
Accelerating XML query matching through
custom stack generation on FPGAs

Roger Moussalli, Mariam Salloum, Walid Najjar, and Vassilis Tsotras

Department of Computer Science and Engineering
University of California, Riverside

CA 92521, USA
{rmous,msalloum,najjar,tsotras}@cs.ucr.edu

http://www.cs.ucr.edu

Abstract. Publish-subscribe systems present the state of the art in in-
formation dissemination to multiple users. Such systems have evolved
from simple topic-based to the current XML-enabled systems. Here, users
pose complex queries (expressed in XPath) on the structure and content
of the streaming documents. The parts of the documents that match
the user queries are then returned to the users. This paper proposes a
novel hardware architecture that would exploit the parallelism found in
XPath filtering systems. Using an incoming XML stream, parsing and
matching with thousands of user profiles are performed simultaneously
on a single FPGA, thus yielding up to three orders of magnitude higher
throughput when compared to conventional approaches bound by the se-
quential aspect of software computing. By converting XPath expressions
into custom stacks, our architecture is the first providing full support
for all structural XPath constructs, including parent-child and ancestor
descendant relations, whilst allowing wildcarding and recursion.

Key words: FPGA, XML, Query, XPath, Compilation

1 Introduction

Increased demand for timely and accurate event-notification systems has lead to
the wide adoption of Publish/Subscribe Systems(or simply pub-sub). A pub-sub
is an asynchronous event-based dissemination system which consists of three
components: publishers, who feed a stream of messages into the system, sub-
scribers, who post their interests (also called profiles), and an infrastructure for
matching subscriber interests with published messages and delivering matched
messages to the interested subscriber. Pub-sub systems have enabled notification
services for users interested in receiving news updates, stock prices, weather up-
dates, etc; examples include google.news.com, pipes.yahoo.com, and www.ticket-
master.com. Pub-sub systems have greatly evolved over time, adding further
challenges and opportunities in their design and implementation. Earlier pub-
subs involved simple topic-based communication. That is, subscribers could sub-
scribe to a predefined collection of topics (e.g., news, weather, etc.). The sec-



2 Roger Moussalli, Mariam Salloum, Walid Najjar, and Vassilis Tsotras

ond generation consists of predicate-based systems which employ the Event-
Condition-Action paradigm to perform profile matching and selective dissemi-
nation of information. Profiles are usually described as conjunctions of (attribute,
value) pairs. For example, a profile could be: (concert, Police) AND (city, Los
Angeles), for a user interested in being notified of Los Angeles concerts of the
Police rock band. The wide adoption of the eXtensible Markup Language (XML)
as the standard format for data exchange has led to the third generation, namely
XML-enabled pub-sub systems. Here messages are encoded as XML documents
and profiles are expressed using XML query languages, such as XPath [19]. Such
systems take advantage of the powerful querying that XML query languages of-
fer: profiles can now describe requests not only on the message values but also
on the structure of the messages 1.

The wide adoption of XML is due to its self-describing and extensible nature;
document content is tagged to provide a detailed description of its organization.
An XML document has a hierarchical (tree) structure that consists of a root
element and sub-elements. In addition, elements (or tags) can appear multiple
times inside the same enclosing element (also referred as recursion). In the XPath
query language queries are composed of a sequence of location steps. Each loca-
tion step consists of an axis and an element. An axis specifies the hierarchical
relationship between the document nodes. We focus on the two most common
axes, namely, parent-child (‘/’) and ancestor-descendant (‘//’). The parent-child
axis specifies that two elements should appear at adjacent levels in the XML doc-
ument tree. Likewise, the ancestor-descendant axis specifies that two elements
can be separated by any number of levels in the XML tree. Wildcard characters
(‘*’) are elements of XPath queries, providing a level of freedom by allowing any
tag of the XML tree to replace them.

XML-filtering becomes a challenging problem when considering that it should
support thousands of subscriptions, high volume of input streams, and should
perform complex structural matching in a timely manner. Many software ap-
proaches have been presented to solve the XML filtering problem [1, 6, 7, 9].These
memory-bound approaches, however, suffer from the Von Neumann bottleneck
and are unable to handle large volume of input streams. On the other hand,
Field Programmable Gate Arryas (FPGAs) have been shown to be particularly
suited for the stream processing of large amounts of data and do not suffer from
the memory bottleneck faced by software implementations [15], [8]. Recently, in
[14] we presented a proof-of-concept approach for the use of FPGAs on XML fil-
tering. This approach, however, does not account for recursive elements in XML
documents, neither for wildcards in the XPath profile expressions; both features
are important constructs for XML documents and the XPath query language.

