. Table 3 lists the symbols used in the com-

ponent and algorithmic models.

– Input Component: Let D(n,m) denote a dataset

with total number of records n and containing m

unique grouping keys. The model’s input component

computes the following two quantities:

– Ikey(r, n,m), denotes the number of unique group-

ing keys contained in r records randomly drawn

from D(n,m) without replacement (see Equa-

tion 14).

– Iraw(k, n,m), denotes the number of random picks

needed from D(n,m) in order to get k unique

grouping keys (see Equation 15).

– Sort Component: Csort(n,m) represents the num-

ber of CPU comparisons needed (using quicksort)

in order to sort n records containing m unique keys

(see Equation 17).

– Merge Component: CCPU.merge(A,M) and

CIO.merge(A,M) represent the CPU and I/O cost

respectively, for merging a set of files A using M

memory frames (see Section A.3).

– Hash Component: Assume a hash table whose

slot table has H slots and whose list storage area can

store up to K unique keys (i.e. at most K unique

groups can be maintained in the list storage area).

The hash component computes the following quan-

tities:

– Hslot(i,H, n,m) represents the number of occu-

pied slots in a hash table with H slots after in-

serting i random records (i ≤ K) taken from

D(n,m) (see Equation 19).

– Chash(n,m,K,H) represents the total compari-

son cost until filling up the list storage area of

a hash table with H slots and capacity K if the

records are randomly picked from D(n,m) (see

Equation 22). Note that the hash table could

become full before all records from D(n,m) are

loaded.

– Chash(n,m,K,H, u) is again the total compar-

ison cost for filling up the list storage area as

above, but assumes that D(n,m) has been par-

tially aggregated, and the partially aggregated

part (u unique records) are first inserted into

the hash table before the random insertion.

5.1 Sort-based Algorithm Cost

The I/O cost for the Sort-based algorithm is solely due

to external sorting since grouping requires just a single

scan that is pipelined with merging. Let R denote the

number of frames in the input dataset. The sort phase

scans the whole dataset once using R write I/Os to

produce A sorted runs (where |A| = R
M), each of size

M , that are then merged. The total I/O cost is thus:

CIO = R+ CIO.merge(A,M).

The CPU comparison cost Ccomp consists of the

sorting cost before flushing the full memory into a run

and the merging cost for merging all sorted runs. Hence:

Ccomp =|A| ∗ Csort(Rmem, Ikey(Rmem, Rt, Gt))

+ CCPU.merge(A,M) (2)

where Rmem denotes the number of records that can

fit in memory (Rmem = Mp
b , where p is the frame size

and b is the input record size), Rt is the number of

records in the input dataset, and Gt is the number of

unique keys in the input dataset (which is the same as

the number of tuples in the output dataset).

5.2 Hash-Sort Algorithm Cost

The Hash-Sort algorithm applies early aggregation us-

ing hashing and slot-based sorting. In the first phase

(Sorted Run Generation), the I/O cost arises from flush-

ing the unique keys in the hash table whenever it be-

comes full. Since the hash table uses the whole available

memory M , its capacity is K = Mp
ob (note that o is used

to represent the memory overhead per record due to

the hash table structure). The number of raw records

inserted into the hash table until it becomes full is then:

|RH | = Iraw(K,Rt, Gt). Once the hash table is full, all

unique keys would be flushed after being sorted by (slot

id, hash id). There are totally Rt

|RH | files generated, each

file with size Kb
p ; hence: CIO.phase1 = Rt

|RH | ∗
Kb
p .

The comparison cost for the first phase contains

both hashing and slot-based sorting comparisons. The

hashing comparison cost can be computed as

Ccomp.hash =
Rt

|RH |
∗ Chash(|RH |, Gt,K,H) (3)

Revisiting Aggregation for Data Intensive Applications:A Performance Study 11

To estimate the sorting comparisons we note that

when K unique keys have been inserted, the number of

non-empty slots used is given by Hu(|RH |, H,Rt, Gt).

Based on the uniform distribution assumption, the num-

ber of unique keys in each slot is: Lslot = K
Hu(|RH |,H,Rt,Gt)

.

Since duplicates have been aggregated, the Lslot records

to be sorted in each slot are all unique; hence the total

number of comparisons due to sorting becomes:

Ccomp.sort =Hu(|RH |, H,Rt, Gt) ∗ Csort(Lslot, Lslot)

(4)

During the merging phase, the I/O cost includes the

I/O for loading the sorted runs, and the I/O for flushing

the merged file. The size of each sorted run generated

by the sorting phase is the memory size M . The size

of a merged file can be computed as the size (number)

of unique keys contained in the sorted runs that are

used to generate this merged file. The number of unique

keys can be computed using the input component, given

the number of raw records that are aggregated into the

merged file. If A denotes the total sorted runs and A′

denotes the files to be merged (A′ ⊆ A and |A′| ≤M),

the number of raw records that will be aggregated into

the merged file will be Rt∗|A′|
|A| , so the number of unique

keys in the merged file would be Ikey(Rt∗|A′|
|A| , Rt, Gt).

So the total I/O cost for merging the A sorted runs is

F (A′) =|A′| ∗M +
Ikey(Rt∗|A′|

|A| , Rt, Gt) ∗ b
p

(5)

By applying F (A′) in CIO.merge(A,M), we can com-

pute the total I/O cost for merging. The CPU compar-

ison cost of merging the A run files Ccomp.merge(A,M)

can be computed in a similar way using the merge com-

ponent.

5.3 Hybrid-Hash Based Algorithm Costs

In this section we describe the cost model for the hash-

partition phase (Phase 1) for each of the four hybrid-

hash algorithms described in Section 4. In the recursive

hybrid-hash phase (Phase 2), all algorithms recursively

process the produced runs using their hash-partition al-

gorithm, and their cost can be easily computed by sim-

ply applying the cost model from Phase 1 so we omit the

details. When the key cardinality of the input dataset

is too large for direct application of a hybrid-hash al-

gorithm we need first to perform a simple partitioning

until the produced partitions can be processed using

hybrid hash. The cost of this partitioning is 2 ∗ L ∗ R
for its I/O cost of loading and flushing, and L ∗ Rt for

CPU cost of scanning, if L levels of partitioning are

needed.

5.3.1 Original Hybrid-Hash

The Original Hybrid-Hash algorithm aggregates records

from partition 0 only in its hash-partition phase while

the other P partitions are directly spilled using P out-

put buffers. Hence the available memory for the hash

table is (M − P) and the capacity of the hash table is

K = (M−P)p
ob . Assuming that keys are uniformly dis-

tributed in the input dataset, partition 0 can be fully

aggregated in the hash table. Since the number of raw

input records of partition 0 is K
Gt
∗ Rt, the comparison

cost for hashing is Chash(K
Gt
∗ Rt,K,K,H) (since the

K
Gt
∗ Rt records contain K unique keys). The I/O cost

arises from loading the input records from the disk, and

from spilling the raw records belonging to the P spilled

partitions onto the disk; hence CIO = R+(R− K
Gt
∗R).

