
Synergy: Quality of Service Synergy: Quality of Service
Support for Distributed Support for Distributed

Stream Processing SystemsStream Processing Systems
Thomas Repantis

Department of Computer Science & Engineering

University of California, Riverside

trep@cs.ucr.edu

http://www.cs.ucr.edu/~trep/

Thomas Repantis 2/45

Research Contributions
Distributed Stream Processing Systems

Sharing-Aware Component Composition [Middleware’06, TPDS'08 (rev.)]
Load Prediction and Hot-Spot Alleviation [DSN’08, DBISP2P’07]
Replica Placement for High Availability [DEBS'08]

Management of Large-Scale, Distributed, Real-Time Applications
Adaptation to Resource Availability [IPDPS’05]
Fair Resource Allocation [ISORC’06, WPDRTS’05]

Peer-to-Peer Systems
Adaptive Data Dissemination and Routing [MDM’05]
Decentralized Trust Management [MPAC’06]

Software Distributed Shared Memory Systems
Data Migration [Cluster’05, Cluster’04]

Replication in Distributed Multi-Tier Architectures [IBM’07]
Collaborative Spam Filtering [Intel’06]
Distributed Logging for Asynchronous Replication [HP’05]

Thomas Repantis 3/45

On-Line Data Stream Processing
Network traffic monitoring for intrusion detection

Customization of multimedia
or news feeds

Analysis of readings coming from
sensors or mobile robots Click stream analysis for

purchase recommendations
or advertisements

Thomas Repantis 4/45

Distributed Stream Processing System

High volume data
streams

(sensor data, financial
data, media data) Extracted

result streams

Filter AggregationCorrelation Clustering

Real-time online processing functions/
Continuous query operators

Thomas Repantis 5/45

Stream Processing Environment

Streams are processed online by components distributed across hosts
Data arrive in large volumes and high rates, while workload spikes are not
known in advance
Stream processing applications have QoS requirements, e.g., e2e delay

Split

Select

Join

Select

Thomas Repantis 6/45

QoS for Distributed Stream Processing Applications
Our goal: How to run stream processing applications with QoS
requirements, while efficiently managing system resources

Share existing result streams
Share existing stream processing components
Predict QoS violations
Alleviate hot-spots
Maximize availability

Benefits
Enhanced QoS provision
Reduced resource load

Challenges
Concurrent component sharing
Highly dynamic environment
On-demand stream application requests
Scale that dictates decentralization

Thomas Repantis 7/45

Roadmap
Motivation and Background
Synergy Architecture
Design and Algorithms

Component Composition
Composition Protocol
Component and Stream Sharing

Load Balancing
Hot-Spot Prediction
Hot-Spot Alleviation

High Availability
Replica Placement

Conclusion
Demo

Thomas Repantis 8/45

Synergy Middleware

A middleware
managing the
mappings:

From
application
layer to stream
processing
overlay layer
From stream
processing
overlay layer
to physical
resource layer

Thomas Repantis 9/45

Metadata Layer Over a DHT
Decouples stream and
component placement
from their discovery

Stream and component
names are hashed in a
DHT

DHT maps the hashed
names to nodes
currently offering the
specified stream or
component

Thomas Repantis 10/45

Synergy Node Architecture
• Application Composition

and QoS Projection
instantiate applications

• Replica Placement places
components

• Load Balancing and Load
Prediction detect hot-spots

• Migration Engine alleviates
hot-spots

• Monitor measures
processor and bandwidth

• Discovery locates streams
and components

• Routing transfers
streaming data

Thomas Repantis 11/45

Component Composition

C1 C6

C5C3

C4C2

DestinationSource

Application
Component

Graph

O1 O6

O5O3

O4O2

DestinationSource

QoS
Requirements

Query Plan

+

Synergy
Middleware

Thomas Repantis 12/45

Composition Probes

Carry query plan, resource, and QoS requirements

Collect information about:
Resource availability

End-to-end QoS

QoS impact on existing applications

O1 O2

Source Destination

C1

C2

C3

C4

Thomas Repantis 13/45

Composition Protocol
Input

Query Plan

 Stream application
template

 QoS requirements

 Resource requirements

Output

Application Component Graph

 Satisfy QoS and resource
requirements

 Reuse streams and
components without QoS
violations

 Achieve load balancing

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

source sink

probe

probe

probe

probe

probe

probe

probe

probe

probe

probe

probe

probe

probe

probe

O1

O2

O3

O4

O5

O6

Thomas Repantis 14/45

Composition Selection
All successful probes returning to source have been
checked against constraints on:

Operator functions
Processing capacity
Bandwidth
QoS

The most load balanced one is selected among all
qualified compositions by minimizing:

Thomas Repantis 15/45

Component Sharing
QoS Impact Projection Algorithm

All existing and the new application should not exceed
requested execution time:

Impact estimated using a queueing model for the execution
time:

Thomas Repantis 16/45

Stream Sharing

Maximum Sharing Discovery Algorithm
Breadth first search on query plan to identify latest
possible existing output streams

Backtracking hop-by-hop, querying the metadata layer

Thomas Repantis 17/45

Experimental Setup

PlanetLab multi-threaded prototype of about
35000 lines of Java running on 88 PlanetLab
nodes

Simulator of about 8500 lines of C++ for 500
random nodes of a GT-ITM topology of 1500
routers