In this paper we present a novel implementation of XPath queries on FPGA
that does support expressions with ‘/’, ‘//’, ‘*’ and recursive elements in the
XML documents. We present various alternatives and optimizations of this im-
plementations and report on their respective costs benefits and trade-offs in
terms of clock speed and area occupancy on the FPGA. We compare the achieved

1 In the rest we use the terms “profile” and “query” interchangeably.



Accelerating XML query matching on FPGAs 3

throughput to two popular software implementations: the LazyDFA [7] and FiST
[9]. The results show up to three orders of magnitude of increasing throughput,
with the geometric mean of the acceleration reported being 59x.

The rest of the paper is organized as follows: Section 2 presents related work
while Section 3 provides in depth description of the proposed architectures tar-
geted for XPath query matching. Section 4 presents an experimental evaluation
of the FPGA based hardware approach compared to the state of the art software
counterparts. Finally conclusions and open problems for further research appear
in Section 5.

2 Related Work

The popularity of XML as a de facto standard for information exchange has
triggered several research efforts to build scalable and efficient XML filtering
systems. Several approaches have been proposed to solve the XML filtering prob-
lem. An early work, XFilter [1], proposed building a Finite State Machine (FSM)
for each user profile, such that each element in the XPath expression becomes a
state in the FSM. Each profile axis defines the transition between states, where
the final state is the accept state for that FSM. The FSM states are executed
as XML tag events are generated. An open(tag) event drives the FSM to the
next state, while a close(tag) event drives the FSM back to the previous state.
YFilter [6] built upon the work of XFilter, proposed a Non-Deterministic Finite
Automata (NFA) representation of query path expressions which combines all
queries (profiles) into a single machine. This approach yields better results since
it exploits the commonality among path expressions. Green et.al. [7] proposed
a lazy Deterministic Finite Automata. [9] proposed a sequence-based approach
where both the XML document and query are transformed into Prufer sequences
and subsequence matching is performed to determine if the query has a match
in the document.

Nevertheless, the approaches discussed above are entirely software-based so-
lutions abiding by the standard Von Neumann organization. One naive solution
would be implementing the software-based FSM approaches on FPGAs. Such an
approach however, is not efficient because the software approaches must dynami-
cally allocate memory during XML filtering: consider the LazyDFA approach [7],
which constructs the DFA in a lazy fashion during XML filtering. This approach
cannot be implemented on the FPGA because the number of DFA states is not
known in advance. In addition, recursion in XML streams requires dynamic ini-
tiation of multiple NFA processing engines during filtering which is not possible
on FPGAs.

There are several approaches that use specialized parallel architectures for
XML processing [10], [12]. In particular, [10] aimed to accelerate XML parsing
using the Cell Broadband Engine multi-processor which consists of 8 indepen-
dent processors (SPEs) that implement the FSM of the Zurich XML Accelerator
(ZuXA) engine. This approach achieves parallelism by parsing (eight) XML doc-
uments in parallel at a time. In addition to be only suitable for XML parsing, this



4 Roger Moussalli, Mariam Salloum, Walid Najjar, and Vassilis Tsotras

solution is a combination of hardware-software approach. Similarly, the work in
[12] addresses ways to load-balance parallel threads for low-level XML processing
(e.g., XML parsing).

Previous work that have used FPGAs for processing XML documents have
mainly dealt with the problem of XML parsing. In particular, [13] proposes the
ZuXA engine to parse XML documents. This engine employs state machines for
efficient parsing based on set of rules. The paper however does not provide any
discussion how this engine can be adapted to evaluate XPath query expressions
over the XML input.

The works in [11] propose the use of a mixed hardware/software architecture
to solve simple XPath queries having only parent-child axis. A finite state ma-
chine implemented in FPGAs is facilitated to parse the XML document and to
provide partial evaluation of XPath predicates. The results are then reported to
the software part for further processing. Similarly to the ZuXA engine, this ar-
chitecture is limitted to support simple XPath expressions with the parent-child
axis.

Our previous work [14] was the first to propose a pure-hardware solution to
the XML filtering problem. Improvements of more than one order of magnitude
were reported when compared to software. However, this method is unable to
handle recursion in XML documents or wildcards ‘*’ in XPath profiles; such
issues as well as various optimizations are handled by the novel architecture we
present in this paper.