5.3.2 Shared Hashing

The uniform key distribution and precise input param-

eter assumptions made by our cost model eliminate the

second spilling phase of the Shared Hashing algorithm;

hence the following discussion concentrates on the first

spilling phase. The Shared Hashing algorithm aggre-

gates records from all partitions until the hash table

is full. At this stage all memory except for one out-

put buffer frame is used for the hash table, so the hash

table capacity is K = (M−1)p
ob . The hash comparison

cost is thus similar to the Hash-Sort algorithm, i.e.,

Ccomp.before full = Chash(|RH |, Gt,K,H).

During the first spilling, grouping keys of partition

0 that are already in the hash table are re-hashed in

order to be clustered together in a continuous memory

space. Remaining records of partition 0 are hashed and

aggregated until the hash table becomes full again. The

fraction of partition 0 (the resident partition) rres and

a spilled partition rspill in the total input dataset can

be computed based on Formula 1 as below:

rres =
M − P

(M − P) +MP
, rspill =

1− rres
P

The hash comparison cost after the first spilling (in-

cluding re-hashing and inserting the remaining records

from partition 0) can be computed by considering that

the rres ∗K unique groups are inserted ahead:

Ccomp.after full =Chash(rres ∗Rt − Iraw(rres ∗K,Rt, Gt),

rres ∗Gt,K,H, rres ∗K) (6)

where Iraw(rres ∗ K,Rt, Gt) is the number of raw

records inserted before the first spilling, while rres ∗K

12 Jian Wen et al.

corresponds to the unique keys inserted before the first

spilling that are then re-hashed during the first spilling.

Here all partition 0 records are drawn from the rres ∗G
unique keys assigned to partition 0.

After partition 0 is completely aggregated in mem-

ory and when the spilled runs are recursively processed,

each run may already be partially aggregated, which

corresponds to the ‘mixed’ input case. Hence the com-

parison cost for the all resident partitions phase is com-

puted as:

Ccomp.spill parts =Chash(rspill ∗Rt−
Iraw(rspill ∗K, rspill ∗Rt, rspill ∗Gt),

rspill ∗Gt,K
′, H, rspill ∗K) (7)

This is very similar to the cost model showed in

Equation 6, where the records inserted before the first

spilling (Iraw(rspill ∗K, rspill ∗ Rt, rspill ∗ Gt)) are col-

lapsed into (rspill∗K) unique records and reloaded dur-

ing the recursive hashing.

The I/O cost emanates from the spilling partitions

only. Since part of each spilling partition has been ag-

gregated before the table is full, the I/O cost contains

the I/O both for spilling the partially aggregated parti-

tion, and for flushing the remaining raw records of that

partition (computed by subtracting the aggregated raw

records from the total raw records of the spilling parti-

tion):

CIO.spill =
rspill ∗K ∗ b

p
+ rspill ∗R (8)

− Iraw(rspill ∗K,Rt, Gt) ∗ b
p

where
rspill∗K∗b

p is the I/O for spilling the partial
aggregated results, and the remaining part is the I/O

for spilling the raw records (where the records that are

partially aggregated are excluded).

5.3.3 Dynamic Destaging

Until the hash table becomes full, the Dynamic Destag-

ing algorithm behaves similarly to the Hash-Sort algo-

rithm; hence the CPU comparison cost before any parti-

tion is spilled can be computed by Chash(|RH |, Gt,K,H)

(note that when this model is recursively applied to

runs that have partially aggregated records, the ‘mixed’

input Equation 26 should be used). When the hash ta-

ble is full, the largest resident partition is spilled. The

uniform assumption of the input dataset implies that at

this time all partitions have the same number of group-

ing keys in memory; hence, any one partition can be

randomly picked for spilling. If partition i is picked for

the i-th spill, the total available memory for the hash

table is M − (i − 1) (where i − 1 frames are used as

the output buffers for the spilled partitions). The num-

ber of in-memory aggregated groups of the i-th spilling

partition can be computed using Formula 1 as:

Ki =
K ∗ (M − (i− 1))

M(P + 1− (i− 1))

while the size of raw records hashed into the hash table

for the i-th spilled partition is given by:

RH.i =Iraw(Ki,
Rt

P + 1
,
Gt

P + 1
)

Note here that for a specific partition i, the hash

table capacity and the number of slots are the portion

of the total K and H assigned to this partition. Then

the CPU comparison cost for hashing this partition be-

comes:

Ccomp.i =Chash(RH.i,Ki,
K

P + 1
,

H

P + 1
) (9)

When spilling the i-th partition, since part of the

partition has been hashed and collapsed before the par-

tition is spilled, the total spilling I/O emanates from

the raw records directly flushed (R
P+1 −RH.i), plus the

partially aggregated unique keys (Ki∗b
p); hence:

CIO.i =
Ki ∗ b
p

+
R

P + 1
−RH.i (10)

This cost is summed for all spilled partitions. The

number of spilled partitions, Ps, can be estimated by

the following inequality (inspired by Formula 1), where

the remaining P+1−Ps partitions have enough memory

to be completely aggregated in memory:

G

P + 1
≤ K ∗ (M − Ps)

M(P + 1− Ps)
(11)

5.3.4 Pre-Partitioning

The Pre-Partitioning algorithm aggregates records from

partition 0 only in its hash-partition phase, while the

other P partitions are directly spilled using P output

buffers. When bloom filters are used with the hash table

slot headers, there is an overhead of one byte per slot, or

formally o′ = o+ 1
b . The capacity of the list storage area

is thus K = (M−P)p
ob+1 . Since the algorithm guarantees

that partition 0 can be fully aggregated in the hash

table, the number of raw input records of partition 0 is
K
Gt
∗ Rt. The I/O cost consists of loading the records

to be processed and spilling the raw records in the P

spilled partitions, i.e.:

CIO = R+ (R− K

Gt
∗R) (12)

Revisiting Aggregation for Data Intensive Applications:A Performance Study 13

Subsection Cardinality Memory Distribution HT Slots Fudge HH Error

6.1, 6.2, 6.3 100%, 44.1%, 0.5M ∼ 4G Uniform 1 1.2 1
6.25%, 0.02%

6.5 6.25% 1M, 64M, 4G Uniform 1 1.2 1
6.6 0.02% 4M, 16M Uniform 1 1.2 4096 ∼ 1/4096
6.4 1% 2M ∼ 128M Uniform, Zipfian, 1 1.2 1

Self-Similar,
Heavy-Hitter,

Sorted
6.7

(hash table slot) 6.25% 2M, 4G Uniform 1, 2, 3 1.2 1
6.7

(fudge factor) 6.25% 2M, 4G Uniform 1 1.0 ∼ 1.6 1

Table 4 Performance related factors used in the experimental evaluation.

