
UNIVERSITY OF CALIFORNIA

RIVERSIDE

Synergy: Quality of Service Support for Distributed Stream Processing Systems

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Thomas S. Repantis

August 2008

Dissertation Committee:

Professor Vana Kalogeraki, Chairperson
Professor Dimitrios Gunopulos
Professor Michalis Faloutsos

Copyright by
Thomas S. Repantis

2008

The Dissertation of Thomas S. Repantis is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I would like to thank my advisor, Prof. Vana Kalogeraki, for the inspiration and

guidance, motivation and support she has offered me.

I would also like to thank Prof. Xiaohui Gu for her sharp guidance and inspiring

attitude.

I am also grateful to my committee members, Prof. Dimitrios Gunopulos and

Prof. Michalis Faloutsos, for their time and their insightful feedback.

I am especially thankful to all my mentors, Dr. Arun Iyengar and Dr. Isabelle

Rouvellou from IBM Research, Dr. Michael Kaminsky and Dr. Haifeng Yu from Intel

Research, Dr. Debby Levinson and Chris Stroberger from Hewlett-Packard, and Dr. Eric

Burger from BEA, for their time and guidance.

I would also like to thank the rest of the members of the Distributed Real-Time

Systems lab and the anonymous reviewers of [67,68,70–72] for their comments.

Finally, I would like to thank my friends and above all my family for their support

throughout these years.

iv

Wenn die Nacht am tiefsten ist, ist der Tag am nächsten.

–Ton Steine Scherben

v

ABSTRACT OF THE DISSERTATION

Synergy: Quality of Service Support for Distributed Stream Processing Systems

by

Thomas S. Repantis

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, August 2008

Professor Vana Kalogeraki, Chairperson

Many emerging applications in domains such as network traffic management, financial trades

surveillance, customized e-commerce applications, and analysis of sensor data, require the

real-time processing of large amounts of data that are updated continuously. Distributed

stream processing systems offer a scalable and efficient means of in-network processing of

such data streams. We propose Synergy, a peer-to-peer middleware that provides Quality of

Service support for distributed stream processing applications. Synergy provides sharing-

aware component composition, for efficiently reusing data streams and processing compo-

nents, when composing applications with QoS demands. Utilizing a set of fully distributed

algorithms, Synergy discovers and evaluates the reusability of available data streams and

processing components when instantiating new stream applications. For QoS provision,

Synergy performs QoS impact projection to examine whether the shared processing can

cause QoS violations on currently running applications. To proactively identify application

hot-spots at run-time, Synergy employs a prediction framework that binds workload fore-

casting using linear regression with execution time forecasting using correlation. To react to

vi

predicted QoS violations and alleviate hot-spots, nodes autonomously migrate the execution

of stream processing components using a non-disruptive migration protocol. When deploy-

ing new components, Synergy utilizes a decentralized replica placement protocol that aims

to maximize availability, while respecting resource constraints, and making performance-

aware placement decisions. We have implemented a prototype of the Synergy middleware

and evaluated its performance using a real stream processing application operating on real

streaming data on PlanetLab, as well as on a simulation testbed. The experimental re-

sults demonstrate substantial benefits in performance and QoS provision, while achieving

good resource utilization. More information on the Synergy middleware can be found at

http://synergy.cs.ucr.edu

vii

Contents

List of Figures x

1 Introduction 1
1.1 QoS-Aware Shared Component Composition 7
1.2 Decentralized Hot-Spot Prediction and Alleviation 11
1.3 Distributed Replica Placement for High Availability 13
1.4 Dissertation Overview . 16

2 QoS-Aware Shared Component Composition 17
2.1 Introduction . 17
2.2 System Model . 18

2.2.1 Stream Processing Application Model 18
2.2.2 QoS Model . 20
2.2.3 Synergy Architecture . 22
2.2.4 Approach Overview . 25

2.3 Design and Algorithm . 27
2.3.1 Synergy Component Composition Protocol 27
2.3.2 New Component Deployment . 35
2.3.3 Maximum Stream Sharing . 38
2.3.4 QoS-Aware Component Sharing . 40

2.4 Experimental Evaluation . 49
2.4.1 Prototype over PlanetLab . 50
2.4.2 Simulations . 53

2.5 Conclusions . 64

3 Decentralized Hot-Spot Prediction and Alleviation 66
3.1 Introduction . 66
3.2 System Model . 67
3.3 Application Hot-Spot Prediction . 68

3.3.1 End-to-End to Local Execution Time Translation 69
3.3.2 Local Execution Time Prediction . 71

viii

3.3.3 Rate Prediction . 74
3.4 Application Hot-Spot Alleviation . 76

3.4.1 Identifying the Components to Migrate 76
3.4.2 Identifying the Target Nodes . 77
3.4.3 Decentralized Resource Monitoring 78
3.4.4 Migration Protocol . 81

3.5 Experimental Evaluation . 85
3.6 Conclusions . 95

4 Distributed Replica Placement for High Availability 96
4.1 Introduction . 96
4.2 System Model . 97
4.3 Designing Replica Placement for High Availability 101

4.3.1 Maximizing Application Availability 102
4.3.2 Respecting Resource Availability . 105
4.3.3 Maximizing Application Performance 106

4.4 Distributed Placement Protocol . 109
4.5 Experimental Evaluation . 119

4.5.1 Application Availability . 121
4.5.2 Component Replica Failure Ratio . 123
4.5.3 Average Delay . 124

4.6 Conclusions . 126

5 Related Work 127
5.1 Component Composition . 127
5.2 Load Balancing . 130
5.3 High Availability . 132

6 Conclusions and Future Work 135
6.1 Concluding Remarks . 135
6.2 Future Directions . 136

Bibliography 140

ix

List of Figures

1.1 Stream processing application example. 3

2.1 Notations. 19
2.2 Synergy system architecture. 23
2.3 Application instantiation on Synergy. 24
2.4 Probing example. 26
2.5 Synergy composition algorithm. 28
2.6 Query plan example. 30
2.7 Synergy composition example. 30
2.8 The three cases of new component deployment. 36
2.9 The two stream signatures shown in a) are aggregated as in b) to get the

combined signature of c). 46
2.10 Average application end-to-end delay. 51
2.11 Successful application requests. 51
2.12 Protocol overhead. 53
2.13 Breakdown of average setup time. 53
2.14 Scalability. 55
2.15 Performance gain breakdown. 55
2.16 System throughput capacity. 57
2.17 Sensitivity to replication. 57
2.18 Sensitivity to QoS requirements. 57
2.19 Sensitivity to popularity of requests. 57
2.20 Average end-to-end delay with deployment. 59
2.21 Selectivity of different operators. 59
2.22 Projection accuracy for network traffic. 61
2.23 Projection accuracy for sensor traffic. 61
2.24 Projection accuracy for regular traffic. 62
2.25 Projection accuracy for bursty traffic. 62
2.26 Projection accuracy for bursts with period 0.5 second. 63
2.27 Projection accuracy for bursts with period 5 seconds. 63
2.28 Projection accuracy for bursts with high rate 3 tuples/s and low rate 1 tuple/s. 64

x

2.29 Projection accuracy for bursts with high rate 300 tuples/s and low rate 100
tuples/s. 64

2.30 Projection accuracy for bursts with high rate 20 tuples/s and low rate 10
tuples/s. 65

2.31 Projection accuracy for bursts with high rate 40 tuples/s and low rate 10
tuples/s. 65

3.1 Linear regression for local execution time prediction. 73
3.2 Propagation of rate values for correlated rate estimation. 75
3.3 Example of three overlapping load levels. 80
3.4 Migration example. 84
3.5 Format of the processed TCP packets. 87
3.6 Rate prediction accuracy for “sort”. 87
3.7 Rate prediction accuracy for “project”. 87
3.8 Rate prediction accuracy for “aggregate”. 88
3.9 Rate prediction accuracy for “count”. 88
3.10 Rate prediction accuracy for “compare”. 88
3.11 “Sort” execution time prediction accuracy. 88
3.12 “Project” execution time prediction accuracy. 89
3.13 “Aggregate” execution time prediction accuracy. 89
3.14 “Count” execution time prediction accuracy. 89
3.15 “Compare” execution time prediction accuracy. 89
3.16 Execution time distribution for “sort”. 90
3.17 Execution time distribution for “project”. 90
3.18 Rate prediction accuracy versus prediction frequency. 91
3.19 Absolute average rate prediction error. 91
3.20 Average total prediction time. 91
3.21 Application QoS improvement. 91
3.22 Application performance improvement. 93
3.23 Application performance variation. 93
3.24 Migration overhead. 94
3.25 Load update overhead. 94

4.1 Notations. 98
4.2 Availability decreases with larger application component graphs and increases

as components are concentrated in fewer nodes. 103
4.3 A simple distributed stream processing application. 108
4.4 Replication in a simple distributed stream processing application. 108
4.5 Placement algorithm. 111
4.6 Replication degree sensitivity. 122
4.7 Component graph size sensitivity. 122
4.8 Scalability. 122
4.9 Failure percentage sensitivity. 122
4.10 Failure ratio with scale. 124

xi

4.11 Failure ratio and percentage. 124
4.12 Scalability of inter-operator delay. 125
4.13 Scalability of intra-operator delay. 125
4.14 Latency information gathering. 126

xii

Chapter 1

Introduction

A significant number of emerging on-line data analysis applications require real-

time processing of high-volume, high-rate data that are updated continuously, to generate

outputs of interest or to identify meaningful events: i) Analysis of clicks or textual input

generated by visitors of web sites such as e-commerce stores or search engines, to determine

appropriate purchase suggestions or advertisements. ii) Monitoring of network traffic to

detect patterns that proclaim attacks or intrusions, to filter out traffic that violates security

policies, or to discover trends that can help with network configuration. iii) Customization

of multimedia content such as audio or video, provided for entertainment or news coverage,

to meet the interests, as well as the hardware and software capabilities of target users. iv)

Processing of market data feeds for electronic trading, as well as surveillance of financial

trades for fraud detection. v) Monitoring of banking and credit card transactions, or phone

records to determine trends or anomalous behavior. vi) Analysis of data collected by sensors

monitoring wildlife, plants, traffic, or the environment for fire, earthquakes, or intruders.

1

We refer to this kind of continuously updated data as streams and the applications

that process this kind of data in real-time as stream processing applications [19,54]. Stream

processing applications consist of software components, which are processing elements that

operate on a set of input streams to produce a set of output streams. A component can

offer functionality as simple as filtering, or correlation, or as complex as transcoding, or

encryption. Two components are connected if the output of one becomes the input of the

other to accomplish the application execution. The combined processing of the data streams

by all the different components constitutes the execution of a stream processing application.

Thus, stream processing applications are instantiated as directed acyclic graphs connecting

components.

Figure 1.1 illustrates a simple stream processing application example from the

Stream Query Repository [83]. In this stream processing application example we assume a

packet capturing device installed in a network, used by a system administrator that wishes

to monitor the source-destination pairs in the top 5 percentile in terms of total traffic in the

past 20 minutes over a backbone link. Figure 1.1 shows the components that are involved

in processing the packet input over 20-minute windows, to generate the monitoring output.

Because streaming data arrive in high-volumes and high-rates and at the same

time the stream processing applications need to produce output within certain time lim-

its to facilitate on-line data analysis, a single machine is often not able to sustain the

load of running an entire stream processing application. Therefore, the stream processing

components are hosted by different machines, which communicate over a network. We re-

fer to this type of distributed system as a distributed stream processing system (DSPS)

2

Figure 1.1: Stream processing application example.

(e.g., [1, 6, 21,35,46,61]). The dispersion of the stream processing components of an appli-

cation among multiple machines is further dictated by the need for reliability. Distributing

component replicas on independent machines that are geographically apart increases the

application’s availability.

Distributed stream processing applications have Quality of Service (QoS) require-

ments, expressed in terms such as end-to-end delay, throughput, miss rate, or availability.

For example, an alert needs to be raised within a certain time frame after an intrusion,

or a trading recommendation needs to be made while processing financial data at certain

rates. Adhering to such QoS requirements is crucial for the dependable operation of a

distributed stream processing system. The first step towards satisfying the QoS require-

ments of stream processing applications is taking them into account during the application

composition. However, as the incoming data rates may increase at run-time, due to ex-

ternal events such as a network attack or a rapid popularity growth of some news event,

an application execution may cease to adhere to the requested QoS. Under such unknown

and dynamically changing conditions, providing application QoS is a challenging task. The

problem is complicated further by the large scale and the distributed nature of a DSPS.

Making QoS-affecting decisions at run-time requires detailed monitoring of the system uti-

3

lization as well as complicated trade-offs that need to be evaluated frequently. Accurate

centralized decisions are infeasible, due to the fact that the global state of a large-scale

DSPS is changing much faster than it can be communicated to a single host.

In this dissertation we study Quality of Service support for distributed stream

processing systems. To achieve Quality of Service we propose techniques for component

composition, load balancing, and high availability. We have implemented our techniques

in Synergy, a distributed stream processing middleware. Synergy is a software running

on every machine of a distributed system to offer distributed stream processing applica-

tions, under Quality of Service constraints, and while efficiently managing the system’s

resources [69,73]. Unlike previously developed distributed stream processing systems, Syn-

ergy offers sharing-aware component composition. Sharing-aware component composition

allows stream processing applications that are composed of individual components to utilize

previously generated streams and already deployed stream processing components. Syn-

ergy’s component composition protocol [67, 68] takes the user-requested QoS into account

when composing the application component graph. This way, the instantiated application

satisfies the QoS requirements defined by the user. Furthermore, Synergy employs hot-spot

prediction and alleviation techniques [70, 71], to ensure that the application QoS require-

ments continue to be met at run-time. Finally, Synergy employs a component placement

protocol that aims to maximize application availability [72].

The major research contributions of Synergy can be summarized as follows:

• Synergy employs a decentralized light-weight composition algorithm that can discover

streams and components at run-time and check whether any of the existing compo-

4

nents or streams can satisfy a new application request. After the qualified candidate

components have been identified, components and streams are selected and composed

dynamically such that the application resource requirements are met and the work-

loads at different hosts are balanced.

• Synergy integrates a QoS impact projection mechanism into the distributed compo-

nent composition algorithm to evaluate the reusability of existing stream processing

components according to the applications’ QoS constraints. When a component is

shared by multiple applications, the QoS of each application that uses the compo-

nent may be affected due to the increased queueing delays on the processors and the

communication links. Synergy’s approach is to predict the impact of the additional

workload on the QoS of the affected applications and ensure that a component reuse

does not cause QoS violations in existing stream applications. Such a projection can

facilitate the QoS provision for both current applications and the new application

admitted in the system.

• Synergy encompasses a framework built on statistical forecasting methods, to accu-

rately predict QoS violations at run-time and proactively identify application hot-

spots. In order to achieve this, our prediction framework binds workload forecasting

with execution time forecasting. To accomplish workload forecasting we predict rate

fluctuations. To achieve this, we exploit auto-correlation in the rate of each com-

ponent, as well as cross-correlation between the rates of different components of a

distributed application. To accomplish execution time forecasting we use the estab-

lished statistical method of linear regression. This enables us to accurately model the

5

relationship of the application execution time and the entire workload of a node, while

dynamically adapting to workload fluctuations.

• Synergy enables nodes to react to predicted QoS violations and alleviate hot-spots

by autonomously migrating the execution of stream processing components using a

non-disruptive migration protocol. Candidate selection for migration is based on pre-

serving QoS. We employ prediction again to ensure that migration decisions do not

result to QoS violations of other executing applications. To drive migration deci-

sions in a decentralized manner we build a load monitoring architecture on top of a

Distributed Hash Table (DHT).

• For initial component deployment Synergy employs a decentralized replica placement

protocol that aims to maximize availability, while respecting resource constraints, and

making performance-aware placement decisions.

We have implemented a prototype of Synergy and evaluated its performance on

the PlanetLab [15] wide-area network testbed. We have used a real network monitoring ap-

plication [83] operating on traces of real TCP traffic [87]. We have also conducted extensive

simulations to compare Synergy’s composition algorithm to existing alternative schemes.

Our experimental results showed that Synergy achieves much better resource utilization

and QoS provision than previously proposed schemes, by judiciously sharing streams and

processing components during application composition. Our experimental evaluation has

also demonstrated high load prediction accuracy, and substantial benefits in application QoS

achieved by migration. Finally, our experimental comparison of Synergy’s replica placement

6

protocol with the current state of the art has corroborated our claims that Synergy maxi-

mizes application availability, while sustaining good performance.

Synergy is implemented as a multi-threaded system of about 35,000 lines of Java

code and more information is available at http://synergy.cs.ucr.edu/

We proceed by discussing the contributions of Synergy in more detail, focusing on

component composition (Section 1.1), load balancing (Section 1.2), and high availability

(Section 1.3). We then present an overview of the rest of the dissertation in Section 1.4.

1.1 QoS-Aware Shared Component Composition

Stream sources often produce large volumes of data at high rates, while workload

spikes cannot be predicted in advance. Providing low-latency, high-throughput execution

for such distributed applications entails considerable strain on both communication and

processing resources and thus presents significant challenges to the design of a DSPS.

While a DSPS provides the components that are needed to develop and execute

an application it is challenging to select among different component instances to compose

stream processing applications on-demand. While previous efforts have investigated several

aspects of component composition [35, 46] and placement [61] for stream applications, our

research focuses on enabling sharing-aware component composition for efficient distributed

stream processing. Sharing-aware composition allows different applications to utilize previ-

ously generated streams and already deployed stream processing components. The distinct

characteristics of distributed stream processing applications make sharing-aware component

composition particularly challenging. First, stream processing applications often have min-

7

imum quality-of-service (QoS) requirements (e.g., end-to-end delay). In a shared processing

environment, the QoS of a stream processing application can be affected by multiple com-

ponents that are invoked concurrently and asynchronously by many applications. Second,

stream processing applications operate autonomously in a highly dynamic environment,

with load spikes and unpredictable occurrences of events. Thus, composition must be per-

formed quickly, during run-time, and must be able to adapt to dynamic traffic changes,

including bursts. Third, congruent with related efforts [6, 35, 46, 61, 94], we expect dis-

tributed solutions to be more appropriate for federated DSPSs that scale to thousands of

streams, components, and nodes. This is also supported by the analytical and experimental

comparison between centralized and distributed composition algorithms provided in [33].