3 XPath Matching Hardware Architecture

Using an XML stream as input, we present a full-hardware XPath matching
system on FPGAs; this section describes the details of the proposed approach.
We start by providing an overview of our SAX Parser implementation, built upon
a tag decoder, leading to a resource-optimized XML event notifier and overall
architecture. The intuition behind mapping XPaths into stacks is then described,
while contrasting with the shortcomings of previous approaches. We then propose
some area saving optimizations through the reduction of the average width of
required stacks. These optimizations would potentially imply a decrease in the
operational frequency of the overall system on FPGA, a limitation which we
prove to overcome using fan-out trees. Finally, we present the incentive behind
the clustering of XPath matching engines, and the underlying technique used to
report matches.

3.1 SAX Parser and Tag Decoder Implementation

The (Simple API for XML) (SAX) Parser [17], is an event-driven XML parser,
ideal for streaming applications. Unlike other parsers (such as DOM [5]), where
the entire XML document need be stored in memory before processing can start,
SAX Parsers would generate open(tag) and close(tag) events on the fly, with all



Accelerating XML query matching on FPGAs 5

XPath query matching engines updating states accordingly. As a result, match-
ing ends when the XML stream is complete.

With FPGAs being limited in hardware resources, a tag decoder is a de-
sirable feature operating in conjunction with the SAX Parser. Since all query
matching engines would need comparisons against respective tags, all engines
executing in a parallel fashion, many redundant comparisons would take place
across several engines, thus unnecessarily wasting resources. Decoders solve this
issue by centralizing comparisons, and mapping decoded tags into single bit lines.
All remaining comparisons are then translated into simple AND gates, hence,
allowing the FPGA resources to be used for more useful computations. Our tag
decoder is inspired from character decoding, the latter becoming conventional
in pattern matching on FPGAs [16], [14], and which was shown to offer up to
83% of area savings in [14].

Fig.3 shows how a tag decoder would operate in parallel with a SAX Parser
in order to generate open and close tag events, with a tag being a single bit line
out of the possible n decoded ones. Note that only one of those bit lines is high
at a given point in time. Furthermore, the tag decoder is configured at compile
time to recognize the n unique tags that would appear in the stream of XML
documents.

3.2 Matching XPaths Using Path Specific Stacks

Due to the occurrence of parent-child relations, a stack is an essential feature
of XML filtering systems, where an open(tag) is translated into a push event,
and conversely, a close(tag) would be translated onto a pop event. For instance,
matching the XPath a/b would take place when the open(b) event arises, with
‘a’ being the top of stack. There is no bound to the number of children ‘a’ could
have within the XML document, any of those coming about prior to ‘b’. Thus, it
would not be sufficient to check for the latest tag opened, but instead, the latest
tag opened that still has not been closed.

A single global stack is needed to support the matching of parent-child rela-
tions for all XPath profiles. On the other hand, when using conventional state
machine approaches, matching ancestor-descendant relations of the form c//d
can be translated into a 3-state FSM, as we described in [14].

However, such methods fail to support recursion, a key aspect of XML doc-
uments, where certain tags are allowed to appear as their own children and/or
descendants. Instead of using one global stack and one state machine per XPath
user profile, we propose mapping each XPath into a customized stack, namely a
Path Specific Stack (PSS). The PSS depth would be that of the XML document;
furthermore the PSS width is equivalent to the depth of the XPath profile, where
each tag of the query expression is mapped to a unique column, with regard to
the order in which they appear in the XPath. A ‘1’ would be stored in a column
when matching for the tag mapped to it is true. This occurs with an open(tag)
event for that tag being generated from the SAX Parser, with all previous tags
having matched earlier. The storing of a ‘1’ in the right-most column indicates
a successful match for the entire XPath expression. The width of the stack, the



6 Roger Moussalli, Mariam Salloum, Walid Najjar, and Vassilis Tsotras

Fig. 1. Overview of the matching of XPath a/c/a/c/b. Each cycle refers to an open(tag)
or close(tag) event, relative to the highlighted tag.

surrounding logic alongside the tag decoded bit lines routed to it for matching
purposes are all specific to each XPath query.

Fig.1 shows a cycle by cycle overview of all the steps required for the matching
of the XPath a/c/a/c/b, where, for simplification purposes, a cycle refers to a
SAX Parser event. Cycle 0 reflects on the initial state of the system prior to any
streaming taking place: the XML document to be streamed is drawn on the left
hand side, whereas a PSS of width five is shown to the right. Each column is
labeled with the corresponding tag of the a/c/a/c/b expression.