The CPU comparison cost includes the cost of hashing

the records of partition 0 into the hash table, plus the

cost for checking whether a record should be spilled (for

records from the P spilling partitions). Assume that the

per-slot bloom-filter has a false positive ratio α. Then

for each of the (Rt∗(1− K
Gt

) spilled records, if the bloom

filter can detect that the record is not in the hash table,

the record is directly flushed (we omit the bloom filter

lookup cost since it is negligible compared with the hash

comparison cost). If the bloom filter fails to detect that

the record is not in the hash table (false positive error

with probability α), a hash table lookup for the record

will cause a hash miss with cost of K
H . Therefore the

CPU cost is given by:

Ccomp =Chash(
K

Gt
∗Rt,K,K,H)

+ α(Rt ∗ (1− K

Gt
) ∗ K

H
) (13)

6 Experimental Evaluation

We have implemented all algorithms as operators in

the Hyracks platform [6] and performed extensive ex-

perimentation. The machine hosting Hyracks is an In-

tel Xeon E5520 CPU with 16GB main memory and

four 10000 rpm SATA disks. We used the Java 6 soft-

ware environment on 64-bit Linux with kernel version

2.6.18-194.el5. We ran the example query of Section 3.1

on a synthetic UserVisits dataset (table) that has two

fields: a string ip field as the grouping key, contain-

ing an abbreviated IPv6 address (from 0000:0001::2001

to 3b9a:ca00::2001 for 1 billion records), and a double

adRevenue field (randomly generated in [1, 1000]). To

fully study the algorithm performance and validate the

cost models, we consider the variables listed below. The

values that we used for these variables in our experi-

ments (organized by subsection) appear in Table 5.3.3.

– Cardinality ratio: the ratio between the number of

raw input records (input size R) and the number of

unique groups (output size G).

– Memory: the size of the memory assigned for the

aggregation.

– Data distribution: the distribution of the groups

(keys) in the dataset.

– Hash table slots: the number of slots in the hash

table, measured by the ratio between the number of

slots and the number of unique keys that can fit in

the list storage area.

– Fudge factor: the hybrid-hash fudge factor.

– Unique Group Estimation Error: (applies only to

hybrid-hash algorithms) the ratio between the user

(query compiler) specified and the actual number of

unique groups.

6.1 Cost Model Validation

To validate the accuracy of our models, we depict the

I/O and CPU (as predicted by the models and mea-

sured by the experiments) of the six algorithms in dif-

ferent memory configurations for two datasets with car-

dinality ratios 100% and 0.02% in Figures 13 and 14

respectively; we also experimented with cardinalities

44.1% and 6.25% which showed similar behavior (not

shown due to the space limitation). As we can see, our

models can predict both the I/O and the CPU cost

with high precision. In particular, the I/O cost estima-

tion is consistently very close to the actual I/O. For

most cases, the cost for the (hash) CPU comparisons is

slightly underestimated by our models because they as-

sume no skew; however, in reality even slightly skewed

data will result in higher hash collisions. This explains

the slightly lower model prediction for the CPU cost of

the hash-based algorithms in Figure 14.

There are cases where our models overestimate the

CPU cost, as when processing the “all unique” dataset

14 Jian Wen et al.

(Figure 13, with cardinality ratio 100%) for the Dy-

namic Destaging and Shared Hashing algorithms. This

is because with actual data, the hash table spilling could

be triggered earlier than the model prediction since the

key distribution is not perfectly uniform; as a result, less

groups from spilling partitions are hashed into the dy-

namic/shared hash scheme, leading to less actual CPU

cost.

Among all algorithms, the CPU model for Dynamic

Destaging showed the largest overestimation compared

to the real experiments for some configurations. The

reason is that in these cases, our cost model assumes

that the resident partition can be completely aggre-

gated in-memory, however in reality our experiments

show that in these configurations, the resident parti-

tion has also been spilled due to the imperfect hash

partitioning and dynamic destaging (i.e., evicting the

right partitions for spilling) in reality. When reloading

the spilled resident partition, the number of hash ta-

ble collisions is less since the records are hashed to the

whole hash table space instead of just a potion of it, so

the actual CPU comparison cost is less than predicted.

6.2 Effect of Memory Size

To study the effect of memory size on the aggregation

algorithms we measured their running time using the

four uniform data sets (with cardinality ratio 100%,

44.1%, 6.25% and 0.02%) in different memory configu-

rations (0.5M to 4G). (The effects of skewed data are

examined later). In Figure 15, we show the running

time, CPU comparison cost and I/O cost for all these

experiments. When considering the CPU cost, the algo-

rithms that use sorting require more CPU than the pure

hashing algorithms. The I/O cost for all algorithms de-

creases when memory increases (since more records can

be aggregated in memory).

We first observe that for larger memories (memory

larger than 64M) the running time of the Sort-based

algorithm increases. This is because larger memory set-

tings cause higher cache misses for the comparing and

swapping in the sorting procedure. Furthermore, when

the cardinality ratio is high (100%, 44.1%, and 6.25%),

the total CPU cost for sorting is increasing according to

Formula 17 of the sort component in Appendix A.2(the

records to be sorted in each full memory chunk m is

larger). This can also be observed through the similar

rising of the CPU cost for memories larger than 64M

(Figure 15 (e-h)). Thus it is not always the case that

larger memory leads to better performance in the Sort-

based algorithm. Different from the Sort-based algo-

rithm, the Hash-Sort algorithm has better performance

when the memory is larger because it utilizes collapsing,

and most of the time it is faster than the Sort-based al-

gorithm (except for the case with small memory, where

the collapsing cannot be fully exploited).

The four hybrid-hash algorithms have the best per-

formance since they avoid sorting and merging. Among

the hybrid-hash algorithms, the Pre-Partitioning algo-

rithm has the most robust performance along all mem-

ory and key cardinality configurations. This is because

Pre-Partitioning always creates the resident partition

to fill up the in-memory hash table. This will reduce

both the I/O (since more groups are aggregated within

the resident partition) and the CPU comparison cost

(since less spilled records need to be processed recur-

sively). Furthermore, by using bloom filters within the

hash table, the extra cost for hash misses is reduced so

its CPU cost is just slightly higher than the Original

Hybrid-Hash algorithm (as showed in Figure 11).

Also note that according to Formula 1, the mem-

ory space reserved for the resident partition (M −P) =
M2−3M−G∗F

M−2 is not linearly associated with the mem-

ory size. This means that when the memory increases,

although the number of hash table slots increases cor-

respondingly, the size of the resident partition does not

increase linearly. So the hash collision could vary based

on the ratio between the unique records in the resident

partition and the hash table slots. In the case that this

ratio is higher due to a larger increase of the unique

records in the resident partition than the increase of

the hash table slots, there will be more hash compar-

ison cost for aggregating the resident partition. This

explains the spikes of the CPU cost for all hybrid-hash

algorithm along different memory configurations.

We further notice that the running time for Dy-

namic Destaging is increasing (it becomes larger than

the other hybrid-hash algorithms) for memories between

16M and 2048M. In these memory configurations only

one round of hybrid-hash is needed (i.e., no grace parti-

tion is used). However the partition tuning optimization

[12] increases the number of partitions as the memory

increases, which causes more cost overhead for main-

taining the spilling files. Furthermore, as the memory

increases, the number of records from spilling partitions

that have been partially aggregated and flushed will

be larger (recall that in Dynamic Destaging, spilling

partitions are dynamically spilled in order to maximize

the in-memory aggregation); this could potentially in-

crease the hashing cost because all partial results must

be reloaded and hashed again.