The overhead comparison therein indicates that the relative merit between distributed and

centralized solutions is decided by the size of the overlay network, the overlay topology, the

number of stream processing components, the application request rate, and the frequency

with which state updates have to be communicated to other nodes. The global state of a

large-scale DSPS is changing faster than it can be communicated to a single host. This ren-

ders it challenging for a single host to make accurate global decisions when large numbers

of nodes and applications are involved.

Despite the aforementioned challenges, there are significant benefits to be gained

from a flexible sharing-aware component composition: i) enhanced QoS provisioning (e.g.,

shorter service delay) since existing streams that meet the user’s requirements can be fur-

nished immediately, while the time-consuming process of new component deployment is

triggered only when none of the existing components can accommodate a new request;

8

and ii) reduced resource load for the system, by avoiding redundant computations and data

transfers. This results in a significant improvement in the performance and scalability of

the entire system.

To provide sharing-aware component composition, Synergy supports both data

stream and processing component reuse while ensuring that the application QoS require-

ments can be met. The decision of which components or streams to reuse is made dynam-

ically at run-time taking into account the applications’ QoS requirements and the current

system resource availability.

Synergy implements a decentralized light-weight composition algorithm that dis-

covers streams and components at run-time and checks whether any of the existing com-

ponents or streams can satisfy the application’s request. Probe messages travel through

candidate nodes to determine whether they have enough resources available to accommo-

date a new application, whether the end-to-end delay achieved is within the required QoS,

and whether the impact of the new application would cause QoS violations to existing

applications. Synergy utilizes a peer-to-peer overlay for discovering existing streams and

components that are also part of a new application request, to avoid redundant compu-

tations. Using a maximum sharing discovery algorithm, the graph describing a requested

application is backtracked hop-by-hop, to identify up to which point, if any, currently run-

ning applications can offer the same results. After the qualified candidate components have

been identified, components and streams are selected and composed dynamically to meet

the application resource and QoS requirements.

9

We integrate a QoS impact projection mechanism into the distributed component

composition algorithm to evaluate the reusability of existing stream processing components

according to the applications’ QoS constraints. When a component is shared by multiple

applications, the QoS of each application that uses the component may be affected due

to increased queueing delays on the processors and the communication links. Synergy’s

approach is to predict the impact of the additional workload on the QoS of the affected

applications and ensure that a component reuse does not cause QoS violations in existing

stream applications. Such a projection can facilitate QoS provisioning for both the newly

admitted and the current applications. Our projection algorithm considers not only regular

but also bursty stream traffic [36] such as voice-over-IP streams, network traffic and sensor

data streams.

Projection is based on queueing theoretical models for both regular and bursty

traffic. We approximate bursty traffic with segments of data arrivals of high rate, followed

by segments of data arrivals of low rate. To identify the correlation between the segments

of different streams, a data arrival time series of each time stream is constructed and

maintained, called the signature of the stream, that describes its workload pattern. Stream

signatures enable us to combine the processing loads of multiple bursty streams.

Synergy dynamically deploys new components at strategic locations to satisfy new

application requests. Component deployment is triggered when a requested component

does not exist, or when none of the existing components can safely provide the requested

stream processing due to resource overloads or QoS violations. To reduce network traffic,

10

Synergy collocates new components with their upstream or downstream components based

on selectivity.

1.2 Decentralized Hot-Spot Prediction and Alleviation

The first step towards satisfying the QoS requirements of stream processing ap-

plication is taking them into account during the application composition. However, as the

incoming data rates may increase at run-time, due to external events such as a network at-

tack or a rapid popularity growth of some news event, an application execution may cease

to adhere to the requested QoS. In fact, the distinct characteristic of stream processing ap-

plications is that the data to be processed arrive in high rates, and often in bursts [95,96].

Under such dynamically changing conditions, providing application QoS is a challenging

task. The problem is complicated further by the large scale and the distributed nature of a

DSPS.

Synergy addresses the problem of predicting and alleviating application hot-spots

in a DSPS. Current approaches for addressing load fluctuations in DSPSs [12, 80, 95, 96],

focus on avoiding or resolving hot-spots in the system resources, in other words overloaded

nodes. We refer to this kind of hot-spot detection and alleviation as node-oriented. The

focus of our work, on the other hand, is on detecting and alleviating hot-spots in the

application execution, in other words applications that persistently fail to meet the QoS

required by the user. We call this kind of hot-spot detection and alleviation application-

oriented. We believe that application-oriented hot-spot detection and alleviation are as

important as their node-oriented counterparts for the following key reasons: i) Application-

11

oriented hot-spot detection is more sensitive and can be triggered even when a node is

underloaded. Even when running on a moderately loaded node, an application may not

be meeting its QoS requirements (e.g., if they are stringent), thus experiencing a hot-

spot. On the other hand, with node-oriented hot-spot detection, by the time a node is

overloaded many of the applications using that node will already have violated their QoS

requirements. ii) Application-oriented hot-spot alleviation allows more fine-grained hot-spot

alleviation. Depending on the individual applications’ QoS demands, only some instead of

all the applications that are using a node may be suffering, and thus only these applications

may need to be migrated. On the contrary, node-oriented hot-spot alleviation aims at

reducing a node’s load, irrespective of which of the applications experience overload. iii)

Most importantly, application-oriented hot-spot detection enables taking proactive measures

with regards to application performance, to prevent severe degradation of application QoS.

We propose a framework built on statistical forecasting methods, to accurately

predict QoS violations at run-time and proactively identify application hot-spots. In order

to achieve this, our prediction framework binds workload forecasting with execution time

forecasting. To accomplish workload forecasting we predict rate fluctuations, exploiting

auto-correlation in the rate of each component, and cross-correlation between the rates of

different components of a distributed application. To accomplish execution time forecasting

we use linear regression, an established statistical method, to accurately model the relation-

ship of the application execution time and the entire workload of a node, while dynamically

adapting to workload fluctuations.

12

To react to predicted QoS violations and alleviate hot-spots we enable nodes to au-

tonomously migrate the execution of stream processing components using a non-disruptive

migration protocol. Candidate selection for migration is based on preserving QoS. We em-

ploy prediction again to ensure that migration decisions do not result to QoS violations of

other executing applications. To drive migration decisions in a decentralized manner we

build a load monitoring architecture on top of a Distributed Hash Table (DHT) [74].

1.3 Distributed Replica Placement for High Availability

Current DSPSs have been designed to provide low-latency and high-throughput

processing of data streams and to adapt to rapid changes in load and resource needs. An-

other important requirement is the availability of these systems, which is crucial for their

correct and continuous operation. To provide high availability, replication of the stream

processing components is required. The basic idea behind high availability is that by repli-

cating components and distributing them across different nodes, the failure of a replica will

not interrupt the execution of the applications, since other replicas can continue to pro-

vide the service. While previous research has shown how component placement affects the

performance of distributed stream processing applications [4, 61], in this work we demon-

strate how it also affects application availability. We focus on the placement of replicated

components to maximize application availability, complementing existing research in the

area of high availability for distributed stream processing systems. Existing work in this

area has focused on tolerating failures during application execution despite the continuous

arrival of data and on fast recovery despite the significant state maintenance overhead. In

13

this context recovery mechanisms [38], failure masking [79], consistency trade-offs [11], and

scheduling of checkpoints [18,39] have been investigated.

Despite its simplicity the example of Figure 1.1 illustrates several key characteris-

tics of distributed stream processing applications, which determine the intricacies in their

availability requirements: i) First of all, a distributed stream processing application is com-

posed of several components, as shown in the directed acyclic graph of the example of

Figure 1.1. We call such applications composite. ii) More importantly, a distributed stream

processing application such as the one of Figure 1.1 cannot tolerate availability of a subset

of the components. Even if incomplete results can be produced in the absence of certain

components, correct execution requires all of them to be available. Therefore, we call such

applications strict. iii) Moreover, each component may be shared by multiple applications

concurrently. For example, the aggregator of Figure 1.1 may be part of more than one

monitoring applications. A failure in a shared component has to be masked from all the

applications that are currently using it. iv) Furthermore, streaming data typically arrive

in large volumes and at high rates, like the traffic in a busy network for the example of

Figure 1.1. Failure recovery has to be fast, for the execution to be able to continue with

minimal loss. Yet, state maintenance between replicas requires a non-trivial amount of

data transfer. v) Finally, even though this is not demonstrated with this simple example,

a distributed stream processing application may consist of large numbers of components,

distributed over wide-area networks.

Replication for high availability and fault tolerance has been studied from dif-

ferent perspectives in a variety of domains, including distributed databases [28, 60, 63, 91],

14

distributed object systems [26, 27, 31, 45, 57, 64, 93], and web services [14, 51]. While many

aspects of replication have been studied extensively, and solutions such as active [76] and

passive [17] replication are widely accepted, in this work we focus on replica placement for

maximizing the availability of distributed stream processing applications. Our placement

mechanisms cater to the composite and strict nature of these applications. Ensuring the

availability of a composite application differs from guaranteeing the availability of individual

objects, such as files in distributed storage systems [3,5,42,75], or databases [28,60,63,91].

Furthermore, the scale of distributed stream processing applications, both in terms of data

volume and rate, as well as in terms of numbers of components, affects significantly the

placement decisions. For example, not all primary replicas can be hosted by the same

server, as might be the case with object-, component-, or service-based architectures, such

as CORBA [26, 27, 31, 57], Enterprise JavaBeans [93], or multi-tier architectures [28, 60].

Our placement mechanisms however can be applied to such systems, if their scale requires

the primary replicas of a composite application’s components to be distributed and signifi-

cant amounts of data transferred between them make the relative placement of components

important.

Synergy addresses the problem of component replica placement to maximize the

availability of distributed stream processing applications. We reason and illustrate how

the fact that distributed stream processing applications are composite and strict affects

the availability of different component replica placements. We then show how the practical

constraints in replica placement that arise from the limited processing and network resources

available in the system determine the number of nodes to be used for replica placement.

15

Finally, among placements that are equivalent in terms of availability, we show how to

select the one that improves the performance of distributed stream processing applications.

While component placement to maximize the performance of distributed stream processing

applications has been investigated before [4, 61], to the best of our knowledge this is the

first work to discuss component replica placement to maximize the availability of such

applications.

We propose a practical and fully distributed component replica placement protocol

to implement our design principles. Our protocol collocates components to maximize appli-

cation availability, respects the processing power and bandwidth availability, and minimizes

the communication latency to maximize application performance.

1.4 Dissertation Overview

The rest of the dissertation is organized as follows: Chapter 2 discusses our tech-

niques for taking into account end-to-end delay QoS requirements when composing new

applications. Chapter 3 presents Synergy’s approach for avoiding end-to-end delay QoS

violations during application execution. Chapter 4 discusses Synergy’s component replica

placement protocol that maximizes availability. Chapter 5 discusses research efforts related

to the problems discussed in this dissertation. Finally, chapter 6 presents our conclusions

and discusses avenues to future work.

16

Chapter 2

QoS-Aware Shared Component

Composition

2.1 Introduction

In this chapter we discuss how user QoS requirements can be taken into account

during the composition of a new application from multiple components. In particular,

we present Synergy’s sharing-aware component composition protocol [67, 68]. Synergy en-

ables efficient reuse of both result streams and processing components, while composing

distributed stream processing applications with QoS demands. It provides a set of fully dis-

tributed algorithms to discover and evaluate the reusability of available result streams and

processing components when instantiating new stream applications. Specifically, Synergy

performs QoS impact projection to examine whether the shared processing can cause QoS

violations on currently running applications. The QoS impact projection algorithm can

17

handle different types of streams including both regular traffic and bursty traffic. If no ex-

isting processing components can be reused, Synergy dynamically deploys new components

at strategic locations to satisfy new application requests.

The rest of the chapter is organized as follows: Section 2.2 introduces the system

model and notation used in the rest of the chapter. Section 2.3 discusses Synergy’s de-

centralized sharing-aware component composition approach and its QoS impact projection

algorithm. Section 2.4 presents an extensive experimental evaluation of our composition

protocol. Finally, brief conclusions are presented in Section 2.5.

2.2 System Model

In this section we present the stream processing application and QoS models that

will serve as a basis for our in-depth discussion of Synergy’s component composition proto-

col in the next section (2.3). These models are presented in Section 2.2.1 and Section 2.2.2

respectively. We also provide an overview of the architecture of the prototype implemen-

tation of Synergy in Section 2.2.3, as well as an overview of the operation of Synergy’s

component composition protocol in Section 2.2.4.

2.2.1 Stream Processing Application Model

Table 2.1 summarizes the notations we use while discussing our model. A data

stream sj consists of a sequence of continuous data tuples. A stream processing component

ci is defined as a self-contained processing element that implements an atomic stream pro-

cessing operator oi on a set of input streams {isi} and produces a set of output streams {osi}.

18

Notation Meaning

ci Component

oi Operator

lj Virtual Link

sj Stream

ξ Query Plan

λ Application Component Graph

Qξ End-to-End QoS Requirements

Qλ End-to-End QoS Achievements

pvi
Processor Load on Node vi

blj Network Load on Virtual Link lj
rpvi

Residual Processing Capacity on Node vi

rblj Residual Network Bandwidth on Virtual Link lj
τci

Processing Time for ci

xci,vi
Mean Execution Time for ci on vi

σsj
Transmission Time for sj

ysj ,lj Mean Communication Time for sj on lj
qt Requested End-to-End Execution Time

t̂ Projected End-to-End Execution Time

poi
Processing Time Required for oi

bsj
Bandwidth Required for sj

Figure 2.1: Notations.

Stream processing components can have more than one input (e.g., a join operator) and

outputs (e.g., a split operator). Each atomic operator can be provided by multiple compo-

nents c1, . . . , ck, which are essentially multiple instances of the same operator. We associate

metadata with each deployed component or existing data stream in the system to facilitate

the discovery process. Both components and streams are named based on a common on-

tology (e.g., oi.name = Aggregator.COUNT, sj.name = Video.MPEGII.EntranceCamera).

Sources and destinations are components that are typically pinned on specific nodes and

act as initial producers and end-consumers of streams respectively. The name of a stream

produced by a source is given based on the ontology and may incorporate the source node

19

characteristics (e.g., IP and port), if these affect the semantics of the stream. As streams

are processed by components, their names reflect the stream processing operators that have

been applied to them. For example, in Figure 2.6, the name of s2 is o1(s1), to reflect that s2

is the output of operator o1 on the input stream s1. Similarly, the name of s4 is o2(o1(s1)).

A stream processing request (query) is described by a query plan, denoted by ξ.

The query plan is represented by a directed acyclic graph (DAG) specifying the required

operators oi and the streams sj among them1. A query plan can be dynamically instanti-

ated into different application component graphs, denoted by λ, depending on the processing

and bandwidth availability. The vertices of an application component graph represent the

components being invoked at a set of nodes to accomplish the application execution, while

the edges represent virtual network links between the components, each one of which may

span multiple physical network links. An edge connects two components ci and cj if the

output of the component ci is the input for the component cj . The application compo-

nent graph is generated by Synergy’s component composition algorithm at run-time, after

selecting among different component candidates that provide the required stream process-

ing operators oi and satisfy the end-to-end QoS requirements Qξ. Synergy’s component

composition algorithm is described in Section 2.3.1.

2.2.2 QoS Model

A query plan ξ, describing a stream processing request, includes the processing

requirements of the requested operators poi
,∀oi ∈ ξ and the bandwidth requirements of the

1There may be multiple query plans that can satisfy a stream processing request. Query plan optimization
however involves application semantics and is outside the scope of this work. Thus, we assume the query
plan is given.

20

corresponding streams bsj
,∀sj ∈ ξ. The bandwidth requirements are calculated according to

the user-requested stream rate, while the processing requirements are calculated according

to the data rate and profiled processing times for the operators [2]. The stream processing

request also specifies the end-to-end requirements Qξ, for m different QoS metrics such as

end-to-end execution time and loss rate, Qξ = [q1, ...qm]. Although our schemes are generic

to additive QoS metrics, we focus on end-to-end execution time, denoted by qt, which is

computed as the sum of the processing and communication times for a data tuple to traverse

the whole query plan.

The monitoring module of each Synergy node vi is responsible for maintaining

resource utilization information for vi and the virtual links connected to vi. In particular,

the monitoring module keeps track of the CPU load and network bandwidth. The current

processor load pvi
and the residual processing capacity rpvi

on node vi are inferred from the

CPU idle time as measured from the /proc interface. The residual available bandwidth rblj

on each virtual link lj connected to vi is measured using a bandwidth measuring tool (e.g.,

Iperf [56] or [37]). We also use blj to denote the amount of current bandwidth consumed on

lj .

After admitting an application request, the residual processing capacity on every

node vi participating in the application execution must be rpvi
≥ 0. Similarly, the residual

available bandwidth on each virtual link lj connected to each vi must be rblj ≥ 0. Finally,

the end-to-end QoS requirements specified in the query plan ξ must be met by the final

application component graph λ, i.e., qλ
t ≤ q

ξ
t .

21

2.2.3 Synergy Architecture

We now present a brief overview of Synergy’s architecture. The middleware’s

goal is to support the execution of distributed stream processing applications with QoS

constraints, while efficiently managing the system’s resources. Synergy adopts a fully dis-

tributed architecture, where any node of the middleware can request or participate in a

distributed stream processing application. In Synergy, data streams, consisting of indepen-

dent data tuples, arrive continuously from external sources (such as web users, monitoring

devices, or a sensor network) and need to be processed by stream processing components in

real-time. Each component is a self-contained software module, that offers a predefined op-

erator. The operators can be as simple as a filter or a join, or as complex as transcoding or

encryption. Components are deployed in the distributed nodes of the Synergy middleware

according to their individual software capabilities or following criteria for the optimization

of the performance of the whole system [4,59,61,78].

Each Synergy node is identified by its IP and port. The nodes of our distributed

stream processing middleware are connected via overlay links on top of the existing IP

network as shown in Figure 2.2. To facilitate decentralized component discovery, we organize

the peers in a Distributed Hash Table (DHT), currently FreePastry [74]. Utilizing a DHT

structure enables us to efficiently locate components and load information about the nodes.