5 replicas of each component

Synergy vs Random, Greedy, and Composition

Thomas Repantis 18/45

Composition Performance

Stream reuse improves end-to-end delay by saving

processing time and increases system capacity

Thomas Repantis 19/45

Composition Overhead

Stream reuse decreases probing overhead and setup
time

Thomas Repantis 20/45

Performance on Simulator

End-to-end delay scales due to stream reuse and
QoS impact projection

Thomas Repantis 21/45

Sensitivity on Simulator

Synergy performs consistently better, regardless of
QoS strictness or query popularity

Thomas Repantis 22/45

Projection Accuracy

Pessimistic projections for low rate segments may
cause conservative compositions but no QoS violations

Thomas Repantis 23/45

Roadmap
Motivation and Background
Synergy Architecture
Design and Algorithms

Component Composition
Composition Protocol
Component and Stream Sharing

Load Balancing
Hot-Spot Prediction
Hot-Spot Alleviation

High Availability
Replica Placement

Conclusion
Demo

Thomas Repantis 24/45

Application-Oriented Load Management

System hot-spots: Overloaded nodes

Application hot-spots: QoS violations
Sensitive hot-spot detection

Triggered even when underloaded, if stringent QoS

Fine-grained hot-spot alleviation
Only suffering applications migrate

Proactively prevent QoS degradation

Thomas Repantis 25/45

Predicting QoS Violations

Calculate slack time ts on every component based
on execution time te and communication time tc

Thomas Repantis 26/45

Execution Time Prediction

Linear regression to bind execution
time te and total rate rt

Thomas Repantis 27/45

Rate Prediction

Auto-correlation

Cross-correlation (Pearson Product Moment)

Thomas Repantis 28/45

Decentralized Load Monitoring

Load updates pushed
when intervals change

Overlapping intervals
absorb frequent changes

DHT maps component
names to the loads of
peers hosting them

Peers detect overloads
and imbalances between
all hosts of a component

Thomas Repantis 29/45

Alleviating Hot-Spots via Migration

Thomas Repantis 30/45

Hot-Spot Prediction and Alleviation

Average prediction error 3.7016%

Average prediction overhead 0.5984ms

Thomas Repantis 31/45

Hot-Spot Prediction and Alleviation

Average one migration every three applications

Average migration time 1144ms

Thomas Repantis 32/45

QoS Improvement

As load increases the benefits of hot-spot
elimination become evident

Thomas Repantis 33/45

Roadmap
Motivation and Background
Synergy Architecture
Design and Algorithms

Component Composition
Composition Protocol
Component and Stream Sharing

Load Balancing
Hot-Spot Prediction
Hot-Spot Alleviation

High Availability
Replica Placement

Conclusion
Demo

Thomas Repantis 34/45

Component Replication

c11

c32

c31

c21

c41

c42

c22

c12

source destination
s1

s2

s3

s2+s3

s5

s4

s5s4

s6

s6

Thomas Repantis 35/45

Component Replica Placement

Maximize availability of composite applications
Optimal: Place complete graph on each node

Respect node resource availability
Processing capacity

Network bandwidth

Maximize application performance
Inter-operator communication cost (between primaries)

Intra-operator communication cost (between primaries
and backups)

Thomas Repantis 36/45

Placement for High Availability

Availability decreases with larger graphs
and increases with higher concentration

Thomas Repantis 37/45

Distributed Placement Protocol

c11

c32

c31

c21

c41

c42

c22

c12

source destination
s1

s2

s3

s2+s3

s5

s4

s5s4

s6

s6

Closest used candidates

Thomas Repantis 38/45

Replica Placement

Increase availability and performance

5539ms to gather latencies for 30 nodes

Thomas Repantis 39/45

Related Work
System S: IBM stream processing
middleware

SBON, SAND, IFLOW: Component
placement

Borealis, Flux, PeerCQ: Load balancing

Borealis, TelegraphCQ: Load shedding

Borealis, Flux: Fault tolerance

SpiderNet, sFlow: Component composition

Thomas Repantis 40/45

Synergy: QoS-Enabled Distributed Stream Processing System
Component Composition

Fully distributed composition protocol
Reuse existing streams and components

Load Balancing
Predict QoS violations
Alleviate hot-spots using migration

High Availability
Place component replicas

Future work
Efficient and consistent replication
Adaptive topology management
Secure composite applications

Conclusion

Thomas Repantis 41/45

Demo

TCP traffic trace, LBL, 2 hours, 1.8 million packets
[Internet Traffic Archive]

Monitor source-destination pairs in top 5% of total traffic
over last 20 minutes [Stream Query Repository]

Thomas Repantis 42/45

GUI Settings

Thomas Repantis 43/45

GUI Application

Thomas Repantis 44/45

GUI Execution

Thomas Repantis 45/45

Acknowledgements
Prof. Vana Kalogeraki, UC Riverside

Prof. Xiaohui Gu, NCSU (formerly IBM Research)

Yannis Drougas, UC Riverside

Bilson Campana, UC Riverside

http://synergy.cs.ucr.edu/

Synergy: Quality of Service Synergy: Quality of Service
Support for Distributed Support for Distributed

Stream Processing SystemsStream Processing Systems
Thomas Repantis

trep@cs.ucr.edu

http://www.cs.ucr.edu/~trep/

http://synergy.cs.ucr.edu/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