Finally when the memory size is relatively very large

(4G), all hybrid-hash algorithms have the same running

time, as no spilling happens (so all can do in-memory

aggregation).

Revisiting Aggregation for Data Intensive Applications:A Performance Study 15

(a
)

S
o
rt

-b
a
se

d
I/

O
(d

)
S

h
a
re

d
H

a
sh

in
g

I/
O

(g
)

S
o
rt

-b
a
se

d
C

P
U

(j
)

S
h

a
re

d
H

a
sh

in
g

C
P

U

(b
)

P
re

-P
a
rt

it
io

n
in

g
I/

O
(e

)
O

ri
g
in

a
l

H
y
b

ri
d

-H
a
sh

I/
O

(h
)

P
re

-P
a
rt

it
io

n
in

g
C

P
U

(k
)

O
ri

g
in

a
l

H
y
b

ri
d

-H
a
sh

C
P

U

(c
)

D
y
n

a
m

ic
D

es
ta

g
in

g
I/

O
(f

)
H

a
sh

-S
o
rt

I/
O

(i
)

D
y
n

a
m

ic
D

es
ta

g
in

g
C

P
U

(l
)

H
a
sh

-S
o
rt

C
P

U

F
ig
.
1
3

M
o
d

el
v
a
li
d

a
ti

o
n

(1
0
0
%

ca
rd

in
a
li
ty

ra
ti

o
).

16 Jian Wen et al.

(a
)

S
o
rt-b

a
sed

I/
O

(d
)

S
h

a
red

H
a
sh

in
g

I/
O

(g
)

S
o
rt-b

a
sed

C
P

U
(j)

S
h

a
red

H
a
sh

in
g

C
P

U

(b)
P

re-P
a
rtitio

n
in

g
I/

O
(e)

O
rig

in
a
l

H
y
b

rid
-H

a
sh

I/
O

(h
)

P
re-P

a
rtitio

n
in

g
C

P
U

(k
)

O
rig

in
a
l

H
y
b

rid
-H

a
sh

C
P

U

(c)
D

y
n

a
m

ic
D

esta
g
in

g
I/

O
(f

)
H

a
sh

-S
o
rt

I/
O

(i)
D

y
n

a
m

ic
D

esta
g
in

g
C

P
U

(l)
H

a
sh

-S
o
rt

C
P

U

F
ig
.
1
4

M
o
d
el

v
a
lid

a
tio

n
(0

.0
2
%

ca
rd

in
a
lity

ra
tio

).

Revisiting Aggregation for Data Intensive Applications:A Performance Study 17

(a
)

R
u

n
n

in
g

T
im

e
(1

0
0
%

)
(b

)
R

u
n

n
in

g
T

im
e

(4
4
.1

%
)

(c
)

R
u

n
n

in
g

T
im

e
(6

.2
5
%

)
(d

)
R

u
n

n
in

g
T

im
e

(0
.0

2
%

)

(e
)

C
P

U
C

o
m

p
a
ri

so
n

s
(1

0
0
%

)
(f

)
C

P
U

C
o
m

p
a
ri

so
n

s
(4

4
.1

%
)

(g
)

C
P

U
C

o
m

p
a
ri

so
n

s
(6

.2
5
%

)
(h

)
C

P
U

C
o
m

p
a
ri

so
n

s
(0

.0
2
%

)

(i
)

I/
O

(1
0
0
%

)
(j

)
I/

O
(4

4
.1

%
)

(k
)

I/
O

(6
.2

5
%

)
(l

)
I/

O
(0

.0
2
%

)

F
ig
.
1
5

E
x
p

er
im

en
ts

w
it

h
d

iff
er

en
t

ca
rd

in
a
li
ty

ra
ti

o
s

a
n

d
m

em
o
ry

si
ze

s.

18 Jian Wen et al.

(a
)

T
im

e
(U

n
ifo

rm
)

(b)
T

im
e

(Z
ip

fi
a
n

0
.5

)
(c)

T
im

e
(S

elf-S
im

ila
r

2
0
-8

0
)

(d
)

T
im

e
(H

ea
v
y
-H

itter)
(e)

T
im

e
(U

n
ifo

rm
-S

o
rted

)

(f
)

C
P

U
(U

n
ifo

rm
)

(g
)

C
P

U
(Z

ip
fi

a
n

0
.5

)
(h

)
C

P
U

(S
elf-S

im
ila

r
2
0
-8

0
)

(i)
C

P
U

(H
ea

v
y
-H

itter)
(j)

C
P

U
(U

n
ifo

rm
-S

o
rted

)

(k
)

I/
O

(U
n

ifo
rm

)
(l)

I/
O

(Z
ip

fi
a
n

0
.5

)
(m

)
I/

O
(S

elf-S
im

ila
r

2
0
-8

0
)

(n
)

I/
O

(H
ea

v
y
-H

itter)
(o

)
I/

O
(U

n
ifo

rm
-S

o
rted

)

F
ig
.
1
6

E
x
p

erim
en

ts
o
n

sk
ew

d
a
ta

sets.

Revisiting Aggregation for Data Intensive Applications:A Performance Study 19

6.3 Effect of Cardinality Ratio

Figure 15 also compares the algorithms for different car-

dinality ratios. Note that full in-memory aggregation

happens for the 0.02% dataset when memory is larger

than 16M, while it occurs for the 6.25% dataset only for

the 4G memory. In the higher cardinality ratio datasets

(100% and 44.1%) there is no in-memory aggregation

(since the number of grouping keys is so large that all

algorithms need to spill).

The Sort-based algorithm is typically slower than

the rest, with the hybrid-hash algorithms being the

fastest and the Hash-Sort falling in between (except

for the case of very small memories and high cardinal-

ities to be discussed below). As the cardinality ratio

increases, the gap in performance between the Sort-

based and the hybrid-hash algorithms is reduced. This

is because a higher cardinality means more unique keys,

and thus less collapsing, which reduces the advantage of

hashing. Note that when the memory is small and the

cardinality is large, the Hash-Sort algorithm performs

even worse than the Sort-based algorithm because there

is very limited benefit from early aggregation and the

hash cost is almost wasted.

The hybrid-hash-based algorithms are greatly af-

fected by the higher cardinality ratio, as fewer records

can be collapsed through aggregation and the perfor-

mance mainly depends on the effectiveness of partition-

ing. The spikes in the CPU cost (caused by the non-

linear correlation between the resident partition size

and the hash table size; see the discussion in the previ-

ous subsection) are more clear for data sets with higher

cardinality ratios since the hash miss cost is more sig-

nificant.