The application component graph is built on top of the middleware, as shown in Figure 2.2.

As illustrated in Figure 2.2, each node of the middleware consists of the following

main modules: i) A discovery module that is responsible for locating existing data streams

and components. Synergy leverages the structure of the underlying overlay network for reg-

22

Figure 2.2: Synergy system architecture.

istering and discovering available components and streams in a decentralized manner. In

our current prototype we implement a keyword-based discovery service, on top of the Pastry

distributed hash table (DHT) [74]. This allows us to register and discover components by

hashing keywords instead of the component IDs themselves, and thus decouple component

placement from their discovery. ii) A routing module that routes protocol messages between

Synergy nodes through the overlay, and data streams either through the overlay, or by open-

ing direct TCP connections. iii) A monitoring module that is responsible for maintaining

resource utilization information for the node and the virtual links connected to it. In the

current implementation, the monitoring module keeps track of the CPU load, the network

bandwidth, and latencies to other nodes. iv) A scheduling module that implements various

algorithms to schedule the execution of the stream processing applications running on a

node. v) An application composition module that composes stream processing applications

23

Figure 2.3: Application instantiation on Synergy.

from already deployed components. The middleware adopts a fully decentralized archi-

tecture, where any node can compose a distributed stream processing application [67, 68].

vi) A QoS projection module, which is used during application composition to determine

the impact of admitting new applications to the QoS of currently running ones [67, 68].

vii) A replica placement module, that determines on which nodes to place the component

replicas of a composite application to maximize application availability [72]. viii) A load

balancing module that proactively alleviates hot-spots relying on decentralized migration

decisions [70, 71]. ix) A hot-spot prediction module that drives load management decisions

by predicting QoS violations at run-time [71]. x) A migration engine that enables Synergy

nodes to autonomously migrate the execution of stream processing components using a

non-disruptive migration protocol [70, 71]. xi) An application module that implements the

logic of the various stream processing applications the middleware can offer. We have cur-

24

rently implemented network traffic monitoring and stream encryption. xii) A user interface

module to control and monitor the execution of the middleware and of the applications.

The user interface includes a command line interface and the graphical interface shown in

Figure 2.3, demonstrating our implementation of the network traffic monitoring application

illustrated in Figure 1.1.

2.2.4 Approach Overview

We now give a brief overview of Synergy’s component composition. A stream pro-

cessing application request is submitted directly to a Synergy node vs, if the client is running

the middleware, or redirected to a Synergy node vs that is closest to the client based on a

predefined proximity metric (e.g., geographical location). Alternative policies can select vs

to be the Synergy node closest to the source or the sink node(s) of the application. The user

submits a query plan ξ, that specifies the required operators and the order in which they

will execute. The processing requirements of the operators poi
,∀oi ∈ ξ and the bandwidth

requirements of the streams bsj
,∀sj ∈ ξ are also included in ξ. The request also specifies the

end-to-end QoS requirements Qξ = [q1, ...qm] for the composed stream processing applica-

tion. These requirements (i.e., ξ, Qξ) are used by the Synergy middleware running on that

node to initiate the distributed component composition protocol. This protocol produces

the application component graph λ that identifies the particular components that shall be

invoked to instantiate the new request.

To avoid redundant computations, the system first tries to discover whether any

of the requested streams have been generated by previously instantiated query plans. To

25

t D

C2 C4

C3

O1 O2

C1

S

Figure 2.4: Probing example.

maximize the sharing benefit, the system reuses the result stream(s) generated during the

latest possible stages in the query plan. Thus, the system only needs to instantiate the re-

maining operators in the query plan to generate the user requested stream(s). The system

then probes those candidate nodes that can provide operators needed in the query plan,

to determine: i) whether they have the available resources to accommodate the new appli-

cation, ii) whether the end-to-end delay is within the required QoS, and iii) whether the

impact of the new application would cause QoS violations to existing applications. During

the probing process, the system may need to decide where to deploy new processing compo-

nents. Deployment takes place if none of the existing components can provide a requested

stream processing operator, or if there exist such components, but none of them can be

safely reused without resource overloads or QoS violations. Synergy adopts a collocation-

based component deployment strategy to minimize the number of hops that streams travel

through.

Figure 2.4 gives a very simple example of how probes can be propagated hop-

by-hop to test many different component combinations. Assuming components c1 and c2

offer operator o1, while components c3 and c4 offer operator o2, and assuming that the

components can be located at any node in the system, probes will attempt to travel from

26

the source S to the destination D through paths S → c1 → c3 → D, S → c1 → c4 → D,

S → c2 → c3 → D, and S → c2 → c4 → D.

A probe is dropped in the middle of the path if any of the above conditions are not

satisfied in any hop. Thus, the paths that create resource overloads, result to end-to-end

delays outside the requested QoS limits, or unacceptably increase the delays of the existing

applications, are eliminated. From the successful candidate application component graphs,

our composition algorithm selects the one that results in a more balanced load in the system

and the new stream application is instantiated.

2.3 Design and Algorithm

In this section we describe the design and algorithm details of our Synergy dis-

tributed stream processing middleware, that offers sharing-aware component composition.

Synergy can i) reuse existing data streams to avoid redundant computations, and ii) reuse

existing components if the new stream load does not lead to QoS violations of the existing

applications. We first describe the decentralized component composition protocol, followed

by the detailed algorithms for component deployment, stream reuse and component shar-

ing. Synergy’s fully distributed and light-weight composition protocol is executed when

instantiating a new application.

2.3.1 Synergy Component Composition Protocol

Synergy’s fully distributed composition protocol is executed when instantiating a

new application. Given a stream processing request, a Synergy node first gets the locally

27

Input: query 〈ξ, Qξ, 〉, node vs

Output: application component graph λ

vs identifies maximum sharable point(s) in ξ

vs spawns initial probes

for each vi in path

checks available resources

AND checks QoS so far in Qξ

AND checks projected QoS impact

if probed composition qualifies

sends acknowledgement message to upstream node

performs transient resource reservation at vi

discovers next-hop candidate components from ξ

deploys next-hop candidate components if needed

spawns probes for selected components

else

drops received probe

vs selects most load-balanced component composition λ

vs establishes stream processing session

Figure 2.5: Synergy composition algorithm.

generated query plan ξ and then instantiates the application component graph based on the

user’s QoS requirements Qξ. Figure 2.6 shows an example of a query plan, while Figure 2.7

shows a corresponding component composition example. To achieve decentralized, light-

weight component selection, Synergy employs a set of probes to concurrently discover and

select the best composition. Synergy differs from previous work (e.g., [32, 35]) in that

28

it judiciously considers the impact of stream and component sharing on both the new

and existing applications. The probes carry the original request information (i.e., ξ, Qξ),

collect resource and QoS information from the distributed components, perform QoS impact

projection, and select qualified compositions according to the user’s QoS requirements. The

best composition is then selected among all qualified ones, based on a load balancing metric.

The composition protocol, a high level description of which is shown in Figure 2.5, consists

of five main steps:

Step 1. Probe creation. Given a stream processing query plan ξ, the Synergy

node vs first discovers whether any existing streams can be used to satisfy the user’s request.

The goal is to reuse existing streams as much as possible to avoid redundant computations.

For example, in Figure 2.6, starting from the destination, vs will first check if the result

stream (s8) is available. If not, it will look for the streams one hop away from the destination

(s6 and s7), then two hops away from the destination (s4 and s5) and so on, until it can find

any streams that can be reused. We denote this Breadth First Search on the query plan as

identification of the maximum sharable point(s). The nodes generating the reusable streams

may not have enough available bandwidth for more streaming sessions or may have virtual

links with unacceptable communication latencies. In that case all probes are dropped by

those nodes and vs checks whether there exist components that can provide the operators

requested in the query plan, as if no streams had been discovered. The details about

determining the maximum sharable points and about discovering sharable streams and

components are described in Section 2.3.3. Next, the Synergy node vs initiates a distributed

probing process to collect resource and QoS states from those candidate components that

29

S1
O1

O2 O4

O5O3

O6
S8

S6

S7
S5

S4

DestinationSource

S2

S3

Figure 2.6: Query plan example.
Figure 2.7: Synergy composition example.

provide the maximum sharable points. The goal of the probing process is to select qualified

candidate components that can best satisfy ξ and Qξ and result in the most balanced load

in the system. The initial probing message carries the request information (ξ and Qξ) and

a probing ratio, that limits the probing overhead by specifying the maximum percentage

of candidate components that can be probed for each required operator. The probing ratio

can be statically defined, or dynamically decided by the system, based on the operator,

the components’ availability, the user’s QoS requirements, current conditions, or historical

measurement data [35]. The initial probing message is sent to the nodes hosting components

offering the maximum sharable points. We do not probe the nodes that are generating

streams before the maximum sharable points, since the overhead would be disproportional

to the probability that they can offer a better component graph in terms of QoS.

Step 2. Probe processing. When a Synergy node vi receives a probing message

called probe Pi, it processes the probe based on its local state and on the information carried

by Pi. A probe has to satisfy three conditions to qualify for further propagation: First, vi

calculates whether the requested processing and bandwidth requirements poi
and bsj

can

30

be satisfied by the available residual processing capacity and bandwidth rpvi
and rblj , of

the node hosting the component and of the virtual link the probe came from respectively.

Thus, both rpvi
≥ poi

and rblj ≥ bsj
have to hold2. Second, vi calculates whether the QoS

values of the part of the component graph that has been probed so far already violate the

required QoS values specified in Qξ. For the end-to-end execution time QoS metric qt this

is done as follows: The sum of the components’ processing and transmission times so far

has to be less than qt. The time that was needed for the probe to travel so far gives an

estimate of the transmission times, while the processing times are estimated in advance from

profiling [2]. Third, vi calculates the QoS impact on the existing stream processing sessions

by admitting this new request. In particular, the expected execution delay increase due

to the additional stream volume introduced by the new request is calculated. The details

about the QoS impact projection are described in Section 2.3.4. Similarly, the impact of

the existing stream processing sessions on the QoS of the new request is calculated. Both

the new and the existing sessions have to remain within their QoS requirements.

If any of the above three conditions cannot be met, the probe is dropped immedi-

ately to reduce the overhead. Otherwise, the node sends an acknowledgement message to

its upstream node, and performs transient resource reservation to avoid overbooking due

to concurrent probes for different requests. The transient resource reservation is cancelled

after a timeout period if the node does not receive a confirmation message to setup the

stream processing application session.

2In the general case, where other node resources such as memory or disk space are to be taken into
account in addition to the processing capacity, congruent equations have to hold for them as well.

31

Step 3. Hop-by-hop probe propagation. If the probe Pi has not been

dropped, vi propagates it further. vi derives the next-hop operators from the query plan

and acquires the locations of all available candidate components for each next-hop operator

using the discovery module of the middleware. Then vi selects a number of candidate com-

ponents to probe, based on the probing ratio. If more candidates than the number specified

by the probing ratio are available, random ones are selected, or –if a delay monitoring ser-

vice [47] is available– the ones with the smallest communication delay are selected. If no

candidate components for the next operator are found, or if no candidate components return

acknowledgement messages, a new component is deployed, following the protocol described

in Section 2.3.2. The deployment protocol aims at collocating the new component with

either its upstream or its downstream component in the query plan, in order to minimize

the number of hops that streams have to travel through.

After the candidate components have been selected, vi spawns new probes from

Pi to all selected next-hop candidates. Each new probe, in addition to ξ (including poi
and

bsj
), Qξ, and the probing ratio, carries the up-to-date resource state of vi, namely rpvi

and

rblj , and of all the nodes the previous probes have visited so far. Finally, vi sends all new

probes to the nodes hosting the selected next-hop components.

A protocol optimization to reduce probing could involve piggybacking load and

application QoS information on streaming data. This way nodes that are hosting appli-

cations could inform their downstream nodes regarding their current state and would not

need to be probed by them.

32

Step 4. Composition selection. After reaching the destination specified in ξ,

all successful probes belonging to a composition request return to the original Synergy node

vs that initiated the probing protocol. After selecting all qualified candidate components,

vs first generates complete candidate component graphs from the probed paths. Since the

query plan is a DAG, vs can derive complete component graphs by merging the probed

paths. For example, in Figure 2.7, a probe can traverse c10 → c20 → c40 → c60 or c10 →

c30 → c50 → c60. Thus, vs merges these two paths into a complete component graph.

Second, vs calculates the requested and residual resources for the candidate component

graphs based on the precise states collected by the probes. Third, vs selects qualified

compositions according to the user’s operator, resource, and QoS requirements. Let Vλ be

the set of nodes that is being used to instantiate λ. We use ci.o to represent the operator

provided by the component ci. The selection conditions are as follows:

operator constraints : ci.o = oi, ∀oi ∈ ξ,∃ci ∈ λ (2.1)

QoS constraints : qλ
r ≤ qξ

r , 1 ≤ r ≤ m (2.2)

processing capacity constraints : rpvi
≥ 0,∀vi ∈ Vλ (2.3)

bandwidth constraints : rblj ≥ 0, ∀lj ∈ λ (2.4)

Among all the qualified compositions that satisfy the application QoS requirements, vs

selects the best one according to the following load balancing metric φ(λ). The qualified

composition with the smallest φ(λ) value is selected:

φ(λ) =
∑

vi∈Vλ,oi∈ξ

poi

rpvi
+ poi

+
∑

lj∈λ,sj∈ξ

bsj

rblj + bsj

(2.5)

33

Step 5. Application session setup. Finally, the Synergy node vs establishes the

stream processing application session by sending confirmation messages along the selected

application component graph. If no qualified composition can be found (i.e., all probes

were dropped, including the ones without stream reuse), then the existing components and

nodes in the probing path are too overloaded. Thus, these nodes cannot accommodate

the requested application with the specified QoS requirements, or host new components.

vs can then try to deploy a new complete application component graph in strategically

chosen places in the network [4,59,61,78]. The goal of the described protocol is to discover

and select existing streams and components to share, in order to accommodate a new

application request, assuming components are already deployed on nodes. This is orthogonal

to the policies that might be in place regarding the deployment of new complete application

component graphs, which is outside the scope of this work. If deploying a new complete

application component graph also fails, vs returns a failure message.

Synergy is adaptable middleware, taking into account the current status of the

dynamic system at the moment the application request arrives. Therefore, it does not

compare to optimal solutions calculated offline that apply to static environments. Further-

more, Synergy decides the admission of applications depending on whether QoS can be

fully met or not. Statistical methods [32] could be adopted to integrate our solution with

utility-based approaches [20], in which case different levels of QoS would be offered. In

that case, QoS requirements can be expressed as satisfaction probabilities, and histograms

can be maintained to calculate the probabilities of dynamic resource availability. Different

weights can be assigned to different applications based on their importance, determining

34

the probing ratio, as well as the maximum QoS level of particular applications. The system

would then decide the probability with which a certain application could be provided with

the maximum possible QoS level.

2.3.2 New Component Deployment

New component deployment is triggered when i) no candidate components for a

requested operator are returned by the peer-to-peer overlay, or ii) when candidate compo-

nents exist, but none of them can be safely reused. This can be the case if sharing the

existing components would cause resource overloads, or QoS violations to the new or to

existing applications. Each node processing a probe requires each next-hop candidate com-

ponent to send an acknowledgement message back if the probe conditions can be satisfied.

The node initiates a new component deployment if it does not receive any acknowledgement

message from its next-hop candidates.

We choose to collocate the new component with either its upstream or its down-

stream component, as this approach minimizes the number of hops in the application com-

ponent graph. If collocation with an upstream component is decided, it occurs at the node

that just processed a probe. If collocation with a downstream component is decided, it

happens at the node a probe is forwarded to after being processed. We now discuss how the

nodes to host a new component are chosen and then we describe how component deployment

takes place.

Depending on the position of the missing component in the application component

graph, we distinguish between three different cases, shown in Figure 2.8: i) If the missing

35

C22

C21

O4

O6

O5
Source Destination

C21

O1

O4

O5
Source

X

C41 C22

C21

C52

C51

O1

Source Destination

C61C11 X C11
Destination

a b c

C41
C22

C31
C51

C52

C61

O3

O2

O6 O1

C31

O3

O2

C31

O3

O2

X

O4

O5

O6

C52

C51

Figure 2.8: The three cases of new component deployment.

component is at the beginning of the graph, we can collocate it with any of its downstream

candidates. Thus, in Figure 2.8.a), the missing component for operator o1 can be collocated

with c21, c22, or c31. ii) If the missing component is at the end of the graph, we can collocate

it with any of its upstream candidates. Thus, in Figure 2.8.b), the missing component for

operator o6 can be collocated with c41, c51, or c52. iii) If the missing component is in the

middle of the graph, we can collocate it with any of its downstream or upstream candidates.

Thus, in Figure 2.8.c), the missing component for operator o4 can be collocated with c21,

c22, or c61. Our goal when trying to decide whether to collocate with downstream or with

upstream candidates is to reduce network traffic. To that effect, we choose whether to

collocate with an upstream or a downstream candidate based on the operator’s profiled

selectivity [90], which is included in the query plan ξ. The selectivity of an operator is

calculated as the ratio of the size of its output streams over the size of its input streams,

during the period of time the profiling occurs. The selectivity of an operator can be less

than one, e.g., for a filter, equal to one, e.g., for a sort, or even greater than one, e.g., for

some cases of a join. For selectivity less than or equal to one we collocate with an upstream

candidate, while for selectivity greater than one we collocate with a downstream candidate

component. Thus, the network traffic across the components is minimized. For example, in

36

Figure 2.8.c), if the selectivity of the operator o4 is less than or equal to one, we collocate

the missing component for o4 with one of the upstream candidates c21 or c22. If on the

other hand the selectivity of the operator o4 is greater than one, we collocate the missing

component with its downstream candidate c61.

Since, at each hop, many probes are spawned before the final composition selection,

many alternative deployments for a new component may exist. For example, in Figure 2.8.c),

if the components that offer the operator o4 are missing, the deployment alternatives may

include the nodes hosting each of the components c21 and c22. The resource and QoS checks

described in step 2 of the composition protocol are performed on the tentatively deployed

components as well. Thus a probe is dropped if resource or QoS violations are detected.