When the open(a) event takes place in cycle 1, the first column of the PSS
would store a ‘1’. Consequently, with an open(c) event occurring in cycle 2, a
‘1’ is stored in the second column, allowing the previous partial match stored
in column 0 of the previous Top Of PSS (TOPSS) to propagate diagonally. In
other words, an open(c) event alone is not enough to validate the matching of
tag ‘c’. The fourth column in that same cycle demonstrates this behavior, for
no matching was reported, due to no diagonally propagating ‘1’.

Support for recursion is depicted in cycle 3, where both the first and third
columns indicate a match for tag ‘a’ simultaneously, thus, allowing two possible
matches of the same XPath to be in progress concurrently: one having started at
cycle 1, the other at cycle 3. The state maching approach described in [14] would
not take the new possible matches into consideration, since an FSM cannot reside
in two states simultaneously. Moreover, each XPath query expression is mapped
into a single state machine; therefore, multiple possible matches require multiple
state machines, an issue which we solve using Path Specific Stacks.

With an open(c) event on cycle 4, both previous partial possible matches
propagate diagonally. The occurrence of tags irrelevant to the XPath query has



Accelerating XML query matching on FPGAs 7

no negative effect on the matching process. For instance, with ‘d ’ pushed onto
the stack on cycle 5, no partial matches are propagated. Moreover, roll-back to
the previous state took place on cycle 6 with the close(d) event taking place,
thus popping the TOPSS.

A third partial possible match spawns off on state 7 (first column), while the
first partial match that awaited an open(b) event had to stop propagation for
the moment being, and can only resume matching until the currently pushed ‘a’
is popped.

Propagation of partial matches resumes in cycle 8. Ultimately, a match has
been found in cycle 9, thanks to the partial matching starting propagation from
cycle 3. A match can be seen as a diagonal of 1’s, ending in the fifth column.

Since our proposed architecture is not based on state machines as in [14],
we offer support specific to our system for ancestor-descendant relations, as
explained in Section 3.4.

3.3 Applied Optimizations for PSS Reduced Resource Utilization

As described in Section 3.2, PSS’s have a width equivalent to the depth of the
XPath profile mapped to it. With FPGAs being limited in resources, we propose
some area reduction optimizations to be applied to the PSS. In this section, we
focus on optimizing the PSS mapping of the same XPath profile used as a base
example in Section 3.2.

One key observation reflected in Fig.1 is that at most, two columns can be
written to with regard to the occurrence of a single event. In other words, tag ‘a’
maps to no more of two of the possible five stack columns, specifically columns
one and three. Similarly, tag ‘c’ maps to columns two and four, whereas tag ‘b’
solely maps to column 5.

We base our optimizations on the introduction of a global stack. The decoded
representation of tags would be pushed or popped onto this stack, in the case of
open(tag) and close(tag) events respectively. Each of the global stack and Path
Specific Stacks are pushed to and popped from concurrently. We refer to the top
of the global stack as TOS. Fig.2 shows the optimized mapping of the XPath
expression a/c/a/c/b.

One intuitive optimization is not to map the final tag of the XPath expression
to the PSS, rather to the match output signal, indicating whether or not a match
of the query has occurred.

Moreover, with the help of the global stack, the first tag in an XPath need not
be mapped to the PSS. Checking for the second tag consists of AND-ing the first
label’s decoded bit of the TOS, with the tag decoder output bit corresponding
to the second tag; the top most AND gate in Fig.2 connects the first bit of the
TOS and the bit corresponding to tag ‘c’ from the tag decoder output, in order
to match a/c, the two initial tags of the XPath studied.

One more general optimization that aims to reduce the PSS width is to map
multiple occurrence of different tags to the same column. The rule is to map
one occurrence of a given tag from the XPath query onto the column following
the mapping of the last occurrence of that same tag. By doing so, we fold



8 Roger Moussalli, Mariam Salloum, Walid Najjar, and Vassilis Tsotras

Fig. 2. Optimized hardware mapping for the matching of XPath a/c/a/c/b. Stack
contents reflect on a macthed state of the expression.

the diagonal previously noted in Fig.1, into the minimal number of columns;
with the exception of the first and last tag in an XPath query expression, the
needed PSS width is defined as the greatest number of repetitions accross all
tags. Considering the expression a/c/a/c/b, tag ‘c’ has the highest number of
occurrences, being equal to two. Note that tag ‘a’ has only one occurrence to
be considered for PSS mapping, since the first tag in an XPath would not be
mapped, as explained earlier. Since tag ‘c’ has the most repetitions, namely
two, the required PSS would have a width of two; the first initial of ‘c’ and the
second occurrence of ‘a’ would map to the first PSS column, whereas the second
occurrence of ‘c’ is mapped onto the second column.