6.4 Aggregating Skewed Data

To examine the performance of the algorithms when

aggregating skewed data, we considered the following

skewed datasets, each with 1 billion records and 10

million unique keys, generated using the algorithms de-

scribed in [14]:

– Uniform: all unique keys are uniformly distributed

among the input records;

– Zipfian: we use skew parameter 0.5;

– Self-similar: we use the 80-20 proportion;

– Heavy-hitter: we choose one key to have 109−(107−
1) records, while all other keys have only one record

each;

– Sorted uniform: we use a uniform data set with

records sorted on the grouping key.

Figure 16 shows the running time, CPU cost and

I/O cost of all algorithms for different skew distribu-

tions. Overall we observe that if the skew distribution

is similar to the uniform distribution (the Zipf and the

Self-Similar data sets), the behaviors of the algorithms

are similar to the uniform case. A common character-

istic of the two less-skewed datasets (Zipf and Self-

Similar) is that the duplicates are distributed in a “long-

tail” pattern. There are a few keys with very many du-

plicates (the peak of the distribution) and many keys

with very few duplicates (the tail part). Nevertheless,

statistically the peak in the Zipf dataset is lower than

the peak in the Self-Similar dataset and its long-tail

part is higher than the long tail of the Self-Similar

dataset. Since there are more duplicates per key in the

Zipf dataset, more hash comparisons are needed.

For the Zipf and Self-Similar datasets, the Hash-

Sort algorithm is overall slower than the hybrid-hash

based algorithms because (1) these datasets are not

sorted, so the Hash-Sort algorithm needs to sort and

merge the intermediate results, and (2) since more group-

ing keys have duplicates, the same grouping key could

be in multiple run files, which further increases the run

file size and the cost for merging. For these datasets, the

Pre-Partitioning algorithm has the best running time

since it always fills up the memory space reserved for

the resident partition, so more groups can be collapsed

into the resident partition. This greatly reduces the to-

tal I/O cost for the Pre-Partitioning algorithm com-

pared with other hybrid-hash algorithms, leading to a

lower running time. It is interesting to note that this

behavior is more apparent in the Self-Similar than the

Zipf dataset. This is because the tail part in the Self-

Similar dataset is smaller, so the size of the spilling

partitions would be smaller when compared with the

Zipf dataset. This will reduce both the hash miss cost

for checking the spilling records and the I/O cost for

spilling partitions.

For the Heavy-Hitter and the Uniform-Sorted datasets,

the nature of their skew is more significant compared

with the uniform case, so their behaviors are quite dif-

ferent than the uniform case. In particular, for the Heavy-

Hitter data set, the Hash-Sort algorithm has the best

overall performance. The algorithm collapses many du-

plicates in this data set in its early aggregation; more-

over, its slot-based sorting strategy can minimize the

sorting cost for merging. The Original Hybrid-Hash al-

gorithm performs the worst in this case because the

partition containing the heavy hitter key contains 99%

of the total records; this causes the algorithm to fallback

to the Hash-Sort (because it has more than 80% of the

original input content as mentioned in Section 4.3). The

Dynamic Destaging algorithm also performs bad due to

20 Jian Wen et al.

(a) 1M memory (b) 64M memory (c) 4G memory

Fig. 17 Time to the first result as part of the total running time.

the fallback, but the fallback is triggered by partition

tuning. This is because partitions that do not contain

the heavy hitter key are underestimated on their group-

ing key cardinality, and partition tuning merges them

based on the underestimated cardinality. After merging

is done, the key cardinality is greater than the memory

capacity so these partitions are spilled again. Finally

all spilled partitions are processed through the fallback

algorithm (the hybrid-hash level is deeper than a Sort-

based algorithm), resulting in longer running time. The

Shared Hashing algorithm performs better when grace

partitioning is not needed because it collapses the par-

tition containing the heavy hitter by maximizing the

in-memory aggregation through the shared hash table.

A similar effect happens for the Pre-Partitioning algo-

rithm, but it performs better since it always guaran-

tees that the resident partition can be completely ag-

gregated in memory.

For the uniform-sorted dataset, the Sort-based al-

gorithm performs the best since it only needs a single

scan over the sorted data to finish the aggregation. The

Hash-Sort algorithm still shows good running times be-

cause it can aggregate each group completely in the

sorted run generation phase, utilizing the sort order.

However it is slightly slower than the Sort-based algo-

rithm due to its higher I/O cost (because of the over-

head of the hash table) and the CPU cost (since hashing

is more expensive than the sequential match-and-scan

procedure). The four hybrid-hash algorithms perform

worse because all partitions produced by grace parti-

tioning (for the 2M and 4M memory) or by the hybrid-

hash algorithms (for 8M or larger memory) have to be

processed by a recursive hybrid-hash procedure. With

4M memory, the Original Hybrid-Hash performs worse

than the other hybrid-hash algorithms because they

have better hash collapsing effect; as a result, they can

finish the hybrid hash aggregation one level earlier than

the Original Hybrid-Hash algorithm using less I/O.

6.5 Time to First Result (Pipelining)

To check whether these algorithms can be pipelined ef-

fectively, we measure the time needed to produce the

first aggregation result as another aspect of their per-

formance. Figure 17 depicts the results using the 6.25%

dataset in three different memory configurations. The

full bar height corresponds to the total running time

(full aggregation), while the bottom solid part corre-

sponds to the time until the first aggregation result

is produced. The earlier the aggregation result is pro-

duced, the better the algorithm can fit into a pipelined

query stream.

For the hybrid-hash algorithms, the solid part in

Figure 17 includes the time for grace partition, and the

time for processing the resident partition in memory,

while the gray part represents the time for recursive

aggregation of the spilled partitions. Blocking in the

hybrid-hash algorithms occurs mainly due to the ag-

gregation of the resident partition. For larger memory

sizes, the resident partition is larger, so it takes more

time to aggregate all records of the resident partition,

resulting in slightly longer times to first result for the

hybrid-hash algorithms. For very large memory (4G)

there is no grace partitioning, and since all records are

in memory, they need to be fully aggregated before the

first result is produced; thus the time to first result is

also the time when the full aggregation is completed.

For both the Sort-based and the Hash-Sort algo-

rithms, the solid part includes the time for generating

sorted runs plus the time for merging sorted runs until

the final merging round. The gray part indicates the

time for the last merging phase, where the aggrega-

tion results are produced progressively during merg-

ing. As the memory size increases, the time to first

result for the Sort-based algorithm increases because

the time for merging is longer. For very small mem-

ory (1M) the Hash-Sort algorithm experiences a longer

blocking time because it uses both hashing and sorting,

while the hashing does not collapse many records. As

Revisiting Aggregation for Data Intensive Applications:A Performance Study 21

(a) Runing Time (4M) (b) CPU Comparisons (4M) (c) I/O (4M)

(d) Runing Time (16M) (e) CPU Comparisons (16M) (f) I/O (16M)

Fig. 18 Sensitivity on input error for Hybrid-Hash algorithms

memory increases, the hashing becomes more effective

in collapsing which reduces both the sorting and merg-

ing time. For very large memory (4G), the Hash-Sort

aggregates all records in memory and thus the time to

first result is also the time to full aggregation (similarly

to the hybrid-hash algorithms).