Depending on resource availability, the upstream or downstream candidates may

not be able to deploy the requested component. In that case, the node that initiated the

component deployment does not receive any acknowledgement message, and tries to identify

other candidates. If the missing component is in the middle of the graph, both downstream

and upstream candidates can be probed. If the extra candidates drop the probe as well,

overlay neighbors or nodes along the probing path so far can be used. If none of these

cases, for any of the probing paths, results to a successful deployment, a complete graph,

as described in protocol step 5, can be deployed.

If the resource availability of a node allows the new component deployment, a

transient resource reservation for this component takes place. Thus, resources are reserved,

to avoid overbooking by concurrent probing processes, but the component is only tentatively

deployed. After the final component graph is selected, the new components that are included

37

in that graph are actually deployed. The rest of the transient resource reservations made by

the tentatively deployed components timeout, which frees the resources for future requests.

Only the permanently deployed components register their metadata with the peer-to-peer

overlay, to enable their discovery and reuse by other applications.

While the collocation-based component deployment strategy minimizes the num-

ber of hops that streams travel through, it does not necessarily provide the minimum end-

to-end application delay. The reason is that the triangle inequality does not necessarily

hold for all nodes in real-world, large-scale distributed systems [47]. For example, in Fig-

ure 2.8.c), a node to host c41 may exist, such that the delay c21 → c41 → c61 is smaller than

the delay c21 → c61. However, examining all nodes for all alternative probes, would lead

to an explosion of combinations. Yet, while our minimum hop component deployment does

not necessarily produce the optimal solution, it heuristically provides us with several good

alternatives that satisfy the QoS of the application.

2.3.3 Maximum Stream Sharing

Synergy utilizes a peer-to-peer discovery module for registering and discovering

the available components and streams in a decentralized manner. As was mentioned in Sec-

tion ??, the current implementation is built over Pastry [74]. We follow a simple approach

to enable the storage and retrieval of the static metadata of components and streams in

the DHT, which include the node hosting the component or stream. As was described in

Section 2.2.1, each component and stream is given a name, based on a common ontology.

This name is converted to a key, by applying a secure hash function (SHA-1) on it, whenever

38

a component or stream needs to be registered or discovered. On the DHT this key is used

to map the metadata to a specific node, with the metadata of multiple components offering

the same operator, or multiple streams carrying the same data, being stored in the same

node. Configuration changes caused by node arrivals and departures are handled gracefully

by the DHT. Whenever components are deployed or deleted, or streams are generated by

new application sessions, or removed because they are not used by any sessions anymore,

the nodes hosting them register or unregister their metadata with the DHT.

The stream processing query plan ξ specifies the operators oi and streams sj

needed for the application execution. Using a Maximum Sharing Discovery algorithm, the

Synergy node in which the query plan was submitted utilizes the peer-to-peer overlay for

discovering existing streams and components. Since different users can submit queries that

have the same or partially the same query plans, we want to reuse existing streams as much

as possible to avoid redundant computations. The goal of the Maximum Sharing Discovery

algorithm is to identify the maximum sharable point(s) in ξ. This is the operator(s) closest

to the destination (in terms of hops in ξ), whose output streams currently exist in the

system and can (at least partially) satisfy the user’s requirements. An extreme case is that

the final stream or streams already exist in the system, which can then be returned to

the user directly without any further computation, as long as the residual bandwidth and

communication latencies permit so. For example in Figure 2.6 if s8 is already available in

the system, it can be reused to satisfy the new query, incurring only extra communication

but no extra processing overhead. In that case, the maximum sharable point in ξ is o6

and Synergy will prefer to use no components if possible. If the final stream or streams

39

are not available, the Synergy node backtracks hop-by-hop the query plan to find whether

preceding intermediate result streams exist. For example, in Figure 2.6, if result streams

s8 and s7 are not found, but s6 and s5 are already available in the system, they may be

reused to satisfy part of the query plan. By reusing these existing streams, the Synergy

node will prefer to compose a partial component graph covering the operators after the

reused streams, if the resource and QoS constraints permit so. In that case, the maximum

sharable points in ξ are o3 and o4 and only components offering operators o5 and o6 will

be needed. To discover existing streams and existing components the peer-to-peer overlay

is utilized as was described above.

2.3.4 QoS-Aware Component Sharing

To determine whether an existing candidate component can be reused to satisfy

a new request, we estimate the impact of the component reuse on the latencies of the

existing applications. An existing component can be reused if the additional workload

brought by the new application will not violate the QoS requirements of the existing stream

processing applications (and similarly the load of the already running applications will

not violate the QoS requirements of the new application). To calculate the impact of

admitting a new stream processing application on the QoS of the existing applications (and

likewise, the impact of the running applications on the potential execution of the one to

be admitted), a Synergy node that processes a probe utilizes a QoS Impact Projection

algorithm. This algorithm runs in all nodes with candidate components through which the

probes are propagated. The QoS Impact Projection is performed for all the applications

40

that use components on those nodes. The goal is, that, if the projected QoS penalty will

cause the new or the existing applications to violate their QoS constraints, these components

are not further considered and are thus removed from the candidate list. For example, in

Figure 2.7, candidate components c10 and c40 are used by existing applications. Assuming

that QoS violations would be projected as a result of the new stream workload, c10 and c40

are not considered as candidate components for the operators o1 and o4 respectively, and

therefore are grayed out in the Figure. On the contrary, even though c20 and c39 are used

by existing applications, they are still considered as candidate components for the operators

o2 and o3 respectively, if no QoS violations are projected for them. We now describe the

details of the QoS Impact Projection algorithm, first for regular traffic (Section 2.3.4) and

then for bursty traffic (Section 2.3.4).

QoS Impact Projection for Regular Traffic

The QoS Impact Projection algorithm to estimate the effect of component reuse

works as follows: For each component ci, the node estimates its execution time. This

includes the processing time τci
of the component ci to execute locally on the node and

the queueing time in the scheduler’s queue as it waits for other components to complete3.

The queueing time is defined as the difference between the arrival time of the component

invocation at the node and the time the component actually starts executing. We can then

determine the mean execution time xci,vi
for each component ci on the node vi.

3Although different scheduling algorithms will determine different orders for the execution of the compo-
nents at each node, we assume here an FCFS scheduling order.

41

For regular traffic, we approximate arrivals of stream data tuples with a Poisson

distribution and the durations of their processing with an exponential distribution. Data

tuples arrive continuously and the scheduler’s queue is large enough to store them until

they are processed. Under these assumptions, we can model the application behavior as

an M/M/1 system [43]. While such a model can only provide an approximation of the

execution time, it is commonly used due to its simplicity and has also been used to represent

streaming data [8]. Our experimental results show that this simplified model can provide

good projection performance for both synthetic and real datasets. tIf pvi
represents the load

on node vi hosting component ci, and τci
represents the processing time for ci to execute

isolated on vi, the mean execution time for component ci on node vi is given by:

xci,vi
=

τci

1 − pvi

(2.6)

The mean communication time ysj ,lj on the virtual link lj for the stream sj transmitted

from component ci to its downstream component cj is estimated similarly: It includes the

transmission time σsj
for the stream sj, and also the queueing delay on the virtual link. If

blj represents the load (consumed bandwidth) on virtual link lj connecting component ci to

its downstream component in the application component graph, the mean communication

time ysj ,lj to transmit stream sj through the virtual link lj is then given by:

ysj ,lj =
σsj

1 − blj

(2.7)

Given the processing times τci
and the transmission times σsj

required respectively for the

execution of the components ci and the data transfer of the streams sj of an application, as

well as the current respective loads pvi
and blj , a Synergy node can compute the projected

42

end-to-end execution time for the entire application as:

t̂ = maxpath

∑

vi∈Vλ,lj∈λ

(

τci

1 − pvi

+
σsj

1 − blj

)

(2.8)

where the maxpath is used in the cases where the application is represented by a graph with

multiple paths, in which case the projected execution time of the entire application is the

maximum path delay.

The processing time τci
and transmission time σsj

are derived from the processing

and bandwidth requirements, poi
and bsj

respectively, which are included for the corre-

sponding operators oi and streams sj in the query plan ξ. The bandwidth requirements are

calculated according to the user-requested stream rate, while the processing requirements

are calculated according to the data rate and profiled processing times for the operators [2].

The current processor and network loads, pvi
and blj respectively, are known locally at the

individual nodes. These values are used to estimate the local impact δ of the component

reuse on the existing applications as follows4:

Let
τci

1−pvi
denote the mean execution time required for executing component ci on

the node vi by the application. After sharing the component with the new application, the

projected execution time would become:
τci

1−(pvi
+pci

) , where (pvi
+ pci

) represents the new

processing load on the node after reusing the component ci. pci
represents the maximum

profiled load for ci. This makes the projection conservative, so that QoS violations will be

avoided. Alternatively, a projection can be less pessimistic by using average or minimum

instead of maximum load. We then compute the impact δ on the application execution

4We currently calculate the impact projection based on the projected execution time, as the projected
communication time may not be accurate in a shared network such as the Internet, where virtual links
correspond to multiple physical links shared with extraneous traffic.

43

time, as the difference between the projected end-to-end execution time after the reuse, t̂′,

and the execution time before the reuse, t̂:

δ = t̂′ − t̂ =
τci

1 − (pvi
+ pci

)
−

τci

1 − pvi

(2.9)

The projected impact δ is acceptable if δ + t̂ ≤ qt, in other words if the new projected exe-

cution time is acceptable. In the above inequality, qt is the requested end-to-end execution

time QoS metric that was specified by the user in Qξ. Similar to ξ, it is cached for every

application on each node that is part of the application. t̂ is the current end-to-end execu-

tion time for the entire application. t̂ is measured by the receiver of a stream processing

session and communicated to all nodes participating in it using a feedback loop [20]. This

enables the processing to adapt to significant changes in the resource utilization, such as

finished applications or execution of new components. For an application that is still in the

admission process, t̂ is approximated by the sum of the processing and transmission times

up to this node, as carried by the probe.

QoS Impact Projection for Bursty Traffic

Oftentimes streaming data, such as voice-over-IP data, network traffic, or sensor

measurements generated in an emergency application, can be bursty, and therefore well

approximated by an ON/OFF model [9,36]. In an ON/OFF model, segments of data arrivals

with high rate are followed by segments of data arrivals with low rate. Similar to [9, 36],

we approximate bursty traffic using an ON/OFF model. Each segment of the ON/OFF

traffic represents regular traffic, the arrival of data tuples of which is approximated using

a Poisson distribution. We apply an M/M/1 queueing model within each segment of the

44

ON/OFF traffic. Thus, using an M/M/1 system we model the traffic within each segment

as having constant mean arrival rate of data tuples. Modeling it using M/M/1 allows us

to apply queueing theory to estimate the mean execution time within each segment, as

was described in Section 2.3.4. We do not use the same M/M/1 model to generate bursty

traffic. Traffic within each segment, which is regular, is approximated using a separate

M/M/1 model. A change in the measured mean arrival rate of data tuples signifies the

transition to a new segment.

We define a stream segment, denoted by zi, as a time interval with approximately

constant mean arrival rate of data tuples. We partition bursty traffic into a sequence of such

stream segments. This way we approximate bursty streaming data by assuming Poisson

arrivals of stream data tuples within each segment, but with different rates in different

segments.

However, the challenge is to identify the correlation between the segments of dif-

ferent streams, because the segments of high and low rates for different streams do not

necessarily coincide. To address this challenge we employ the concept of stream signa-

tures [34]. For each stream we construct and maintain a data arrival time series called the

signature of the stream, to describe its workload pattern. The signature Ωj of a stream

sj is a time series of the load associated with processing the data tuples of the stream

within a sliding window of length W , Ωj = {p1, . . . pi, . . . pW}, where pi denotes the average

processing load for segment zi in the bursty stream.

Measurements are added to the signature of a stream every time the mean arrival

rate of data tuples changes, and substitute old measurements after the window is filled. Sig-

45

!t

Figure 2.9: The two stream signatures shown in a) are aggregated as in b) to get the
combined signature of c).

46

natures are stored as arrays of measurements. Each new measurement added to a stream’s

signature is calculated from the number of data tuples that have arrived since the last

measurement, multiplied by the processing load (i.e., percentage of CPU cycles) spent for

each data tuple. The signatures of the streams currently being processed by a node are

maintained by its monitoring module. For the streams of the application that is currently

being admitted, if their signatures are not provided, we either obtain them through off-line

profiling, or approximate them using the load measurements of the existing components

the application will be using. As the execution of the new application begins, the sliding

windows of the signatures of its streams are filled with the actual processing loads.

As Figure 2.9 shows, the processing load of sharing a component is calculated as

the combination of the processing loads of all of the component’s input streams. During a

segment zi, in which the mean arrival rate of data tuples remains constant, the execution

time for processing data tuples is approximated by an M/M/1 queueing model. When

estimating the workload of multiple input streams, we use the shortest segment length w

among the segment lengths of all input streams, as is shown in Figure 2.9. The benefit

of employing stream signatures is two-fold: First, they enable us to identify the shortest

segment length w, i.e., the shortest time interval with constant mean arrival rate of data

tuples among multiple bursty streams. Second, they enable us to combine the processing

loads of multiple bursty streams, by aggregating the measurements of all streams for each

segment of minimum length w. Hence, in the example of Figure 2.9, the shortest segment

length w within the sliding window of length W is identified. It is then used to divide the

47

signatures into segments of minimum length and perform the aggregations of the streams’

processing loads.

Combining the processing loads of multiple streams by aggregation is possible

because of two reasons. The first reason is that we aggregate the processing loads of the

individual streams within the shortest segment length w, for which all streams have constant

mean arrival rate of data tuples. The second reason is that, assuming an M/M/1 queueing

model for each individual stream in each segment of length w, the combination of all streams

within that segment also follows an M/M/1 queueing model [43]. Thus, assuming pΩj,w

represents the measurement (i.e., processing load) belonging to a signature Ωj,w of a stream

sj for the shortest segment length w, the mean execution time for component ci on node vi

processing all input streams Svi
in a segment of length w is given by:

xci,vi,w =
τci

1 −
∑

Ωj,w∀sj∈Svi

pΩj,w

(2.10)

After sharing the component with the new application, which incurs additional maximum

processing load pci
, the projected execution time for each segment of length w would become:

τci

1−(
P

Ωj,w∀sj∈Svi

pΩj,w
+pci

) . We can then compute the impact δw on the projected execution time

for the entire application, for every segment of length w within the window of length W .

As alternative admission criteria we can also use average, minimum, or maximum projected

execution times over all segments to project the impact. δw is computed as the difference of

the projected end-to-end execution time after the reuse, t̂′, from the one before the reuse,

t̂:

δw = t̂′ − t̂ =
τci

1 − (
∑

Ωj,w∀sj∈Svi

pΩj,w
+ pci

)
−

τci

1 −
∑

Ωj,w∀sj∈Svi

pΩj,w

(2.11)

48

The projected impact is acceptable if δw + t̂ ≤ qt,∀w ∈ W , i.e., if the new projected

execution time is acceptable for every segment of length w within the window of length W .

Equations 2.9 and 2.11 are the formulas used in the QoS Impact Projection algo-

rithm, for regular and for bursty arrival rates respectively. A Synergy node has available,

locally, all the required information to compute the impact δ for all applications it is cur-

rently participating in. This information is available by maintaining local load information,

monitoring the local processor utilization, and caching ξ and Qξ for all running applications,

along with their current end-to-end execution times. Synergy uses the projected application

execution time to estimate the effect of the component reuse on the existing applications,

by considering the effect of increased processor load on the time required to invoke the

component.

This projection is performed for all applications currently invoking a component

to be reused, for all applications invoking other components on the node, and also for the

application that is to be admitted. If the projected impact is acceptable for all applications,

the component can be reused, and the node sends an acknowledgement message to inform

its upstream node accordingly. Otherwise, and if there are no other local components that

can be reused, the probe is dropped.

2.4 Experimental Evaluation

We now present the experimental evaluation of Synergy, both through our pro-

totype implementation over the PlanetLab [15] wide-area network testbed, and through

49

simulations. The prototype showed the feasibility and practicality of our approach. Addi-

tionally, we used simulations to perform more extensive experiments.

2.4.1 Prototype over PlanetLab

Methodology

Our Synergy prototype was implemented as a multi-threaded system including

about 20000 lines of Java code, running on each of 88 physical nodes of PlanetLab [15].

The implementation was based on the SpiderNet service composition framework [32]. 100

components were deployed uniformly across the nodes, with a replication degree of 5. We

used a probing ratio of 10%. Application requests asked for 2 to 4 components chosen

randomly and for the corresponding streams between the components. We generated ap-

proximately 9 requests per second throughout the system, using a Zipf distribution with

α = 1.6, expecting stream processing applications to follow trends similar to media stream-

ing and web content provisioning applications [22]. We also experimented with different

request distributions in the simulations. We compared Synergy against two different com-

position algorithms: A Random algorithm that randomly selected one of the candidates

for each application component. A Composition algorithm (such as [32]), that performs

QoS-aware component composition but does not consider result stream reuse or the effects

of component reuse on the applications’ QoS.

50

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Average Application End-to-End Delay (sec)

Random Composition Synergy

Figure 2.10: Average application end-to-end
delay.

 0

 50

 100

 150

 200

 250

 300

 350

 400

Successful Application Requests

Random Composition Synergy

Figure 2.11: Successful application requests.

Results and Analysis

Average Application End-to-End Delay. Figure 2.10 shows the average application end-to-

end delay achieved by the three composition approaches for each transmitted data tuple.

Synergy offers a 45% improvement over Random and a 25% improvement over Composition.

The average end-to-end delay is in the acceptable range of less than a second. Reusing

existing result streams offers Synergy an advantage, since the end-to-end delay is reduced

for some requests by avoiding redundant stream processing.