When propagating a ‘1’, the global stack is essential in order to distinguish
between multiple tags mapped to the same column. For instance, in the previous
example, a ‘1’ in the first column of the TOPSS accompanied by a decoded ‘c’
in the TOS, would refer to the second tag in the XPath expression. On the other
hand, a ‘1’ in the first column of the TOPSS accompanied by a decoded ‘a’ in
the TOS states that the partial match has reached the third tag in the XPath
expression.

The need of the global stack is reflected by some penalty on the logic sur-
rounding the PSS. Looking at Fig.2, it can be seen that, with the exception
of the top-most AND gate, all remaining gates require an extra input, taking
into account one bit from the TOS. Moreover, since two tags map to the same
column, a 2-input OR gate was inserted prior to the first column of the PSS.
Nonetheless, the reduction in required PSS width is noticeable; the overall area



Accelerating XML query matching on FPGAs 9

savings would be used to place structures relevant to achieving high throughput,
as explained in Section 3.5.

Fig. 3. High-Level system overview.

3.4 Supporting Wildcards and Ancestor-Descendant Relationships

Wildcards, represented as ‘*’ within XPath query expressions, imply that any tag
from the XML document can be used as a valid replacement. In our architecture,
this would mean that any decoded tag would help propagate the diagonal ‘1’. In
other words, no global stack output is needed at the input of the corresponding
AND gate. In the case of the unoptimized PSS, wildcards are translated into the
output of the previous column directly routed into the input of the wildcard col-
umn, thus no extra logic is required. However, each wildcard should be mapped
to a column of its own, since the tag used to replace a wildcard at a given point
could be similar to any other tag from the XPath query. Therefore, wildcards
exhibit a negative impact on the total occupied area.

Likewise, ancestor-descendant relations also have negative impact on resource
utilization. Tags followed by ancestor-descendant relations should be mapped
onto exclusive columns. The reasoning is that one column would reflect that tag
being an ancestor, having appeared earlier in the document. In order to do so,
the input of the PSS column consists of the regular matching logic propagating
the previous ‘1’, OR-ed with the output of the column itself. Note that PSS
entries are updated upon push events, rather than pop. Thus, once the ancestor



10 Roger Moussalli, Mariam Salloum, Walid Najjar, and Vassilis Tsotras

column stores a ‘1’, all later pushed entries of that column would reflect the
match, until the initial ‘1’ is popped.

The optimization introduced in Section 3.3 regarding the first tag of an XPath
expression, does not hold when that tag is followed by an ancestor-descendant
relation, unless that tag is a wildcard; in that case, the second tag’s propagating
input is the stack not empty signal generated from the global stack.

3.5 System Architecture

We propose a scalable architecture appropriate for the simultaneous matching
of thousands of XPath profiles.

Addressing Inner and Outer Fan-Outs via Clustering. One observation
is that all stacks on chip would be updating concurrently; hence, all of the
stacks’ addresses would be generated from a common structure, which in turn
requires push and pop notifications from the SAX Parser. Figure 3 illustrates this
matter, where the TOS address is routed to the global stack and all remaining
Path Specific Stacks (in the case of unoptimized PSS’s, there is no need of a
global stack). This approach however creates a fan-out issue, where the address
signal, the global stack output and the tag decoder output are replicated as many
times as there are XPath profile matching engines (see Fig.3), thus, affecting the
allowed operational frequency.

A solution to this problem would be clustering, where the global stack, the
SAX parser and the tag decoder would be replicated for clusters of PSS’s, thus
reducing the fan-out. This in turn raises the issue of the fan-out on the input
stream, which would have to be replicated to feed into all clusters.

We refer to the fan-out within clusters as the inner-fanout ; moreover, as the
name indicates, the outer-fanout is caused by the out-of-cluster replication of
the input stream.

One attempt to reduce the outer-fanout is the insertion of a binary fan-out
tree on the input stream, as shown in Fig.4. Each node in that tree is a 9-bit
buffer, capable of storing the input stream and an input valid bit. With each leaf
of that tree feeding a single cluster, the outer fan-out would be eliminated, at
the cost of many on-chip resources. Section 4.1 provides a thorough design space
exploration on the allowed inner-fanout vs. tree size compromise. A reduced
fan-out tree is introduced, which occupies less resources than a full tree, while
keeping outer fan-out within reasonable bounds.