6.6 Input Error Sensitivity of Hybrid Hash

The performance of all hybrid-hash algorithms is closely

related to the input key cardinality G. Note that G

serves as an exploit input of the hybrid-hash algorithm,

as it is used to compute the number of partitions P . In

practice the input set is not known in advance, so we

estimate G. Since such estimation may not be accu-

rate, we also tested the performance of the hybrid-hash

algorithms assuming that G is over/under-estimated.

Using the dataset with cardinality ratio 0.02%, we ran

experiments where P was computed assuming various

(incorrect) values for G. In particular, we varied G from

a far over-estimated ratio (4096 times the actual car-

dinality) to a quite underestimated ratio (1/4096 of

the actual cardinality). Figure 18 shows the experimen-

tal results for two different memory budgets (4M and

16M). When the input parameter is correct (i.e., the

ratio is 1), the first memory configuration causes spills

whereas the second memory configuration can be pro-

cessed purely in memory. We also depict the running

time of the Hash-Sort algorithm for comparison (since

Hash-Sort does not depend on the parameter G).

Our experiments show that both overestimation and

underestimation can affect the performance of the hybrid-

hash algorithms. Specifically, an overestimation will cause

unnecessary grace partitioning, and will thus increase

the total I/O cost. In the worst case all hybrid-hash al-

gorithms do grace partitioning, causing slower running

times than the Hash-Sort algorithm. An underestima-

tion will falsely process the aggregation earlier, result-

ing in less collapsing in the hybrid-hash and further

grace partitioning.

More specifically, the results in Figure 18 show that

the Shared Hashing algorithm and the Original Hybrid-

Hash may fallback to the Hash-Sort algorithm if the

partition size is underestimated and turns out to be too

large. The Dynamic Destaging algorithm works well in

the underestimation case, as it always uses at least 50%

of the available memory for partitioning. Among all

hybrid-hash algorithms, Pre-Partitioning achieves bet-

ter tolerance to the error in the grouping key cardinality

G; this is due to its guarantee that the in-memory par-

tition will be completely aggregated. Pre-Partitioning

has more robust performance for underestimated cases

since it can still guarantee the complete aggregation

of the resident partition, and it can also gather some

statistics while aggregating the resident partition. It

can then use the obtained statistics to guide the re-

cursive processing of the spilled partitions.

22 Jian Wen et al.

6.7 Hash Implementation Issues

During the implementation of the hash-based algorithms

(all four hybrid-hash algorithms, and also the Hash-Sort

algorithm) we faced several issues related to the proper

usage of hashing. Considering the quality of the hash

function, we used Murmur hashing [2]. We tried the

multiplication method [16] (the default hashing strat-

egy in Java) in our experiments, but we found that

its hash collision behavior deteriorated greatly for the

larger grouping key cardinalities in our test datasets.

Another issue related to the usage of the notion of hash

function family for the hybrid-hash algorithms. It is im-

portant to have non-correlated hash functions for the

two adjacent hybrid-hash levels. In our experiments we

used Murmur hashing with different seeds for the dif-

ferent hybrid-hash levels.

We also examined how the hash table size (slot ta-

ble size, or the number of slots in the slot table) af-

fects performance. Given a fixed memory space, an in-

memory hash table with a larger number of slots (which

could potentially reduce hash collisions) in its slot ta-

ble would have a smaller list storage area (so a smaller

hash table capacity). Thus, the number of slots should

be properly picked to trade-off between the number of

hash collisions and the hash table capacity. In litera-

ture, it is often suggested to use a slot table size that

is around twice the number of unique groups that can

be maintained in the list storage area. Figure 19 de-

picts the running times of the hash-based algorithms

with varying slot table sizes (set to be 1x, 2x and 3x

the number of unique groups maintained). In the small

memory case, different slot table sizes do not affect the

total running time significantly. In the larger memory

case, all hash-based algorithms can aggregate the data

in-memory when the slot table size is 1x (equal to the

number of unique keys). Most algorithms do in-memory

aggregation except for the Original Hybrid-Hash, which

spills due to the larger slot table overhead. When the

slot table size is 3x, only the Pre-Partitioning algorithm

can complete the aggregation in-memory, because it al-

ways fills up the memory for resident partition before

trying to spill. (In all other experiments we picked 1x

so that all hash-based algorithms can finish in-memory

for 4G memory).

Finally, we also explored the importance of the fudge

factor F in the hybrid-hash algorithms. This factor ac-

counts for the extra memory overhead including both

hash table overhead (denoted as o) caused by the

slot table and the list data structure other than the

data itself, as well as extra overhead (denoted as f)

because of possible inaccurate estimations of the record

size and memory page fragmentation. Here we define

(a) Hash table size (2M) (b) Hash table size (4G)

Fig. 19 Running time with different hash table sizes (as the
ratios of number of slots over the hash table capacity).

(a) Fudge factor (2M) (b) Fudge factor (4G)

Fig. 20 Running time with different fudge factors.

the fudge factor as F = o ∗ f . Past literature has set

the fudge factor to 1.2, but it is not clear whether they

have considered both kinds of overhead. In our exper-

iments, the hash table overhead can be precisely com-

puted based on the slot table structure; since we are us-

ing a linked-list-based table structure, there are 8 bytes

of overhead for each slot table entry and 8 bytes of

cost for each group in the list storage area. For the ex-

tra overhead, we tried four different ratios: 1.0, 1.2, 1.4

and 1.6. Figure 20 shows the running times. We can

see that clearly it is not wise to consider only the slot

table overhead (f = 1.0) since the running times of the

Dynamic Destaging and Shared Hashing algorithms in-

crease in both memory configurations. This is because

the smaller fudge factor causes an underestimated par-

tition size P , and thus there are partitions that fail to

be fit into the memory during the hybrid hash. From

our experiments we also observed that using slightly

larger f values (> 1.2) has no significant influence on

performance.

7 Algorithm Selection

The observations from the experimental results in the

previous section indicate that none of the algorithms

can alone be the winner of all different cases. However,

the Original Hybrid-Hash, Dynamic Destaging and Shared

Hashing algorithms lose in most of the experiments

compared with Pre-Partitioning, and their implementa-

tions are also rather complex. Thus, the final candidate

Revisiting Aggregation for Data Intensive Applications:A Performance Study 23

Fig. 21 The decision tree for selecting the aggregation algo-
rithm

algorithms from our experiments for AsterixDB will be

the Sort-based, Hash-Sort and Pre-Partitioning algo-

rithms. To choose the right algorithm from the three

candidates, we can use the strategy as shown in Fig-

ure 21 based on our observations. In detail:

– When the input data is sorted: the Sort-based algo-

rithm can utilize the sorted order and compute the

running aggregation through one scan. The other

two algorithms need further I/O since the sorted

property has no benefit for hashing.

– When the input data is skewed compared with the

uniform-distributed dataset: from the experiments

in Section 6.4, we have seen that the Hash-Sort al-

gorithm performs better than the others when the

data is skewed.