Successful Application Requests. An important efficiency metric of a component

composition algorithm is the number of requests it manages to accommodate and meet

their QoS demands, shown in Figure 2.11. Synergy successfully accommodates 27% more

applications than Composition and 37% more than Random. Random does not take the

QoS requirements into account, thus misassigns a lot of requests. While Composition takes

operator, resource, and QoS requirements into account, it does not employ QoS impact

51

projection to prevent QoS violations on currently running applications. This results in

applications that fail to meet their QoS demands during their execution, due to dynamic

arrivals of new requests in the system. In contrast, Synergy manages to increase the capacity

of the system and also limit the QoS violations.

Protocol Overhead. We show the overhead of the composition protocols which is

attributed to the probe messages in Figure 2.12. To discover components and streams, we

use the DHT-based routing scheme of Pastry, which keeps the number of discovery messages

low, while the number of messages needed to probe alternative component graphs quantifies

our protocol’s overhead. Synergy’s sharing-aware component composition manages to re-

duce the number of probes: By being able to discover and reuse existing streams to satisfy

parts or the entire query plan, it keeps the number of candidate components that need to

be probed smaller. Also important is that the overhead grows linearly with the number of

nodes in the system, which allows the protocol to scale to larger numbers of nodes. The

probing ratio is another knob that can be used to tune the protocol overhead further [35].

While Random’s overhead could also be tuned to allow less candidates to be visited, its per

hop selections would still be QoS-unaware.

Average Setup Time. Table 2.13 shows the breakdown of the average time needed

for an application setup, for the three composition algorithms. The setup time is divided

into time spent to discover components and streams, and time spent to probe candidate

components. As is shown, the discovery of streams and components is only a small part of

the time needed to set up a stream processing session. Most of the time is spent in trans-

mitting probes to candidate components and running the composition algorithm. Sharing

52

 0

 100

 200

 300

 400

 500

 600

 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 P

ro
be

 M
es

sa
ge

s

Number of Nodes

Protocol Overhead

Random
Composition

Synergy

Figure 2.12: Protocol overhead.

Setup Time (ms) Random Composition Synergy

Discovery 240 188 243

Probing 4509 4810 3141

Total 4749 4998 3384

Figure 2.13: Breakdown of average setup
time.

streams allows Synergy to save time from component probing, which effectively leads to 32%

faster setup time than Composition. The total setup time is only a few seconds. Having to

discover less components balances out the cost of having to discover streams. Discovering a

stream, especially if it is the final output of the query plan, can render multiple component

discoveries unnecessary.

2.4.2 Simulations

Methodology

To further evaluate the performance of Synergy’s sharing-aware composition al-

gorithm, we implemented a distributed stream processing simulator in about 8500 lines

of C++ code. The network topology fed to the simulator was a transit-stub topology of

1500 routers, generated by the GT-ITM Internet topology generator [100]. We simulated a

large overlay network of 500 nodes chosen randomly from the underlying topology. Nodes

and links were assigned processing and communication capacities from discrete classes, to

53

simulate a heterogeneous system. 1000 components were distributed uniformly across the

nodes of the system, with a uniform replication degree of 5; i.e., 200 unique components

and 800 component replicas were deployed at the nodes. Application requests (i.e., query

plans) consisted of requests with 2 to 10 operators chosen randomly. For each application,

we set its QoS requirement 30% higher than the time needed for the application to execute

in isolation. We investigated both the performance of Synergy’s composition algorithm and

its sensitivity to the above parameters.

We compared Synergy not only against Random and Composition, but also against

a Greedy algorithm that at each composition step selected the candidate component that

resulted in the minimum delay between the two components. Note that this does not nec-

essarily result in the minimum end-to-end delay for the entire application. To implement

this algorithm in a distributed prototype some delay monitoring service such as the ones

discussed in [47] would be needed. Other than the average application end-to-end delay,

which includes processing, transmission, and queueing delays, our main metric for the algo-

rithms’ comparison was the success rate, defined as the percentage of application requests

that get admitted and complete within their requested QoS limits. This effectively captures

the success of a composition algorithm to provide the requested operators, resources, and

QoS.

Results and Analysis

Scalability. Figure 2.14 shows the average end-to-end delay of all the applications that

54

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 A
pp

lic
at

io
n

E
nd

-t
o-

E
nd

 D
el

ay
 (

se
c)

Number of Application Requests

Scalability

Random
Greedy

Composition
Synergy

Figure 2.14: Scalability.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 100 200 300 400 500

A
ve

ra
ge

 A
pp

lic
at

io
n

E
nd

-t
o-

E
nd

 D
el

ay
 (

se
c)

Number of Application Requests

Performance Gain Breakdown

Composition
composition + projection

Synergy

Figure 2.15: Performance gain breakdown.

are admitted in the system for increasing application load. Synergy consistently achieves

the minimum average end-to-end delay. Furthermore, it manages to maintain the average

end-to-end delay low, by not admitting more applications than those that can be supported

by the system. This is not the case with Random, Greedy, or the Composition algorithm

which do not employ QoS impact projection. As the number of deployed and requested ap-

plications increases, the probability that existing streams can be shared among applications

increases as well. This gives Synergy an additional advantage, which explains the slight

decline of the average end-to-end delay for large numbers of requests.

Performance Gain Breakdown. To investigate what part of the performance benefit

of Synergy can be attributed to QoS Impact Projection and what part to Maximum Shar-

ing Discovery, we incorporated QoS projection to the Composition algorithm. Figure 2.15

shows how Composition together with the QoS projection (“composition + projection”)

compares to Composition and Synergy, in terms of achieved end-to-end delay. QoS pro-

jection improves system performance particularly in high loads. While for 100 requests

55

Composition enhanced with projection offers only 8% lower delay than plain Composition,

that improvement rises to 42% for 500 requests.

System throughput capacity. Figure 2.16 shows the success rate for increasing

request load. The benefit of sharing-aware component composition is evident, as Synergy is

able to scale to much larger workloads, by reusing existing streams. QoS impact projection

helps Synergy to achieve very high success rates by avoiding disrupting currently running

applications. Cases of applications that miss their deadlines even with Synergy can be

explained by inaccurate estimations because of the current execution time update frequency,

or because of inaccuracies in the approximation of the execution time of the admitted

applications. As expected, random allocation results in poor QoS. The Greedy algorithm

does not perform well either, because the per hop greedy component selection does not

necessarily lead to the best end-to-end composition. Another interesting observation is

that there is a significant number of QoS violations due to component reuse, which are not

handled by the Composition algorithm.

In the following set of experiments we kept the number of application requests at

100, which was a reasonable load for all algorithms as Figure 2.16 demonstrated. We then

investigated the sensitivity of Synergy to various parameters.

Sensitivity to Replication. Figure 2.17 shows the success rate, as a function of

the replication degree of the components in the system. The success of Synergy’s compo-

sition, as well as its advantage over the other composition algorithms is clear, regardless

of the replication degree of the components. Having more candidates to select from in the

composition process does not seem to affect the QoS of the composed applications.

56

 0

 20

 40

 60

 80

 100

 100 150 200 250 300 350 400 450 500

S
uc

ce
ss

 R
at

e
(%

)

Number of Application Requests

System Throughput Capacity

Random
Greedy

Composition
Synergy

Figure 2.16: System throughput capacity.

 0

 20

 40

 60

 80

 100

 3 3.5 4 4.5 5 5.5 6 6.5 7

S
uc

ce
ss

 R
at

e
(%

)

Replication Degree of Components

Sensitivity to Replication

Random
Greedy

Composition
Synergy

Figure 2.17: Sensitivity to replication.

 0

 20

 40

 60

 80

 100

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S
uc

ce
ss

 R
at

e
(%

)

QoS Strictness (%)

Sensitivity to QoS Requirements

Random
Greedy

Composition
Synergy

Figure 2.18: Sensitivity to QoS requirements.

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 A
pp

lic
at

io
n

E
nd

-t
o-

E
nd

 D
el

ay
 (

se
c)

Repeated Application Requests (%)

Sensitivity to Popularity of Requests

Random
Greedy

Composition
Synergy

Figure 2.19: Sensitivity to popularity of
requests.

Sensitivity to QoS Requirements. Figure 2.18 shows the success rate as a function

of the QoS demands of the applications. Even for very strict requirements, where appli-

cations can only tolerate a 10% of extra delay, Synergy’s QoS impact projection is able to

deliver in-time execution in more than 80% of the cases, whereas the other composition

algorithms (Random, Greedy, Composition) fail in as many as 80% of the requests. As QoS

requirements become more lax, the performance of those algorithms improves. Yet, even in

57

the case of a 50% tolerance in the delay, the best of them, Composition, still delivers 12%

less applications within their deadlines than Synergy.

Sensitivity to Popularity of Requests. To investigate how the distribution of user

requests affects Synergy’s performance in comparison to the rest of the composition al-

gorithms, we assumed a non-Zipfian distribution of application requests with a varying

percentage of repetitions. Figure 2.19 shows the average end-to-end delay of all the ap-

plications that are admitted in the system. Synergy utilizes stream sharing and thus can

deliver results for the repeated application requests without extra processing. For a request

repetition factor of 20% Synergy’s Maximum Sharing Discovery algorithm offers 34% lower

average end-to-end delay than Composition. For a repetition factor of 40% Synergy achieves

an improvement of 25% in comparison to load without any repetitions. Since the rest of the

composition algorithms do not offer stream reuse, their performance is not affected by the

repetition in application requests. That is as long as the repetition factor is not extremely

large, which would result in rejecting application requests due to resource contention.

In the next set of experiments, we investigated the performance benefit of Synergy’s

collocation-based component deployment strategy, described in Section 2.3.2.

Average Application End-to-End Delay. To trigger new component deployment,

we included in the query plan of each application request an operator that was not offered

by any component in the system. We kept query plan sizes uniformly distributed from 2 to

10 operators, as mentioned in Section 2.4.2. Synergy collocated the new component with

another component of the application component graph, based on the heuristics described

in Section 2.3.2, also performing the required resource and QoS checks. Composition and

58

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

Average Application End-to-End Delay (sec)
with New Component Deployment

Random Greedy Composition Synergy

Figure 2.20: Average end-to-end delay with
deployment.

 0

 0.2

 0.4

 0.6

 0.8

 1

Selectivity (Bytes of Output / Bytes of Input)

lbl-tcp-3
lbl-pkt-4
lbl-pkt-5

dec-pkt-1
dec-pkt-2
dec-pkt-3

dec-pkt-4

filter sort by IPs project aggregate count sort by size compare

Figure 2.21: Selectivity of different operators.

Greedy deployed the new component on the node that had the minimum delay from the

upstream node, i.e., from the node hosting the previous component in the application com-

ponent graph. Additionally, Composition selected the next closest node if the deployment

would cause a resource violation. Finally, Random blindly selected a node to deploy the new

component. Figure 2.20 shows the average application end-to-end delay achieved by the

different algorithms. Synergy’s collocation-based component deployment reduces average

end-to-end delay by approximately 20% over the delay-based deployment of Composition

and Greedy. Furthermore, it does not require maintaining delay information. Hence, it is

an attractive strategy for infrequent component deployment. When many components need

to be deployed, in which case resource and QoS violations due to the collocation of multiple

components may be more frequent, techniques for placing a complete component graph

may be considered [4,59,61,78]. Figure 2.20 shows average end-to-end execution delay after

the application has been instantiated, for 100 application requests. The comparison of this

end-to-end delay with the one achieved when all components are being reused and no new

59

component is deployed, which was shown in Figure 2.14, leads to the following observa-

tion: While delay-based deployment decreases delay by 12% due to the increase in available

choices for component hosts, collocation-based deployment still provides a more substantial

decrease of 21%.

Selectivity. Synergy’s collocation-based deployment takes the operators selectivity

into account to minimize network traffic across components. We investigated the selectivity

of operators of a real stream processing application operating on real streams, to quantify the

traffic reduction. We implemented a top-k network traffic monitoring application5 from the

stream query repository [83] and recorded the output of the operators for streams produced

by seven different traces of network traffic from the Internet traffic archive [87]. Figure 2.21

shows that for three out of seven operators of the query plan, average traffic reduction

reaches 69%, 82%, and 72% respectively, while for the count operator traffic is reduced to

just one data tuple. While the traffic reduction depends on the operator semantics, it is

consistent among different datasets, making selectivity an important factor when deploying

components.

In the final set of experiments we examined the accuracy of Synergy’s QoS impact

projection algorithm described in Section 2.3.4. In particular we looked at how the projected

processing delay of individual streams compared to the actual processing delay experienced

by the data tuples of these streams, by experimenting with both real and synthetic datasets.

In all figures we also show the processing delay of the isolated stream, that is, the processing

delay if no queueing for processing other streams existed.

5Application screenshots available at http://synergy.cs.ucr.edu/screenshots.html

60

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12

P
ro

ce
ss

in
g

D
el

ay
 (

s)

Time (s)

Projection Accuracy (Network Traffic)

projected
actual

isolated

Figure 2.22: Projection accuracy for network
traffic.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

P
ro

ce
ss

in
g

D
el

ay
 (

s)

Time (s)

Projection Accuracy (Sensors Traffic)

projected
actual

isolated

Figure 2.23: Projection accuracy for sensor
traffic.

Projection accuracy for real network traffic. We investigated the projection accu-

racy for processing a trace of TCP traffic between the Lawrence Berkeley Laboratory and

the rest of the world, which was trace LBL-TCP-3 from the Internet traffic archive [87].

Each data tuple was 192 bits long, and contained a timestamp, and fields defining the

source, destination, and size of packets exchanged. As can be seen in Figure 2.22, the gen-

erated stream was bursty and did not follow any easily identifiable pattern. Synergy’s QoS

impact projection follows the bursts very closely, projecting processing delays close to the

ones experienced. The projections for the low rate segments are mostly above the actual

delays, which may lead to more conservative compositions, but no QoS violations.

Projection accuracy for real sensor traffic. Next we investigated the projection

accuracy for bursty streams that followed a pattern, specifically the data streams produced

by sensors installed in redwood trees collected by the UC Berkeley Sonoma dust project [89].

Each data tuple produced was 352 bits long, and contained a timestamp, multiple fields

characterizing the sensor that produced it, as well as a variety of measurements, including

61

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20

P
ro

ce
ss

in
g

D
el

ay
 (

s)

Time (s)

Projection Accuracy (Regular Traffic)

projected
actual

isolated

Figure 2.24: Projection accuracy for regular
traffic.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20

P
ro

ce
ss

in
g

D
el

ay
 (

s)

Time (s)

Projection Accuracy (Bursty Traffic)

projected
actual

isolated

Figure 2.25: Projection accuracy for bursty
traffic.

humidity. A burst of measurements lasting approximately one second was generated every

five minutes. Figure 2.23 shows that these periodic bursts were followed closely by Synergy’s

projection algorithm, which accurately identified the segments of high and zero rate.

Projection accuracy for synthetic regular traffic. We next generated regular traffic,

with data tuples arriving at a rate of 20 tuples/second and following a Poisson distribu-

tion. Figure 2.24 shows that the processing delay trends are followed closely by Synergy’s

projection algorithm, while the projected delay values are in a close range to the actual

ones.

Projection accuracy for synthetic bursty traffic. We also generated bursty traffic

with a period of 2.5 seconds, high rate of 30 tuples/second and low rate of 10 tuples/second.

Figure 2.25 shows that Synergy’s projection algorithm accurately identifies the high and low

rate segments. Similar to the projection for network traffic of Figure 2.22, the projections

for the low rate segments are mostly conservative, i.e., above the actual delays. However,

62

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20

P
ro

ce
ss

in
g

D
el

ay
 (

s)

Time (s)

Projection Accuracy (Bursty Traffic)

projected
actual

isolated

Figure 2.26: Projection accuracy for bursts
with period 0.5 second.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20

P
ro

ce
ss

in
g

D
el

ay
 (

s)

Time (s)

Projection Accuracy (Bursty Traffic)

projected
actual

isolated

Figure 2.27: Projection accuracy for bursts
with period 5 seconds.

most importantly, the high rate segment projections are not optimistic, and therefore do

not lead to QoS violations.

Finally, we investigated the accuracy of Synergy’s QoS impact projection under

various conditions, by changing individual parameters of the synthetic bursty streams, while

keeping the rest of them as in the experiment of Figure 2.25.

Sensitivity to burst period. Figures 2.26 and 2.27 show the projection accuracy for

bursty traffic with periods of 0.5 and 5 seconds respectively. As can be seen, the length of

the bursts does not affect the accuracy with which the algorithm identifies segments of low

and high rate.

Sensitivity to burst rate. Figures 2.28 and 2.29 show the projection accuracy when

varying the burst rate. Figure 2.28 shows traffic with high rate of 3 tuples/second and low

rate of 1 tuple/second, while Figure 2.29 shows traffic with high rate of 300 tuples/second

and low rate of 100 tuples/second. We observe that these variations in rate make more

evident the conservative projection for low rate segments described in Figure 2.25, which

63

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5 10 15 20

P
ro

ce
ss

in
g

D
el

ay
 (

s)

Time (s)

Projection Accuracy (Bursty Traffic)

projected
actual

isolated

Figure 2.28: Projection accuracy for bursts
with high rate 3 tuples/s and low rate 1
tuple/s.

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20

P
ro

ce
ss

in
g

D
el

ay
 (

s)

Time (s)

Projection Accuracy (Bursty Traffic)

projected
actual

isolated

Figure 2.29: Projection accuracy for bursts
with high rate 300 tuples/s and low rate 100
tuples/s.

may lead to more conservative compositions, but not to QoS violations. We note that we

have not observed such extreme rates for either of the two real traffic datasets.

Sensitivity to burst ratio. Figures 2.30 and 2.31 show the projection accuracy

when varying the ratio of the rates of the high- and low-rate segments. Figure 2.30 shows

traffic with high rate of 20 tuples/second and low rate of 10 tuples/second, while Figure 2.31

shows traffic with high rate of 40 tuples/second and low rate of 10 tuples/second. We observe

that the ratio of the high and low rates does not affect the detection of segments, nor the

accuracy with which processing delays are projected.