Reporting Matches. With thousands of matching engines co-existing on chip,
reporting matches becomes a more complicated issue, where mapping each match
signal exclusively to an FPGA pin is not an option. Our previous approach [14]
suggested the use of priority encoders, where upon the event of a match, the
unique encoded ID of the expression is returned. However, such an approach
fails to acknowledge multiple matches occurring concurrently. XPaths a//b and
c/a/d/b are such examples.



Accelerating XML query matching on FPGAs 11

Fig. 4. Clustering of XPath expressions and Input Fan-Out Tree integration as an
effort to reduce Fan-Out.

For the application of interest (filtering), the number of matches of each
profile is of no interest, rather whether or not there was at least one match. Thus,
we enhance our matching logic with one bit buffers relative to each PSS (Fig.3);
these buffers are connected serially. Upon the completion of the input stream, all
of these results would be streamed out in a pipelined fashion, with a single bit
port required. There would be N cycles of overhead required for this mechanism
to complete streaming out, with N being the number of profiles. Nonetheless,
this overhead is minimal when compared to the size of the documents streamed
through the FPGA.

In the case of clustering, we provide the option of having one match output
signal per cluster, as shown in Fig.4. This would help reduce the overhead of
sending the information out of the FPGA.

4 Experimental Results

We proceed with a design space exploration, where the effects of inner and
outer fan-out, resource utilization and throughput are studied. We present four
hardware systems, namely:

– No Optimization No Tree (NONT), where the PSS optimizations described
in 3.3 are not applied.



12 Roger Moussalli, Mariam Salloum, Walid Najjar, and Vassilis Tsotras

– With Optimization No Tree (WONT), where the PSS optimizations for
area reduction are applied, but the outer fan-out issue is not addressed.

– With Optimization With Tree (WOWT), where we apply both PSS opti-
mizations and a binary fan-out tree having as many leaf nodes as there are
clusters. This system cancels outer fan-out by using part of the optimized
resources.

– With Optimization With reduced Tree (WOWrT); this is an architecture
similar to WOWT, however the fan-out tree is reduced, having fewer leaf
nodes than the number of clusters. While this approach would not eliminate
outer fan-out, we expect that it would scale much better with almost no
penalty on performance.

Our target platform is the Xilinx Virtex 5 LX330 [18] FPGA. With the
proposed architecture heavily relying on memory structures, we make use of
on-chip Block RAMs (BRAMs) [3]. These are highly configurable hard-wired
memory blocks embedded in most Xilinx FPGAs. However, since the number of
BRAMs is far fewer than that of all (global and path specific) required stacks, we
only map global stacks to BRAMs. XPath queries on the other hand would be
implemented using Distributed Memories (DMEMs) [4], memory structures built
from slice LUTs. We provide a thorough resource utilization and performance
study on the underlying tradeoffs of all of the four aforementioned hardware
systems.

The reported performance is measured in throughput (MB/s), i.e., the aver-
age amount of data that can be processed over one second. All hardware systems
assume a single character of 8 bits per cycle from the input stream’s end. We
compare the performance of our hardware systems against both of the LazyDFA
[7] and FiST [9] software approaches.

We used a highly recursive XML Document Type Definition (DTD; which
defines the allowed XML document structure) to generate XML documents and
XPath queries for our experiments. The XML document datasets were generated
by the ToXGENE XML Generator [2], setting the number of unique tags to 32,
each consisting of two bytes. We generated documents of sizes of 5 and 50 MB,
with a maximum XML document depth of 16. The same XML DTD was used
to generate the set of user profiles using the XPath generator package provided
by [6]. The maximum depth of a user profile was fixed at 6 and the probability
of ‘*’ and ‘//’ occurrences was set to 10 percent. We varied the number of user
profile datasets from 128 to 8192 queries.

All software experiments were ran on a quad core 2.33GHz Intel Xeon ma-
chine with 2GB of RAM, running Linux Red Hat 2.6.

4.1 Design Space Exploration

In order to evaluate the tradeoffs of excessive vs. sparse clustering, we ran a
series of experiments, fixing the number of XPath queries at 2048, while varying
the number of queries per cluster, up to 256 clusters (eight queries per cluster).



Accelerating XML query matching on FPGAs 13

We could not provide results beyond that point due to the limitation in the
number of available BRAMs. We first compare NONT, WONT and WOWT.