– When the input key cardinality is uncertain: The

Pre-Partitioning algorithm should be chosen for the

uniform dataset when the key cardinality is uncer-

tain. If the key cardinality is not precise, especially

when it may be over-estimated, Pre-Partitioning may

cause unnecessary grace partitioning with extra I/O

cost. In practice, if the input key cardinality is not

precise, the Pre-Partitioning algorithm can be used

with an underestimated input key cardinality. This

will force the Pre-Partitioning to do a hybrid-hash

phase, and during this phase the algorithm can col-

lect statistical information to adjust the input car-

dinality.

8 Conclusions

In this paper we have discussed our experiences when

implementing efficient local aggregation algorithms for

Big Data processing. We revisited the implementation

details of six aggregation algorithms assuming a strictly

bounded memory, and we explored their performance

through precise cost models and extensive empirical ex-

periments. Among the six aggregation algorithms, we

proposed two new algorithm variants, the Hash-Sort

algorithm and the Pre-Partitioning algorithm. In most

cases, the four hybrid-hash algorithms were the pre-

ferred choice for better running time performance. The

discussion in this paper guided our selection of the local

aggregation algorithms in the recent release of Aster-

ixDB [1]: the Pre-Partitioning algorithm for its toler-

ance on the estimation of the input grouping key car-

dinality, the Sort-based algorithm for its good perfor-

mance when aggregating sorted data, and the Hash-

Sort algorithm for its tolerance for data skew. We hope

that our experience can also help developers of other

Big Data platforms to build the solid local aggregation

fundamental. In AsterixDB, based on this work, we are

now continuing our study of efficient aggregation im-

plementations in a clustered environment, where more

factors like per-machine workload balancing and net-

work costs must be further considered.

Acknowledgements This work has been partially supported
by NSF IIS awards 0910989 and 0910859, a grant from the
UC Discovery program with a matching donation from eBay,
and gifts from Google, hTC, Microsoft, and Oracle Labs.

References

1. Asterixdb: http://asterixdb.isc.uci.edu
2. Smhasher. http://code.google.com/p/smhasher
3. Tpc-h benchmark. http://www.tpc.org/tpch
4. Behm, A., Borkar, V.R., Carey, M.J., Grover, R., Li, C.,

Onose, N., Vernica, R., Deutsch, A., Papakonstantinou,
Y., Tsotras., V.J.: Asterix: towards a scalable, semistruc-
tured data platform for evolving-world models. Distrib.
Parallel Databases 29(3), 185–216 (2011)

5. Bitton, D., Boral, H., DeWitt, D., Wilkinson, K.: Par-
allel algorithms for the execution of relational database
operations. ACM Trans. Database Syst. 8(3), 324–353
(1983)

6. Borkar, V., Carey, M., Grover, R., Onose, N., Vernica, R.:
Hyracks: A flexible and extensible foundation for data-
intensive computing. In: ICDE, pp. 1151–1162 (2011)

7. Chu, C., Kim, S., Lin, Y., Yu, Y., Bradski, G., Ng, A.,
Olukotun, K.: Map-reduce for machine learning on mul-
ticore. In: NIPS, pp. 281–288 (2006)

8. Cieslewicz, J., Ross, K.: Adaptive aggregation on chip
multiprocessors. In: VLDB, pp. 339–350 (2007)

9. Epstein, R.: Techniques for processing of aggregates in
relational database systems. Tech. rep., Technical Report
UCB/ERL (1979)

10. Gardy, D., Némirovski, L.: Urn models and yao’s formula.
In: ICDT, pp. 100–112 (1999)

11. Graefe, G.: Query evaluation techniques for large
databases. ACM Computing Surveys (CSUR) 25(2), 73–
169 (1993)

12. Graefe, G.: The value of merge-join and hash-join in sql
server. In: VLDB, pp. 250–253 (1999)

13. Graefe, G., Bunker, R., Cooper, S.: Hash joins and hash
teams in microsoft sql server. In: VLDB, pp. 86–97 (1998)

24 Jian Wen et al.

14. Gray, J., Sundaresan, P., Englert, S., Baclawski, K.,
Weinberger, P.: Quickly generating billion-record syn-
thetic databases. In: SIGMOD Conference, pp. 243–252
(1994)

15. Kitsuregawa, M., Tanaka, H., Moto-Oka, T.: Application
of hash to data base machine and its architecture. New
Generation Comput. 1(1), 63–74 (1983)

16. Knuth, D.E.: The Art of Computer Programming, Vol-
ume III: Sorting and Searching. Addison-Wesley (1973)

17. Motwani, R., Raghavan, P.: Randomized algorithms. In:
A.B. Tucker (ed.) The Computer Science and Engineer-
ing Handbook, pp. 141–161. CRC Press (1997)

18. Pavlo, A., Paulson, E., Rasin, A., Abadi, D., DeWitt,
D., Madden, S., Stonebraker, M.: A comparison of ap-
proaches to large-scale data analysis. In: SIGMOD Con-
ference, pp. 165–178. ACM (2009)

19. Ramakrishnan, R., Gehrke, J.: Database management
systems (3. ed.). McGraw-Hill (2003)

20. Sedgewick, R.: Quicksort with equal keys. SIAM J. Com-
put. 6(2), 240–268 (1977)

21. Shapiro, L.: Join processing in database systems with
large main memories. ACM Trans. Database Syst. 11(3),
239–264 (1986)

22. Shatdal, A., Naughton, J.: Adaptive parallel aggregation
algorithms. In: SIGMOD Conference, pp. 104–114 (1995)

23. Silberschatz, A., Korth, H.F., Sudarshan, S.: Database
System Concepts, 5th Edition. McGraw-Hill Book Com-
pany (2005)

24. Ye, Y., Ross, K.A., Vesdapunt, N.: Scalable aggregation
on multicore processors. In: DaMoN, pp. 1–9 (2011)

A APPENDIX: Basic Component Models

This section describes the details of the basic component
models used in the cost model analysis. We use the symbols
shown in Table 5.

Symbol Description
n Number of raw records
m Number of unique groups
A A set of run files {A[1], ..., A[|A|]}
D(n,m) An input dataset of n records and m unique

groups
H Hash table slots count
K Hash table capacity in number of unique groups
M Memory capacity in frames
U Number of unique keys, so that the dataset

D(n,m) can be generated through with-
replacement draws from this key set.