2.5 Conclusions

In this chapter we have presented Synergy’s sharing-aware component composi-

tion algorithms. Following a totally decentralized architecture, Synergy utilizes a Maxi-

mum Sharing Discovery algorithm to reuse existing streams, and a QoS Impact Projection

64

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20

P
ro

ce
ss

in
g

D
el

ay
 (

s)

Time (s)

Projection Accuracy (Bursty Traffic)

projected
actual

isolated

Figure 2.30: Projection accuracy for bursts
with high rate 20 tuples/s and low rate 10
tuples/s.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20

P
ro

ce
ss

in
g

D
el

ay
 (

s)

Time (s)

Projection Accuracy (Bursty Traffic)

projected
actual

isolated

Figure 2.31: Projection accuracy for bursts
with high rate 40 tuples/s and low rate 10
tuples/s.

algorithm to reuse existing components and yet ensure that the QoS requirements of the

currently running applications will not be violated. Both our prototype implementation

of Synergy over PlanetLab and our simulations of its composition algorithm show that

sharing-aware component composition can enhance QoS provisioning for distributed stream

processing applications.

65

Chapter 3

Decentralized Hot-Spot Prediction

and Alleviation

3.1 Introduction

In the previous chapter we discussed how user QoS requirements can be taken into

account when composing a new application. We now discuss the problem of adhering to

QoS requirements while an application is executing. The large scale and the distributed

nature of stream processing systems, as well as the fluctuation of their load, render it diffi-

cult to ensure that distributed stream processing applications meet their QoS demands. We

describe a decentralized framework for proactively predicting and alleviating hot-spots in

distributed stream processing applications in real-time [70,71], as well as its implementation

and evaluation in Synergy, our distributed stream processing middleware. Resource moni-

toring, and hot-spot prediction and alleviation are carried out by all nodes independently,

66

building upon a completely decentralized architecture. We base our hot-spot prediction

techniques on the statistical forecasting methods of linear regression and correlation. To

alleviate hot-spots, Synergy empowers nodes to autonomously migrate the execution of

stream processing components using a non-disruptive migration protocol.

The rest of this chapter progresses as follows: Section 3.2 introduces the system

model used in the rest of the chapter. Building upon this model, we describe Synergy’s

autonomic load management techniques. We treat application hot-spots in the Synergy

distributed stream processing middleware in two steps: First, we proactively predict their

occurrence by using statistical prediction methods (Section 3.3). Second, we alleviate them

by taking local migration decisions (Section 3.4). The experimental evaluation of our ap-

proach is presented in Section 3.5, while Section 3.6 presents brief conclusions.

3.2 System Model

In this section we present the stream processing application model used in Synergy.

This serves as a background for our discussion of Synergy’s load management techniques

presented in the next sections.

The user executes a distributed stream processing application by submitting a re-

quest at one of the peers of the middleware, specifying the required operators and their de-

pendencies. Then, the system runs the composition algorithm we described in the previous

chapter to select the components on the peers to accomplish the application execution. The

composition algorithm takes into account the application QoS requirements and resource

availability and specifies the components that will constitute the application component

67

graph. Once the components have been selected, each peer hosting one of these compo-

nents is notified, so that the execution can begin. Once a peer receives such a notification,

it invokes the particular component. Each component participating in an application exe-

cution is aware of its upstream components that supply it with data, and its downstream

components, to which it sends processed data.

We have extended Synergy’s architecture to enable decentralized load monitoring,

built on top of the DHT we use for component discovery [74]. We describe the details

of Synergy’s load monitoring architecture in Section 3.4.3. We use our decentralized load

monitoring architecture to cope with application hot-spots. We define an application hot-

spot as a node in the application component graph in which the application execution

persistently fails to meet the QoS required by the user. The end-to-end QoS requirements,

which are specified when requesting an application, may among others include end-to-end

execution time, throughput, or miss rate. Although our schemes are generic to additive QoS

metrics linearly related to rate, we focus on the end-to-end execution time metric denoted

by qt.

3.3 Application Hot-Spot Prediction

The goal of proactive application hot-spot detection is to predict end-to-end exe-

cution time QoS violations. In order to achieve this goal we employ: i) Computation of the

application “slack time” ts (Section 3.3.1), to determine the maximum local execution time

allowed by the application QoS, before missing its end-to-end execution time requirement.

ii) Local execution time prediction based on an application’s incoming rate and using lin-

68

ear regression, to determine whether the maximum local execution time will be reached or

exceeded (Section 3.3.2). iii) Rate prediction based on auto- and cross-correlation between

stream processing components, to determine the future workload that defines the future

execution time (Section 3.3.3).

3.3.1 End-to-End to Local Execution Time Translation

We predict an application hot-spot by examining the “slack time” of the applica-

tion on every component of the application component graph. The slack time represents

how close we are to violating the end-to-end execution time requirement of the application.

Let qt represent the end-to-end execution time requirement of the application. qt includes

the execution and communication times spent for a tuple to traverse the entire application

component graph. Thus, we define the slack time ts of an application as the difference

between the required end-to-end execution time qt and the predicted end-to-end execution

time. As the application executes, its slack time is computed for every tuple, on every com-

ponent of the application component graph, based on the local prediction of the end-to-end

execution time. The predicted end-to-end execution time includes the execution and com-

munication times spent for a tuple to reach the current component, te and tc respectively,

the predicted execution times t̂e needed for the current and its downstream components

to process the data tuple, as well as estimated average communication times t̄c needed for

the data tuple to traverse the rest of the application component graph. For example, in

Figure 3.2 the predicted end-to-end execution time as it is calculated in component B is

the sum of te(A), tc(A→B), ˆte(B), ¯tc(B→D), and ˆte(D). In order to avoid a QoS violation, the

69

predicted end-to-end execution time needs to be less than the required end-to-end execution

time qt, in other words, the slack time ts needs to be positive, for every component i of the

v components of the application component graph:

ts(i) = qt − (
∑

j∈1...i−1

tc(j→j+1) +
∑

j∈1...i−1

te(j)+

∑

j∈i...v−1

¯tc(j→j+1) +
∑

j∈i...v

ˆte(j)) > 0

(3.1)

The above single-path computation will identify a hot-spot in the path where it exists. For

example, if in Figure 3.2 component C is overloaded, the path A → B → D will not detect

a hot-spot, while path A → C → D will. In order for the above hot-spot prediction to take

place, the estimated average communication times, and the predicted execution times must

be computed. The estimates for the communication times are available from the application

composition phase [68] and can be updated periodically. The predicted execution times are

derived locally on every node hosting a component of the application component graph, as

explained in the following Section 3.3.2. They are then propagated to all nodes participating

in the application execution using a feedback loop passing through the source. The feedback

loop allows us to piggyback the predicted execution times on the data tuples, to minimize

the communication overhead. For example, in the application component graph shown in

Figure 3.2 when the node hosting component D calculates the component’s next predicted

execution time for this application, it propagates it to the node hosting component A,

which forwards it to the nodes hosting components B and C. Similarly, the rest of the nodes

propagate their predicted execution times. Using the predicted execution times to compute

the slack time on every component enables us to predict locally whether the end-to-end

execution time requirement of the application will be violated.

70

3.3.2 Local Execution Time Prediction

In this section we explain how we predict the local execution time t̂e needed to

process a data tuple of an application. The prediction takes place at each node hosting a

component of the application. t̂e is used to compute the next slack time ts of the application

using Equation 3.1. The local execution time for a data tuple (the time elapsed between

the arrival and the departure of the tuple) is the sum of the processing time to process

the tuple, and the queueing time the tuple has to wait in the scheduler’s queue while other

tuples are being processed. While the processing time is constant for a given tuple size,

the queueing time depends on the load of the processing node, in other words on the rates

(incoming tuples to be processed per time unit) and processing times of the applications

currently being executed on the node. Using queueing theory, one can derive average values

for the queueing time, assuming an M/M/1 queueing model [68], or a more general M/G/1

model that makes no assumptions regarding the service rate, in which case the queueing

time is given by the Pollaczek-Khinchin mean value formula [43]. However, we chose not to

predict the execution time using queueing theory for the following reason: The arrivals of

data tuples may not always be accurately approximated with a Poisson distribution if rate

fluctuations or bursts occur. Such rate variations are quite common in distributed stream

processing applications [95]. Accurate prediction during such fluctuations is however crucial.

We use linear regression to predict the execution time of an application [53]. Since data

tuples arrive in high rates, prediction is more fine-grained than node load changes.

71

To predict the local execution time t̂e of an application using a component on a

node, we need to derive the relationship between t̂e and the total rates rt =
∑

l∈1...a

rl of all

a applications currently using components on that node. While for increasing rt one ex-

pects t̂e to increase, the trend of the increase is not clear without making any assumptions

regarding the arrival pattern of the data tuples. We approximate the relationship using

linear regression and our experimental results show good fitting for increasing rates. Fig-

ures 3.16, 3.17 show the relationships between the execution times of different components

of a stream processing application and the rates of the applications currently running on the

nodes hosting them, obtained from our implementation over Planetlab. Linear relationship

of execution time and rate is also consistent with earlier works [90,95].

Each node maintains a series of (te, rt) pairs, for each application a component

of which the node is hosting. The series is maintained as a sliding window of the k most

recent values. The execution time is measured every time a data tuple for an application is

processed, while the total rate is measured as the sum of rates of all applications, data tuples

of which were processed since the last time a data tuple of that application was processed.

If the rate of any application increases, it affects the execution time of other applications

on the same node due to queueing delays. We estimate the conditional expected value of

te, given a predicted value for rt. We use linear regression, and assuming we have k pairs

so far, the linear function is te = a + b · rt and the least square estimators a and b are:

a = t̄e − b · r̄t b =

∑

j∈1...k

(rt(j) − r̄t) · (te(j) − t̄e)

∑

j∈1...k

(rt(j) − r̄t)2
(3.2)

72

where the average values t̄e and r̄t are:

t̄e =

∑

j∈1...k

te(j)

k
r̄t =

∑

j∈1...k

rt(j)

k
(3.3)

Figure 3.1: Linear regression for local execution time prediction.

In order to enable proactive hot-spot detection, we base the prediction of the

execution time t̂e of an application on the predicted rates of the applications running on

components of the node, r̂t =
∑

l∈1...a

r̂l. (We explain how r̂l for an application l is derived

in the following Section 3.3.3.) Assuming an estimated value for the next r̂t, we predict t̂e

using the above equations. Specifically, as shown in Figure 3.1, we use the k pairs of (te, rt)

values to calculate a and b and then given an estimated r̂t we predict t̂e using the following

formula:

t̂e = a + b · r̂t (3.4)

To evaluate the accuracy of our execution time prediction we calculate the estimated stan-

dard error of the slope b:

se(b) =

√

√

√

√

√

√

∑

j∈1...k

(te(j) − t̄e)2 − b
∑

j∈1...k

(rt(j) − r̄t)(te(j) − t̄e)

(k − 2)
∑

j∈1...k

(rt(j) − r̄t)2
(3.5)

73

If the estimated standard error se(b) is above a heuristically set confidence level C, we do not

employ execution time prediction. Instead we report the last measured application execution

time value rather than a predicted future one. In general however the last measured value

is not an accurate predictor, as it ignores the current rate.

3.3.3 Rate Prediction

In this section we describe how we predict the rate r̂ of an application, which we

use to calculate the sum of the rates of all applications running on components of a node,

r̂t. The latter is used to predict the application execution time t̂e using Equation 3.4. We

base the prediction of the rate of every application that is using a component hosted on

the node on both auto- and cross-correlation. We take into account auto-correlation by

building our prediction of a component’s future input rate on its previous input rate. This

captures any self-similarity the application traffic may have, which has been known to be

the case for various types of traffic in stream processing environments [95]. We take into

account cross-correlation, by also building our prediction of the input rate of a component

on the current input rate of a previous component in the application component graph.

This captures the fact that preceding components observe changes in the application input

rate before the current component. Since data flow from one component to the next, the

observed trends are often seen in the current component as well. In particular, we identify

the preceding component m in the application component graph, the rate of which has

the maximum correlation with the rate of the current component so far. In summary, we

74

estimate the k-th input rate r̂k of a component based on its previous input rate rk−1, as well

as the current and previous input rates of component m, rk(m) and rk−1(m) respectively.

Figure 3.2: Propagation of rate values for correlated rate estimation.

We transfer the current input rate values to the downstream components using

the same path followed by the data tuples, as shown in Figure 3.2. This way, for each of the

previous i components in the application component graph, a series of (k−1) pairs (r, r(i)) is

built. This series associates the (k−1) rate values r of the current component with the (k−1)

rate values r(i) of each of the previous i components. We use the Pearson Product Moment

R, a popular correlation coefficient [53], to estimate how the rate of each of the previous

i components in the application component graph is correlated to the rate of the current

component. We use the current (k-th) and previous ((k − 1)-th) rates of the component m

with the maximum correlation coefficient, argm maxR(k) and argm maxR(k−1) respectively,

as predictors for the rate of the current component. Hence, assuming we have (k − 1) pairs

of recorded input rates so far, the estimated input rate for the current component is:

r̂k =
argm maxR(k)

argm maxR(k−1)
· rk−1 =

rk(m)

rk−1(m)
· rk−1 (3.6)

75

and the component m is decided as the one with the maximum among all correlation

coefficients Ri of each preceding component i in the application component graph:

Ri =

∑

j∈1...(k−1)

(rj(i) − ¯r(i))(rj − r̄)

√

∑

j∈1...(k−1)

(rj(i) − ¯r(i))2
∑

j∈1...(k−1)

(rj − r̄)2
(3.7)

where the average rate values of the i-th preceding and the current component, ¯r(i) and r̄

respectively, are:

¯r(i) =

∑

j∈1...(k−1)

rj(i)

k − 1
r̄ =

∑

j∈1...(k−1)

rj

k − 1
(3.8)

3.4 Application Hot-Spot Alleviation

3.4.1 Identifying the Components to Migrate

After an application hot-spot has been predicted, the next step is to determine

which component execution(s) to migrate in order to resolve the hot-spot. We perform QoS

projection and choose the migrations in such a way, so that the predicted execution times

of the remaining applications in the node are within their QoS requirements.

Specifically, our goal is to determine the minimum number of migrations that

will result to all the remaining applications satisfying their QoS requirements. In other

words, we seek the minimum number of migrations that will reduce the sum of rates of

all the applications in the node to such a degree, that all projected execution times for

the remaining applications will be within their QoS requirements. More formally, and by

building on the concepts introduced in Section 3.3, we migrate the component execution(s)

that remove the minimum number of predicted rates r̂ (from Equation 3.6), so that the

76

predicted sum of application rates on the node r̂t results to predicted execution times

t̂e (from Equation 3.4) such that, for every application remaining in the node, the slack

time ts (from Equation 3.1) is positive. This optimization problem lends itself to a

dynamic programming solution in pseudo-polynomial time. After observing that usually

one migration suffices to alleviate a hot-spot, and to minimize the execution time overhead,

as migration decisions need to be taken online, we employ a simple heuristic of selecting for

migration the component with the largest r̂ until all slack times become positive.

3.4.2 Identifying the Target Nodes

Once a component the execution of which is to be migrated has been identified,

the host to migrate to has to be decided. The choice for migration targets is made among

the nodes that host the same component. Among them we try to identify a node probable

to satisfy the migrating application’s QoS requirements, while not violating the QoS of the

applications currently running locally. Such nodes are most probable to be found among

the ones that are predicted to be less loaded. Each node predicts its local load using

linear regression, based on predicted rate values, using a methodology similar to the one

described in Section 3.3.2. We use a simple model, according to which a component’s load is

proportional to the number of input data tuples it is receiving, which is an assumption also

made by previous works [90,95]. We store load information in a decentralized architecture

on top of the DHT, as is described in the next Section (3.4.3).

77

3.4.3 Decentralized Resource Monitoring

DHTs have been successfully used for decentralized discovery, enabling the map-

ping of keys to nodes, and routing query messages in logarithmic time [74]. Our extension

to the traditional DHT model in which one component offering an operator would be stored

in the node responsible for the operator’s key, involves one more level of abstraction, that of

a distributed inverted index. Following this approach, the peer responsible for an operator’s

key stores in a repository handlers to several peers that host components that actually offer

the operator [35], together with their loads. The handlers are basically identifiers of the

peers, enabling the routing of messages to them through the overlay. This way we asso-

ciate operator names with handlers to nodes hosting components offering these operators,

together with the current load values of these nodes. For example, in Figure 3.4 peer B is

responsible for keeping the handlers for the components that offer an aggregator operator

and the loads of the hosting peers. Therefore it keeps the handlers and loads of peers B and

C. While B happens to offer an aggregator component itself as well, this does not always

have to be the case. While the peers have control over which components they host, they do

not control which operator keys they are responsible for. This is determined by the DHT’s

protocol. Conversion of operator names to unique keys is done by applying a hash function

(SHA-1 [55]). Configuration changes caused by node arrivals and departures are handled

gracefully by the DHT. Whenever components are newly introduced or cease being offered,

the peers hosting them register or unregister handlers for them on the DHT. The DHT also

handles peer failures by transferring the responsibility for the operators for which a failed

peer was responsible to other peers [74]. Finally, balancing the distribution of operator keys

78

among nodes is also taken care of by the DHT protocol. Whenever a node’s load changes,

it consults the DHT to determine the nodes responsible for holding the handlers for all

the components it offers. It then sends load update messages to them. For example, in

Figure 3.4 node B that offers a filter, an aggregator, and a transcoder, will send its load

update messages to the responsible nodes, C, B, and A, respectively.

Peers continuously monitor their load to enable load balancing decisions. The

processor load is measured by parsing the /proc interface, where it is reported as the

number of components in the run queue or waiting for disk I/O. Three load averages are

maintained, namely the processor load during the last 1, 5, and 15 minutes.

Having each peer of the DHT maintaining handlers of all hosts offering a particular

operator facilitates load monitoring. Specifically, each peer responsible for an operator is

also responsible for monitoring the load of the peers that host components offering it. It

stores the handlers to the hosts offering the components in a peer-handler repository, and

their corresponding loads in a load repository. We note that load monitoring peers are

also hosting components. Thus, all responsibilities are shared among all nodes in a true

peer-to-peer fashion.

To avoid the communication overhead caused by polling, we enable the peers to

inform the monitoring peers only when a significant change in their load occurs. Whenever

a peer’s load changes, it consults the DHT to determine the peers responsible for holding

the handlers for all the components it offers. It then sends load update messages to them.