The larger number of queries in each cluster, the higher the inner fan-out,
thus the lower the outer fan-out, and vice versa. As expected, Fig. 5 shows
that with the absence of clustering, inner fan-out is dominant and the opera-
tional frequency is much lower than achievable for all of three systems studied.
Clustering proves to be beneficial up to a certain point, where the balance be-
tween outer and inner fan-out allows operational frequencies around the best
achievable of 200 MHz. This behavior occurs around 128 queries per cluster.
Beyond that point, where outer fan-out becomes dominant, both of NONT and
WONT’s performance deteriorates. On the other hand, WOWT would exhibit
a rather constant superior performance at around 200 MHz. This is due to the
full binary fan-out tree introduced as an effort to eliminate the effects of outer
fan-out (at the expense of a higher area utilization). This penalty is tolerable
and benefiting while the tree is kept small, up to 128 queries per cluster (where
the tree has 16 leaf nodes and the WOWT area still is smaller than NONT’s).
Beyond that point, the tree grows too large, displaying up to 200% increased
resource utilization.

Fig. 5. Design space exploration with regards to the inner vs. outer fan-out compromise
across three systems at 2048 queries.

We then explore the scalability of the proposed architectures with the number
of XPath queries ranging from 128 to 8192 (Fig. 6) and 200 MHz being our target
operational frequency. We fix the number of queries per cluster at 128 (being the
point where the best performance was realized at 2048 queries). However, we now
evaluate the WOWrT setup, where the fan-out tree has a fixed 16 leaf nodes, the
most adequate tree size from the previously shown exploration. Such an approach
would not eliminate outer fan-out, but would keep the area utilization minimal,
while almost no performance deterioration is noticed. For this approach only, we
fix the number of queries per cluster to a more conservative 64. The intuition
is that with outer fan-out reduced thanks to the tree, inner fan-out should be
kept minimal with the help of extra clustering. Furthermore, since the target



14 Roger Moussalli, Mariam Salloum, Walid Najjar, and Vassilis Tsotras

operational frequency of 200 MHz was achieved with no tree at 2048 queries, we
only evaluate WOWrT for systems having at least 4098 queries (knowing that
no tree is needed otherwise).

Fig. 6. Resource utilization comparison across all four proposed systems. NONT,
WONT and WOWT results shown for 128 queries per cluster. WOWrT makes use
of a 16 leaf-tree at 64 queries per cluster.

As shown in Fig. 6, all approaches scale surprisingly well, almost doubling
the resource utilization while doubling the number of XPath queries.

PSS optimizations offer an average 20% of area savings. For the most part,
WOWrT seems to scale as well as WONT, whereas WOWT suffers from the full
binary fan-out tree.

Figure 7 presents the throughput for all approaches: as expected, a through-
put superior to 200 MB/s is achieved up to 2048 queries across all systems.
Beyond that point, a fan-out tree is needed, thus illustrating the benefits of
WOWT and WOWrT, the latter being more consistent, having a smaller fixed
size tree. Otherwise, a decrease in throughput is revealed across the remaining
systems.

4.2 Performance Evaluation

In order to evaluate the performance of our proposed hardware architectures, we
provide a comparison against two state of the art software approaches, namely
LazyDFA abd FiST (see Fig. 7). We report the throughput as the number of
XPath queries increases from 128 to 8192, for two sets of XML streams of sizes
5 and 50 MB respectively.

Hardware throughput, being the operational frequency of the system, is in-
dependent of the input stream. On the other hand, the negative effects from the
sequential computing aspect of the software approaches, is noted as the number
of queries increases. Moreover, we show to overcome the Von Neumann memory



Accelerating XML query matching on FPGAs 15

Fig. 7. Hardware vs. software performance with an increasing number of queries for
streams of 5 MB (left) and 50 MB (right).

bottleneck as hardware systems exhibit a speedup of up to three orders of mag-
nitude, with a geometric mean of 59x. LazyDFA performs much better with the
number of queries kept small; that approach does not scale too well, where FiST
would outperform it beyond 2048 queries.

5 Conclusions and Future Work

In this paper, we presented a novel FPGA based hardware architecture to address
the XML filtering problem. Using custom stack generation, our architecture is
the first providing full support for all structural XPath constructs, including
parent-child and ancestor descendant relations, whilst allowing wildcarding and
recursion. Hardware architectures do not suffer from the memory bottleneck
problem (better known as the Von Neumann bottleneck), since they are highly
suitable for stream processing; they would also not suffer from the limitations of
sequential processing, as the proposed architecture would support thousands of
matching engines operating in a parallel fashion.