Table 5 Symbols For Input Parameters

A.1 Input Component

There are two important quantities we will use in the algo-
rithms’ cost models. (1) Due to a restricted memory budget,
a dataset D(n,m) will be processed in ‘chunks’. When con-
sidering a chunk of r records (r ≤ n), an important quantity
is the number of unique keys that this chunk contains - de-
noted as Ikey(r, n,m) - assuming that the records are ran-
domly picked from D(n,m). (2) Given a memory budget for
k groups (records of the form (key, aggregated value)), an-
other important quantity is the number of records - denoted
as Iraw(k, n,m) - that we should pick randomly from D(n,m)

in order to fill up the memory with k unique keys (k ≤ m).
Assuming draws without replacement, both quantities can be
computed through direct application of Yao’s formula [10]. In
particular:

Ikey(r, n,m) =m ∗ (1− (1−
r

n
)

n

m) (14)

Iraw(k, n,m) =n ∗ (1− (1−
k

m
)

m

n) (15)

A.2 Sort Component

When sorting the datasetD(n,m), we assume a 3-way-partition-
quicksort [20]. The required number of comparisons Csort

(n,m) can be computed through a divide-and-conquer proce-
dure by randomly choosing a split key and recursively sorting
on the two sub-partitions:

Csort(n,m) =
n

m
∗m− 1 +

1

m

m∑
i=1

(Csort(
n

m
∗ (m− i),m− i)

+ Csort(
n

m
∗ (i− 1), i− 1)) (16)

Solving this recurrence we get the following formula:

Csort(n,m) = 2
n

m
(m− 1)ln(m− 2) + (

n

m
− 1)(2m− 3) (17)

A.3 Merge Component

Consider a collection A of sorted run files. Let A[i] denote the
size of the i-th file. Algorithm 1 computes the cost for merging
the collection A using M input buffer frames and the loser-
tree based merging method [16]. By setting the cost func-
tion F (A′)(A′ ⊆ A) to be the CPU comparisons in merging
(F (A′) = log2(|A′|)) or the flushing I/O in merging (F (A′) =∑|A′|

i=1 A′[i]), the same algorithm can be used for either CPU
comparison cost or the I/O cost.

Algorithm 1 Algorithm for Merge Cost
Require: A: files to be merged; M : available memory in

frames; F : cost function.
while |A| > 1 do

if |A| ≤ M : all files can be merged in a single round.
Add F (A) to cost, and stop.
if M < |A| < 2M : merge the first (|A| −M + 1) files
to produce a single run; remove the merged files from
A and add the new run at the end of A (|A| is thus
reduced to M files). Add F ({A[1], ..., A[|A| −M + 1]})
to Cmerge(A,M)
if |A| ≥ 2M : merge the first M files into a new run.
Remove the merged files from A and add the new run at
the end of A. Add F ({A[1], ..., A[M]}) to Cmerge(A,M)

end while

A.4 Hash Component

Consider a hash table with H slots in the slot table; Let
K denote the maximum number of group records that can

Revisiting Aggregation for Data Intensive Applications:A Performance Study 25

be stored in the list storage area. Note that duplicates are
aggregated within group records, so filling up the list storage
area would imply encountering K unique groups. The number
of records drawn randomly from D(n,m) to fill up the list
storage area (i.e., to get K unique keys) is thus Iraw(K,n,m).

Let Chash(n,m,K,H) denote the number of comparisons
needed to fill up the list storage area. This accounts for both
hash hits (denoted as csucc; these are records that have been
seen already and are thus aggregated) and hash misses (de-
noted by cunsucc; these are records that have not been seen
before). For the i-th insertion to be a hash hit, it must corre-
spond to a key which has already been inserted in the hash
table. Using Equation 14, at the i-th insertion the number of
unique keys already in the hash table is

ki = Ikey(i, n,m)

Note that the no-replacement assumption of Yao’s formula
implies that after each insertion, the distribution of the re-
maining keys in the input set changes; this distribution is thus
difficult to re-estimate after each insertion. Instead, we will
assume here that the dataset D(n,m) is generated by ran-
domly drawing keys with replacement from a ‘generator’
set with U unique keys. Then each insertion can be considered
as a random pick from the U unique keys with replacement,
and the probability for a hash hit for the i-th insertion be-
comes:

PrhashHit =
ki

U

We note that the average number of unique keys m̃ in n
random draws is given by:

m̃ = U ∗ (1− (1−
1

U
)n) (18)

We can then estimate U by substituting the expected
value m̃ with m in the above equation.

To compute the number of comparisons during a hash hit
we need the expected number of groups contained in a non-
empty slot, assuming the probability of finding a match at any
group along the slot’s linked list is the same. The number of
non-empty slots in the hash table at the i-th insertion can be
calculated using the urn model [17] as

Hu(i,H, n,m) = H ∗ (1− (1−
1

H
)ki) (19)

Then the expected number of groups in a non-empty slot
would be

Lslot =
ki

Hu(i,H, n,m)

The expected comparison cost for a hash hit becomes:

csucc(i, n,m,H) = PrhashHit ∗
Lslot + 1

2
(20)

A hash miss happens when a record is hashed either into
a previously empty slot (this does not require a comparison)
or into a non-empty slot but where no match is found (this
case will incur comparisons until the end of the linked list is
reached). The probability that it is inserted into a non-empty
slot is:

Prnonempty =
Hu(i,H, n,m)

H

and thus the hash miss comparison cost then becomes:

cunsucc(i, n,m,H) =(1− PrhashHit) ∗ Lslot

∗ Prnonempty (21)

Finally, the total comparison cost is given by:

Chash(n,m,K,H) =

Iraw(K,n,m)∑
i=0

(csucc(i, n,m,H)+

cunsucc(i, n,m,H)) (22)

For some hybrid-hash algorithms a spilled partition may
contain both aggregated groups and non-aggregated records.
To insert such a “mixed” dataset into a hash table, the cost
model should be adjusted. Let u denote the number of ag-
gregated groups (which are thus unique) and n the number
of ‘raw’ (not yet aggregated) records. To insert the u unique
groups the comparisons arise only from hash misses:

cunique(n,m,H, u) =
u∑

i=1

(
Hu(i− 1, H, n,m)

H

∗
i− 1

Hu(i− 1, H, n,m)
) (23)

For calculating the number of comparisons from the in-
sertion of the raw records after inserting the u unique groups,
we first note that the probability for a hash hit is:

Pr′hashHit =
ki + u

U
The expected number of groups in a non-empty slot for

the i-th insertion is given by:

L′slot =
ki + u

Hu(i,H, n,m)

So the hash comparison cost if the i-th insertion is a hash hit
is:

csucc(i, n,m,H, u) = Pr′hashHit ∗
L′slot + 1

2
(24)

To calculate the hash miss cost, we note that the prob-
ability that the insertion is to a non-empty slot is adjusted
as:

Pr′nonempty =
Hu(i + u,H, n,m)

H

Hence the comparison cost for the hash miss of the i-th
insertion becomes:

cunsucc(i, n,m,H, u) = L′slot∗Pr′nonempty∗(1−Pr′hashHit)

(25)

The overall cost for the ‘mixed’ input case, denoted by Chash

(n,m,K,H, u) is thus:

Chash(n,m,K,H, u) =cunique(n,m,H, u)

+

Iraw(K−u,n,m)∑
i=1

(csucc(i, n,m,H, u)

+ cunsucc(i, n,m,H, u)) (26)

	1 Introduction
	2 Related Work
	3 Processing Environment
	4 Aggregation Algorithms
	5 Cost Models
	6 Experimental Evaluation
	7 Algorithm Selection
	8 Conclusions
	A APPENDIX: Basic Component Models