For example, in Figure 3.4, peer B that offers a filter, an aggregator, and a transcoder, will

send its load update messages to the responsible peers, C, B, and A respectively. One of

79

Figure 3.3: Example of three overlapping load levels.

the load update recipients happens to be peer B itself in this case. Propagating dynamic

attributes, such as load measurements, efficiently, is a challenging task, as they may be

need to be updated frequently. To reduce the communication overhead, our approach is

to use k discrete levels of loads when describing the processing load of a peer. Each level

is defined as an interval Li : [Lil, Lih), Lil ≤ Lih, within which the exact numeric load

value is guaranteed to be. The basic idea is that the level eliminates all messages that are

inside the interval. If the value of a load change l is small, i.e., l ∈ [Lil ≤ Lih), then no

messages need to be generated. Otherwise, load update messages need to be propagated.

There is a tradeoff between the size of the interval and the number of messages generated.

A narrow interval, i.e., a small |Lih − Lil|, enables more precise answers at the expense

of a high communication cost, while a wide interval, i.e., a large |Lih − Lil|, reduces the

communication cost but increases imprecision. To further reduce the number of messages

propagated and also avoid cases where there is frequent change between two levels (i.e., the

load change is very small and falls in the boundaries of the levels, or there is load instability),

we use overlapping levels; in which a small interval is common in two levels. Whenever the

load changes but stays in the overlap region, no message needs to be generated. While load

update messages are generated only when the load changes level, the actual load averages

80

are then propagated instead of just the load level. Figure 3.3 graphically illustrates our

overlapping levels approach. Load monitoring is performed by a different thread from the

rest of the middleware functions such as stream processing. Thus, even if a peer has a

high stream processing load, it can still send load update messages whenever needed. Load

update messages can be propagated infrequently even if no load change occurred, to ensure

that a peer has not failed. If a peer failure is detected, the components hosted by the failed

peer need to be unregistered from the DHT and the applications that were using them need

to recover using techniques such as the ones presented in [11].

3.4.4 Migration Protocol

By utilizing the load monitoring architecture a node determines the least loaded

node offering the component the migration requires. After the migration target has been

identified, the migration from the source to the target takes place, to resolve the application

hot-spot. The execution of a particular component migrates to another peer that hosts the

same component, redirecting the applications in which this component is participating. For

example in Figure 3.4, the filter component of peer B is participating in two distributed

applications, which will both be affected by the migration of it. While the component

execution migrates, the component is not unregistered from the DHT, as the peer still has

the capability of offering the same operator in the future.

To avoid QoS violations we perform QoS projection that predicts whether the

QoS of the migrating and of the currently running applications will be able to be met after

the migration has occurred. Once it has received a migration request, a node determines

81

whether after accepting the migration it will be able to provide the migrating application

its required QoS. Additionally, it determines whether the migration will not result to QoS

violations for the locally executing applications. To achieve these goals, a migration target

performs QoS projection involving the migrating and the currently running applications,

that is similar to the one described in Section 3.4.1. Specifically, it ensures that by adding

r̂ for the new application, the sum of application rates on the node r̂t will not result to

a predicted t̂e (from Equation 3.4) that results to a negative execution time slack for any

application (from Equation 3.1). If that is the case, the migration is accepted and takes

place using the migration protocol presented next. Our current migration mechanism caters

to stateless components and simple components whose state is captured in small buffers.

State transfer is a separate issue by itself and worth future investigation.

Our goal when choosing how to perform a migration is to offer no disruption in the

application execution and minimal performance impact. While some stream applications

in which data units arrive in very high rates may actually afford missing some data tuples

during the transition, our migration mechanism also accommodates applications in which

all data tuples must be delivered. The delivery of all data tuples in this case is checked

using their sequence numbers, which indicate their requested delivery order. It is important

to perform the migration in the least intrusive way, to avoid affecting the performance of

the applications as much as possible. Therefore we strive to improve upon the existing

approaches of pausing the application execution or buffering incoming data tuples to be

processed later [80, 96]. Thus, the connections from the new component to the upstream

and downstream components are updated offline.

82

In more detail, our non-disruptive migration protocol is as follows:

Phase 1. Once a source node decides the migration of an application to a target,

it sends a migration request message to the target, in which the information for the corre-

sponding component that needs to be invoked is included. This includes which component’s

code will be executing, as well as which upstream and downstream components it will be

communicating with. Finally, information regarding the QoS of the migrating application

is also included in the request, specifically, the application’s predicted rate r̂, as well as the

data for Equations 3.1 and 3.4, including the (te, rt) series. In Figure 3.4, B sends a migra-

tion request to A, requesting from it to take over the filter execution for the application its

filter component was currently participating.

Phase 2. Once it has received a migration request, the target has to determine

whether after accepting the migration it will be able to provide the migrating application

its required QoS. Additionally, it has to determine whether the migration will not result

to QoS violations for the locally executing applications. To achieve these goals, the target

performs a QoS projection involving the migrating and the currently running applications,

that is similar to the one described in Section 3.4.1. Specifically, it ensures that by adding

r̂ for the new application, the sum of application rates on the node r̂t will not result to

a predicted t̂e (from Equation 3.4) that results to a negative execution time slack for any

application (from Equation 3.1). If that is the case, the migration is accepted, and the

target instantiates the component with the parameters that were included in the migration

request.

83

Figure 3.4: Migration example.

Phase 3. If the migration can be accepted, once the new component has been

instantiated, the target sends a positive migration reply message to the source, stating that

it is ready to accept data tuples. In Figure 3.4, the migration reply is sent from A to B.

If QoS violations were projected, a negative migration reply is sent to the source. In this

case, the source tries the next least loaded node offering the required component, until it

receives a positive migration reply. If all the nodes offering the specific component reply

negatively, a new component needs to be instantiated to resolve the hot-spot, according to

the current policy for placing components in the network, which is outside the scope of this

work [4, 61].

Phase 4. After receiving a positive migration reply, the source sends migration

update request messages to all upstream components of the component participating in the

migrating application, ordering them to update their downstream component to point to

the one residing on the target. In Figure 3.4, a migration update request is sent from B to

F.

84

Phase 5. The upstream components reply with a migration update reply message

each, specifying that they have updated their downstream components. In addition they

specify the sequence number of the last data tuple they sent before the update. They now

send any further data tuples to the new component. In Figure 3.4, a migration update reply

is sent from F to B.

Phase 6. Once the source has collected replies from all upstream components and

has processed the data tuples they specified as the last ones to be sent to it, it knows that

the migration has completed. It then kills the application which has migrated.

Paying attention to the sequence numbers allows our protocol to know when a

migration can complete without disrupting the application execution. Updating the con-

nections from the upstream components independently enables our protocol not to affect

the application execution.

A common problem of migration protocols is the ping-pong phenomenon, manifest-

ing itself as migrating processes or threads bouncing between two nodes. Such ill behavior

is avoided in our case due to our QoS projection, which enables us to predict potential QoS

violations and avoid poor migration choices.

3.5 Experimental Evaluation

To evaluate the performance of our hot-spot prediction and alleviation mechanisms

we have implemented them in our Synergy distributed stream processing middleware and

performed experiments over the PlanetLab [15] wide-area network testbed. We used 34

hosts, each one of them issuing a request for a distributed stream processing application.

85

Each node was hosting stream processing components that were processing data tuples as

they arrived. We set the application end-to-end delay QoS requirement to 20s.

To evaluate the accuracy of our prediction mechanisms we implemented a real

stream processing application from the network traffic management domain, which we fed

with real TCP traffic traces. We used a stream processing application from the Stream

Query Repository [83], in which, assuming a packet capturing device installed in a network,

a system administrator wishes to monitor the source-destination pairs in the top 5 percentile

in terms of total traffic in the past 20 minutes over a backbone link. We generated the

streaming data to be processed by replaying a TCP traffic trace available from the Internet

Traffic Archive [87]. Similar results where obtained with the rest of the traces from [87].

The trace contained two hours’ worth of all wide-area TCP traffic between the Lawrence

Berkeley Laboratory and the rest of the world, consisting of 1.8 million packets. Each

packet contained a timestamp, and fields defining the source and destination (IPs and

ports), as well as the size of the packets exchanged between them, as shown in Figure 3.5.

Our implementation of the above stream processing application to process the packet input

over 20-minute windows to generate the monitoring output involved eight components1.

Each node instantiated a different stream processing application that included all eight

components of the application component graph, distributed randomly on different nodes

of the system. Each node predicted the rate and the execution time of the components it

was hosting using the statistical methods described in Section 3.3. We plot predicted and

actual values to show correlation and burstiness.

1Application screenshots available at http://synergy.cs.ucr.edu/screenshots.html

86

Figure 3.5: Format of the processed TCP packets.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160

R
at

e
(k

bp
s)

Time (s)

Predicted vs Measured Rate for Sort

Measured Rate
Predicted Rate

Figure 3.6: Rate prediction accuracy for
“sort”.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160

R
at

e
(k

bp
s)

Time (s)

Predicted vs Measured Rate for Project

Measured Rate
Predicted Rate

Figure 3.7: Rate prediction accuracy for
“project”.

Rate Prediction Accuracy. In our first set of experiments we investigated

the accuracy of our rate prediction algorithm described in Section 3.3.3. Figures 3.6, 3.7,

3.8, 3.9, and 3.10 compare the predicted rate for the individual components of an application

to their actual rate. Similar results were obtained for all applications, as well as for the rest

of the components of the application component graph. We observe that the predicted rate

closely follows the measured rate for the different component types, namely sort, project,

aggregate, count, and compare. Another interesting observation is the correlation in the rate

between different components, for example between sort and project, or between aggregate

and count. This indicates the significance of cross-correlation between different components

in the application component graph, which we exploit in addition to auto-correlation to

predict component rates.

87

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120 140 160

R
at

e
(k

bp
s)

Time (s)

Predicted vs Measured Rate for Aggregate

Measured Rate
Predicted Rate

Figure 3.8: Rate prediction accuracy for
“aggregate”.

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120 140 160

R
at

e
(k

bp
s)

Time (s)

Predicted vs Measured Rate for Count

Measured Rate
Predicted Rate

Figure 3.9: Rate prediction accuracy for
“count”.

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100 120 140 160

R
at

e
(k

bp
s)

Time (s)

Predicted vs Measured Rate for Compare

Measured Rate
Predicted Rate

Figure 3.10: Rate prediction accuracy for
“compare”.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100 120 140 160

E
xe

cu
tio

n
T

im
e

(m
s)

Time (s)

Predicted vs Measured Execution Time for Sort

Measured Execution Time
Predicted Execution Time

Figure 3.11: “Sort” execution time prediction
accuracy.

Execution Time Prediction Accuracy. In our second set of experiments we

investigated the accuracy of our execution time prediction algorithm described in Sec-

tion 3.3.2. Figures 3.11, 3.12, 3.13, 3.14, and 3.15 compare the predicted to the actual

execution time for the same set of components as in the rate prediction accuracy experi-

ment. As was described in Section 3.3.2, the predictions are based on the sum of rates being

processed by the node hosting each component. Note, that each component was hosted on a

different node. The predicted execution time follows the execution time we measure. Cases

88

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140 160

E
xe

cu
tio

n
T

im
e

(m
s)

Time (s)

Predicted vs Measured Execution Time for Project

Measured Execution Time
Predicted Execution Time

Figure 3.12: “Project” execution time pre-
diction accuracy.

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140 160

E
xe

cu
tio

n
T

im
e

(m
s)

Time (s)

Predicted vs Measured Execution Time for Aggregate

Measured Execution Time
Predicted Execution Time

Figure 3.13: “Aggregate” execution time pre-
diction accuracy.

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140 160

E
xe

cu
tio

n
T

im
e

(m
s)

Time (s)

Predicted vs Measured Execution Time for Count

Measured Execution Time
Predicted Execution Time

Figure 3.14: “Count” execution time predic-
tion accuracy.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160

E
xe

cu
tio

n
T

im
e

(m
s)

Time (s)

Predicted vs Measured Execution Time for Compare

Measured Execution Time
Predicted Execution Time

Figure 3.15: “Compare” execution time pre-
diction accuracy.

where the prediction is very inaccurate are detected using the estimated standard error of

the linear regression, as was described in Section 3.3.2. This way, instead of the inaccurate

predicted future execution time value the currently monitored value is reported.

Execution Time Distribution. In our third set of experiments we investigated

the relationship between the execution time of the individual application components and

the total rate for all applications being processed by each node hosting a component, shown

in Figures 3.16, and 3.17 (similar Figures were obtained for the rest of the components).

89

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

A
pp

lic
at

io
n

C
om

po
ne

nt
 E

xe
cu

tio
n

T
im

e
(m

s)

Total Rate in Node (kbps)

Execution Time Distribution for Sort

Figure 3.16: Execution time distribution for
“sort”.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

A
pp

lic
at

io
n

C
om

po
ne

nt
 E

xe
cu

tio
n

T
im

e
(m

s)

Total Rate in Node (kbps)

Execution Time Distribution for Project

Figure 3.17: Execution time distribution for
“project”.

This enabled us to determine the accuracy of assuming a linear relationship between the two,

which formed the basis of our linear regression-based execution time prediction algorithm

described in Section 3.3.2. We observe that the relationship can be approximated by a line,

excluding a few outliers. However this linear relationship is most evident when the total

rate in the node is significant. If the node is lightly loaded, no significant queueing delays

occur and therefore no significant variations in the execution time take place.

Prediction Parameters. In our fourth set of experiments we investigated various

parameters regarding the prediction overhead and performance. In Figure 3.18 we show how

rate prediction accuracy is affected when reducing the prediction frequency. Reducing the

prediction frequency can enable the system to handle high rates, by avoiding the prediction

overhead for every data tuple. We present the effect on prediction accuracy for the different

components, when predicting the rate for every 1, every 50, every 75, and every 100 incoming

data tuples. We observe that even by reducing the prediction overhead by a factor of 75,

90

 0

 5

 10

 15

 20

 25

 30

 0.01 0.1 1

A
bs

ol
ut

e
A

ve
ra

ge
 P

re
di

ct
io

n
E

rr
or

 (
%

)

Prediction Frequency (Sampling Fraction)

Prediction Accuracy vs Frequency

Sort
Project

Aggregate
Count

Compare

Figure 3.18: Rate prediction accuracy versus
prediction frequency.

Component Avg. Pred. Error (%)

sort 2.875

project 7.872

aggregate 0.838

count 2.019

compare 4.904

Figure 3.19: Absolute average rate prediction
error.

Component Avg. Pred. Time (ms)

sort 0.133

project 0.327

aggregate 0.509

count 0.836

compare 1.187

Figure 3.20: Average total prediction time.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 3 4 5 6 7 8 9 10

M
is

s
R

at
e

(M
is

se
d/

T
ot

al
 D

at
a

T
up

le
s

(%
))

Load (Applications/Node)

Application QoS Improvement

Without Hot-Spot Elimination
With Hot-Spot Elimination

Figure 3.21: Application QoS improvement.

the prediction accuracy only drops by 8.775% on average, ranging from 2.0% for sort, to

14.375% for project.

Table 3.19 shows the average rate prediction error for the different application

components. This provides a clear overview of the prediction accuracy. Even though some

variation depending on the component semantics exists, the average prediction error is kept

at 3.7016%. Table 3.20 shows the overhead in processing time for rate, execution time, and

91

load prediction. The average overhead is 0.5984ms, which makes our algorithms suitable

for online prediction.

Application Performance. In our fifth set of experiments we investigated the

application benefits gained from our hot-spot prediction and alleviation mechanisms. Fig-

ure 3.21 shows the improvement in application QoS achieved by predicting application

hot-spots and alleviating them using migration. The QoS metric displayed is the miss rate,

defined as the number of data tuples that missed their QoS deadline, over the total number

of data tuples that were produced by the source. The miss rate is displayed as a function

of the system load. We inject additional load in the system by increasing the number of

application component graphs each node requests from 1 to 10. When the system is under-

loaded not many application hot-spots occur and therefore their alleviation does not offer

significant QoS advantages. However, as the system load increases, the miss rate increases

drastically when hot-spots are not handled. Application hot-spot elimination controls this

increase.

Figure 3.22 shows the benefit of hot-spot prediction and alleviation for the appli-

cation performance. The performance metric displayed is the end-to-end application delay.

Note that this delay is calculated only for the data tuples that did not miss their deadlines,

as the ones that missed their deadlines are dropped by the local schedulers before reaching

the receiver. While hot-spot prediction and alleviation enables the delivery of more data

tuples as the load increases, it also maintains a lower average application end-to-end delay.

Figure 3.23 shows how a migration affects the performance of a particular ap-

plication. For a load of 10 application requests per node, we show the end-to-end delay

92

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 A
pp

lic
at

io
n

E
nd

-t
o-

E
nd

 D
el

ay
 (

s)

Load (Applications/Node)

Application Performance Improvement

Without Hot-Spot Elimination
With Hot-Spot Elimination

Figure 3.22: Application performance
improvement.

 0

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 2000

A
pp

lic
at

io
n

E
nd

-t
o-

E
nd

 D
el

ay
 (

s)

Data Tuple Sequence Number

Application Performance Variation

Figure 3.23: Application performance
variation.

attained by delivered data tuples of one application. Approximately at data tuple #500 an

application hot-spot occurs, resulting to an increase in the end-to-end delay. Our hot-spot

elimination mechanism kicks in and decreases the end-to-end delay through migration ap-

proximately at data tuple #1200. It is also important to note that only the data tuples

that were delivered within the application’s QoS requirements are shown. As the appli-

cation end-to-end delay increases, we can clearly observe a reduction in the number of

delivered data tuples. After the hot-spot has been eliminated, the number of data tuples

that miss their deadline decreases again and more points can be seen in the graph. The

Figure magnifies, focusing on 2000 of the total tuples.

Load Management Overhead. In our sixth set of experiments we investigated

the overhead associated with migration and load monitoring. In Figure 3.24 we show the

migration overhead to achieve the hot-spot alleviation benefits. The number of migrations

is shown as a function of the number of applications deployed in the system. We observe

that the number of migrations grows linearly to the number of applications. On average, one

93

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300 350

N
um

be
r

of
 M

ig
ra

tio
ns

Number of Applications

Migration Overhead

Figure 3.24: Migration overhead.