We were able to show that through moderate clustering and proper fan-out
reduction, an average throughput of 200 MB/s can be maintained for up to 8192
matching engines, thus yielding up to three orders of magnitude accelerated
throughput when compared to state of the art software approaches for various
stream sizes. The reported geometric average of the acceleration is 59x.

As part of our future work, we would be looking into enhancing our Path
Specific Stacks to support twig matching; here, user profiles are more compli-
cated as they resemble trees. One common approach used by software systems is
to split the twig into multiple XPaths. However, we are interested in holistic twig
matching, where each engine would detect a twig without splitting it into mul-
tiple paths. The resulting system would be fully implementable on hardware, as
no false positives are generated to reconstruct the twigs using any accompanying
software.



16 Roger Moussalli, Mariam Salloum, Walid Najjar, and Vassilis Tsotras

References

1. Altinel, M., Franklin, M.J. : Efficient Filtering of XML Documents for Selective
Dissemination of Information, In: Proceedings of the 35th Int’l Conference on Very
Large Data Bases (VLDB), pp. 53–64 (2000).

2. Barbosa, D., Mendelzon, A., Keenleyside, J., Lyons, K.: ToXgene: a template-
based data generator for XML. In : Proceedings of ACM Management of Data
(SIGMOD), pp. 616–616 (2002).

3. Block RAM v1.00a http://www.xilinx.com/support/documentation/ip_

documentation/bram_block.pdf

4. Distributed Memory Generator v4.1 http://www.xilinx.com/support/

documentation/ip_documentation/dist_mem_gen_ds322.pdf

5. W3.org on DOM, http://www.w3.org/DOM
6. Diao, Y., Altinel, M.,Franklin, M.J., Zhang, H.,Fischer, P.: Path sharing and pred-

icate evaluation for high-performance XML filtering. ACM Trans. on Database
Systems (TODS), vol. 28, pp. 467–516 (2003).

7. Green, T.J., Gupta, A., Miklau, G., Onizuka, M., Suciu, D. : Processing XML
streams with deterministic automata and stream indexes. ACM Trans.on Database
Systems (TODS), pp. 752–788 (2004).

8. Guo, Z., Najjar, W., Vahid, F., Vissers, K. : A quantitative analysis of the speedup
factors of fpgas over processors. In : Proc. of the 12th ACM/SIGDA Int’l Symp.
on Field programmable gate arrays (FPGA), pp. 162–170 (2004).

9. Kwon, J., Rao, P., Moon, B., Lee, S. : FiST: scalable XML document filtering by
sequencing twig patterns. In: Proceedings of the 31st international conference on
Very Large Databases (VLDB), pp. 217 - 228 (2005).

10. Letz, S., Zedler, M.,c Thierer, T., Schutz, M., Roth, J., Seiffert, R. : XML offload
and acceleration with Cell broadband engine. In : XTech: Building Web 2.0 (2006).

11. Linderman, R.W., Lin, C.S., Linderman, M.H. : FPGA acceleration of informa-
tion management services. In : High Performance Embedded Computing (HPEC)
(2004).

12. Lu, W., Gannon, D. : ParaXML: A Parallel XML Processing Model on Multicore
CPUs, Techincal Report (2008).

13. Lunteren, J.V.,Engbersen, T., Bostian, J., Carey, B.,Larsson, C. : XML accelerator
engine. In : 1st Int. Workshop on High Performance XML Processing (2004).

14. Mitra, A., Vieira, M.R., Bakalov, P., Najjar, W., Tsotras, J.T.: Boosting XML
Filtering with a Scalable FPGA-based Architecture. In:4th Biennial Conference
on Innovative Data Systems Research, Asilomar (2009).

15. Muller, R., Teubner, J., Alonso, G. : Streams on Wires A Query Compiler for
FPGAs, In: Proceedings of the 35th Int’l Conference on Very Large Data Bases
(VLDB) (2009).

16. Clark, C.R., Schimmel, D.E.: Efficient Reconfigurable Logic Circuits for Match-
ing Complex Network Intrusion Detection Patterns. In: 13th international confer-
ence on Field Programmable Logic and Applications, pp.956–959. Springer, Lisbon
(2003)

17. SAX home page, http://www.saxproject.org
18. XILINX DELIVERS 65nm VIRTEX-5 LX330, http://www.xilinx.com/prs_rls/

2006/silicon_vir/06130lx330delivery.htm

19. XML Path Language (XPath) Version 1.0, W3C Recommendation, http://www.
w3.org/TR/xpath, (1999).