 0

 50

 100

 150

 200

 250

 300

 2 3 4 5 6 7 8

N
um

be
r

of
 L

oa
d

U
pd

at
e

M
es

sa
ge

s

Number of Load Levels

Load Update Overhead

Figure 3.25: Load update overhead.

migration every three applications is required. This shows that on average one every three

applications experience a hot-spot at some point during the execution, which motivates the

need for application-oriented hot-spot alleviation. This assumes that not many applications

require more than one migration, in other words that the system is not so overloaded that

a migration does not permanently resolve a hot-spot. We also measured the average time

required to perform a migration to be 1144ms. This time included the complete distributed

protocol execution described in Section 3.4.2. The short migration time, together with

the fact that our migration protocol enables application execution to continue while the

migration is taking place offline, make our hot-spot alleviation mechanism suitable for

distributed stream processing applications with QoS demands. Prediction further facilitates

fast reaction to a hot-spot, before massive QoS violations occur.

Finally, to drive the migration decisions, load updates are generated as was dis-

cussed in Section 3.4.3. The overhead of the load monitoring mechanism is shown in Fig-

ure 3.25, as the number of load update messages propagated for different numbers of load

94

levels. We always attribute the highest load level to any load above 10.0, which corresponds

to a severe overload, and assign the rest of the load levels to loads from 0 to 10.0 accord-

ingly. By varying the number of load levels from 3 to 7 we observed a moderate increase

in the load update messages from 249 to 277. Thus, increasing the accuracy of our load

monitoring mechanism only incurs a moderate increase in the load update overhead.

3.6 Conclusions

In this chapter we have described hot-spot prediction and alleviation mechanisms

for distributed stream processing applications. Synergy’s algorithms for hot-spot prediction

are based on the statistical methods of linear regression and correlation, utilizing only light-

weight, passive measurements. Statistics collection and hot-spot prediction and alleviation

are carried out at run-time by all nodes independently, building upon a fully decentralized

architecture. To alleviate hot-spots we empower nodes to autonomously migrate the ex-

ecution of stream processing components using a migration protocol that offers minimal

disruption in the application execution. The experimental evaluation of our techniques

on the Synergy middleware over PlanetLab, and using a real network monitoring applica-

tion operating on traces of real TCP traffic, demonstrated high prediction accuracy and

substantial performance benefits with moderate monitoring and migration overheads.

95

Chapter 4

Distributed Replica Placement for

High Availability

4.1 Introduction

In the previous chapters we focused on the end-to-end delay QoS metric. In

this chapter we focus on availability as our QoS metric and look at the problem of high

availability in a distributed stream processing system. By taking into account the particular

characteristics of stream processing applications we first identify design principles for a

replica placement algorithm for high availability. We incorporate these principles in a

decentralized replica placement protocol that aims to maximize availability, while respecting

resource constraints, and making performance-aware placement decisions. We integrate our

replica placement protocol in Synergy, our distributed stream processing middleware and

compare its performance with the current state of the art.

96

The rest of this chapter is organized as follows: We begin by providing a description

of the system model and notation we use in our discussion in Section 4.2. We then present

the design principles behind our replica placement algorithm in Section 4.3, followed by

the protocol that implements them in Section 4.4. Section 4.5 presents our experimental

evaluation, before we conclude the chapter in Section 4.6.

4.2 System Model

We begin by defining our system model. Table 4.1 summarizes our notation.

Each Synergy node vi is characterized by its current processor load pvi
and its residual

processing capacity rpvi
, which are inferred from the CPU idle time as measured from the

/proc interface. The residual available bandwidth rbej
on a virtual link ej between vi and

a remote node is calculated using a bandwidth measuring tool (e.g., Iperf [56]). We also use

bej
to denote the amount of current bandwidth consumed on ej . Finally, the communication

latency of a virtual link ej between vi and a remote node is measured using direct pings,

even though more elaborate latency calculation methods can be integrated [92].

A data stream sj consists of a sequence of continuous data tuples. A stream

processing component ci is defined as a self-contained processing element that implements

an atomic stream processing operator oi on a set of input streams
∑

isi and produces a set

of output streams
∑

osi. Stream processing components can have more than one inputs

(e.g., a join operator) and outputs (e.g., a split operator). Each atomic operator can be

provided by multiple component instances c1, . . . , ck, which we call component replicas.

97

Notation Meaning

ξ Query Plan

λ Application Component Graph

ρ Replication Component Graph

̺ Replication Degree

n Number of Components in Application

k Number of Components on a Node

A Availability of Application

F Failure Probability of Application

ai Availability of Component

fi Failure Probability of Component

α Availability of Node

φ Failure Probability of Node

vi Node

ej Virtual Network Link

oi Operator

sj Stream

ci Component

lej
Latency of Virtual Link ej

poi
Processing Time Required for Operator oi

bsj
Bandwidth Required for Stream sj

pvi
Processor Load on Node vi

bej
Network Load on Virtual Link ej

rpvi
Residual Processing Capacity on Node vi

rbej
Residual Network Bandwidth on Virtual Link ej

Figure 4.1: Notations.

A stream processing request (query) is described by a query plan, denoted by ξ.

The query plan is represented by a directed acyclic graph (DAG) specifying the required

operators oi and the streams sj among them. Figure 1.1 shows an example of a query plan.

The CPU processing time requirements of the operators poi
,∀oi ∈ ξ and the bandwidth

requirements of the streams bsj
,∀sj ∈ ξ are also included in ξ. Bandwidth requirements are

calculated according to the user-requested stream rate, while processing time requirements

98

are calculated according to the data rate and resource profiling results for the operators [68].

Processing and bandwidth requirements can represent average or worst-case load, depending

on the robustness required from the application instantiation.

The query plan is dynamically instantiated into an application component graph,

denoted by λ, depending on the particular components that are being used by the appli-

cation. The vertices of an application component graph represent the components being

invoked at a set of nodes to accomplish the application execution, while the edges represent

virtual network links between the components, each one of which may span multiple phys-

ical network links. An edge connects two components ci and ck if the output of component

ci is the input for component ck.

We assume a primary/backup, passive replication scheme [17,27]. Each component

has a primary and a number of backup replicas. The primary component replicas are the

vertices of the application component graph. With each stream sj flowing between primary

components ci and ck we associate a required bandwidth bsj
, and with the corresponding

virtual network link ej we associate a latency lej
. For each of the primary component replicas

there exist one or more backup component replicas. The backup component replicas are

passive replicas in the sense that they do not process data streams, but they asynchronously

replicate the output of the primary replicas to be able to take over in case their primary

counterparts fail. This enables faster recovery compared to instantiating components after

a failure occurs. State transfer between the primary and backup replicas is not the focus

of this work and existing solutions for consistency, checkpointing, failure masking, and

recovery for distributed stream processing systems [11, 38, 79], as well as solutions based

99

on view-synchronous communication [16], can be integrated in our architecture. Let bix be

the bandwidth needed to do a state transfer of a primary component ci to its xth backup

replica and let lix be the communication latency of the corresponding virtual network link

between the two replicas. Since in our implementation the state transferred from a primary

replica to its backup replicas is the primary’s output, essentially bix = bsj
for all of a

component’s backup replicas. The primary and backup component replicas are the vertices

of a disconnected, directed graph, called the replication component graph, denoted by ρ.

The edges of this graph represent the replication of the output of the primary component

replicas to their backup counterparts.

Component replicas are hosted by different nodes (machines) in the system. We

call the number of replicas of a component the component’s replication degree ̺. ̺ is defined

in an application request. We denote with n the number of primary component replicas

needed by a composite distributed stream processing application, which corresponds to the

number of vertices in the application component graph. We denote with k the number of

component replicas belonging to a particular application that are being hosted by a single

node. Essentially, k represents the number of component replicas of an application that are

collocated in a single node.

A node is available with probability α, or fails with probability (1 − α), which we

define as its failure probability φ. φ includes both the failure probability of the node itself

and of the network links connecting it to other nodes. Not having any historical failure data,

we assume that all nodes fail with the same probability φ. We only consider independent,

fail-stop failures, and once a node has failed we regard all the components hosted by it,

100

and all the applications using these components, as permanently failed. We assume a

reliable communication protocol such as TCP, and that network partitions are handled by

redundancy in the routing tables of the DHT substrate, or by some other mechanism that

guarantees eventual consistency [11,49]. We define the availability ai of a component ci, as

the probability that at least one of its replicas is available (executing correctly and reachable

over the network). The probability (1−ai) we define as unavailability or failure probability

fi of a component ci.

When an application request arrives, our goal is to place component replicas in

a way that maximizes the availability of the application to be instantiated. For place-

ment decisions that are equivalent in terms of availability we also seek to maximize the

application’s performance. We define the availability A of a composite application as the

probability that all its components are available (executing correctly and reachable over the

network). The probability (1 − A) we call unavailability or failure probability F of the

composite application. In other words, we seek to maximize the percentage of successful

requests for composite applications.

4.3 Designing Replica Placement for High Availability

We now describe the design principles of our high availability placement algorithm,

focusing on the three aspects introduced in Section 4.1, namely: i) Determining a placement

of component replicas that maximizes availability (Section 4.3.1). ii) Determining the num-

ber of nodes to use for placing the component replicas according to the system’s resource

101

availability (Section 4.3.2). iii) Determining where to place the component replicas across

nodes to maximize application performance (Section 4.3.3).

4.3.1 Maximizing Application Availability

We first look at the problem of determining a placement of component replicas

that maximizes the availability of a distributed stream processing application. We look at

the two important characteristics of distributed stream processing applications, namely the

fact that they are composite and strict, to understand their availability requirements that

differentiate them from other distributed applications, and to guide our placement decisions.

In many distributed applications such as distributed storage [3, 5, 42, 75] or client/server

computing [14,27,31,45,51,64,93] that focus on the availability of individual objects, such

as files or processes, an increase in the number of replicas usually implies a similar increase in

the availability of the application. While we expect that increasing the number of component

replicas will also increase the availability of a distributed stream processing application

composed of them, we find that this increase greatly depends on the relative placement of

the individual component replicas. Moreover, unlike applications that can tolerate missing

objects, such as ones based on majority voting or erasure coding, a distributed stream

processing application requires all of its components for correct execution. In short, how

the individual component replicas are placed on nodes affects whether all components will

be available for the application execution.

To gain a better understanding of how component placement affects application

availability we conduct a simple simulation. We place components with replication degree

102

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30

A
pp

lic
at

io
n

A
va

ila
bi

lit
y

Number of Nodes Hosting Component Replicas

Distributed Stream Processing Application Availability

n=3
n=5

n=10

Figure 4.2: Availability decreases with larger application component graphs and increases
as components are concentrated in fewer nodes.

̺ = 2 on a subset of 30 nodes. We then calculate using recursion all possible combina-

tions of 5 failed nodes and determine the average application availability from all failure

combinations. We simulate applications with n = 3, 5, 10 components. Figure 4.2 sum-

marizes the results and helps us reach the following conclusions: The relative placement

of the individual components affects the availability of the composite application. More

specifically, concentrating the component replicas in a smaller than ̺ · n subset of nodes

increases application availability. The reason lies in the fact that the composite application

is strict. Please note that spreading the components across more nodes would have the

opposite effect for an application where even a subset instead of all the components being

available would suffice. Finally, we observe that as the size n of the application component

graph increases, application availability decreases. This is because more nodes need to be

employed for hosting all component replicas (since no replicas of the same component can

be hosted by the same node), while all of the components need to be available for the ap-

plication to be available. Similar conclusions are drawn with larger replication degrees as

well.

103

From the above discussion we reach the conclusion that collocating as many com-

ponent replicas as possible in the smallest number of nodes, in other words maximizing the

number k of components hosted by a node, maximizes the availability of a distributed stream

processing application. The larger the k the larger the availability A achieved. Thus, taking

into account that replicas of the same component should be placed on different nodes, an

optimal replica placement algorithm for a distributed stream processing application would

place all primary component replicas on a node, and use another ̺ − 1 nodes to place the

backup component replicas, placing n backup replicas on each node. In practice however

such a placement is infeasible due to the distributed nature of the applications and also the

resource constraints imposed by the nodes. Yet, we show in the experimental evaluation in

Section 4.5 that the availability achieved by our replica placement algorithm, that takes into

account the system’s resource constraints, is comparable to that of this optimal placement.

Existing research efforts on component placement for distributed stream process-

ing systems [4, 61] place components to nodes with performance optimization in mind and

ignore how components are placed relative to each other. This results to a random relative

component placement. However, [98], which is the only study of the availability of multi-

object operations in distributed systems we are aware of, has shown that random placement

offers the worst availability for multi-object operations that cannot tolerate missing objects.

Furthermore, [98] has shown that for multi-object operations that cannot tolerate missing

objects the highest availability is provided by increasing inter-object correlation. In our

work we maximize inter-object correlation by placing all replicas in the smallest possible

group of nodes, as long as the nodes’ resources allow us to do so. We show in the experi-

104

mental evaluation in Section 4.5 that placing components ad-hoc, per application request,

allows us to achieve higher availability than a placement algorithm that partitions nodes to

groups and statically pre-assigns replicas to these groups, which is the one that performs

best for strict multi-object operations in [98]. The fact that the application performance also

needs to be taken into account in placement decisions, as it is affected by inter-component

communication, further differentiates our replica placement for distributed stream process-

ing applications from replica placement for other distributed applications such as those

presented in [98] (e.g., storage).

4.3.2 Respecting Resource Availability

While our investigation so far suggests that application availability would be max-

imized by placing all n components of an application component graph on a node, we now

discuss why such a placement is infeasible in practice and identify the resource constraints

that determine a number of replicas per node k ≤ n. The two resource constraints that

affect component replica placement in practice are processing capacity and network band-

width. To host a primary component replica, a node needs processing capacity to process its

input stream(s), downstream bandwidth to receive its input stream(s), upstream bandwidth

to transfer its output stream(s) to the next primary component replicas in the application

component graph, and upstream bandwidth to transfer its output stream(s) to its backup

component replicas. To host a backup component replica, a node needs downstream band-

width to receive its input stream(s).

105

As described in Section 4.2, the monitoring module of a node vi collects information

regarding its residual processing capacity rpvi
and the residual network bandwidth rbej

on

each virtual link ej between vi and another node. The bandwidth and the processing time

requirements of a component are included in the query plan ξ of an application request.

Bandwidth requirements bsj
are calculated according to the user-requested stream rate,

while processing time requirements poi
are calculated according to the data rate and resource

profiling results for the operators, as described in Section 4.2.

Thus, to be able to host a primary component replica ci, node vi needs: poi
≤ rpvi

,

bsj
≤ rbej

,∀sj ∈
∑

isi, and bsj
≤ rbej

,∀sj ∈
∑

osi, for all virtual links ej connecting

primary to primary and primary to backup component replicas. To be able to host a

backup component replica ci, node vi needs: bsj
≤ rbej

,∀sj ∈
∑

osi, for the virtual link ej

connecting the backup replica to its primary counterpart. For example, in Figure 4.4, node

v21 can host primary replica c21 only if po2 ≤ rpv21 , bs4 ≤ rbe21 41 , and bs4 ≤ rbe21 22 . Node

v12 can host backup replica c12 only if bs2 + bs3 ≤ rbe11 12 .

Thus, we collocate replicas on nodes as much as their resources permit it. There-

fore, the nodes’ processing capacity and the virtual links’ network bandwidth ultimately

determine the minimum number of nodes that can be used for placing replicas in practice.

4.3.3 Maximizing Application Performance

While application availability is only affected by the number of nodes that are used

for placing component replicas, application performance is also affected by the particular

nodes used for placement. Moreover, both availability and performance are affected by the

106

relative placement of the component replicas among nodes. For placement decisions that

are equivalent in terms of availability we seek to maximize the application’s performance.

To determine which nodes to use for placing the component replicas and where to place

the component replicas across these nodes to maximize application performance we look

at the two types of communication that affect it: i) Inter-operator communication: The

primary component replicas that participate in a distributed stream processing application

exchange data in the form of input and output streams. ii) Intra-operator communication:

The primary component replicas asynchronously replicate their output streams to their

backup component replicas. In the application component graph example of Figure 4.3

component replicas c11 and c12 offer operator o1, c21 and c22 offer o2, c31 and c32 offer o3,

and c41 and c42 offer o4. Thus, as Figure 4.4 shows, inter-operator communication takes

place between c11, c21, c31, and c41, while intra-operator communication takes place between

c11 and c12, c21 and c22, c31 and c32, and c41 and c42.

To capture the two aforementioned types of communication we define the two

corresponding communication costs for the entire application component graph: i) The

inter-operator communication cost is defined as cinter =
∑

j∈1...n

sj · lej
and captures

the cost of transferring the streaming data through the primary replicas of the applica-

tion component graph, with bandwidth requirements sj and link latencies lej
. ii) The

intra-operator communication cost cintra is defined as cintra =
∑

i∈1...n

∑

x∈1...̺

six · lix and

captures the cost of transferring the output of the primary replicas to their backups, with

bandwidth requirements six and link latencies lix.

107

Figure 4.3: A simple distributed stream pro-
cessing application.

Figure 4.4: Replication in a simple dis-
tributed stream processing application.

Thus, the component placement problem is defined as a constrained optimization

problem, where the goal is to determine the smallest group of nodes to host the ̺ · n

component replicas of an application, that minimizes the total communication cost cinter +

cintra, such that no replicas of the same component are hosted by the same node, and the

processing and bandwidth constraints are met.

Previous work on component placement to improve application performance [4,61]

has considered the simpler version of the problem without replicated components. In this

case, the placement problem is reduced to the placement of only the primary component

replicas, in other words the construction of the application component graph. Even in this

simpler case, finding an optimal solution is an NP-complete problem [4].

Since an optimal solution is not available, we propose a greedy one that: i) Places

the primary component replicas so that the inter-operator communication cost is minimized.

ii) Places the backup component replicas so that the intra-operator communication cost is

minimized. We use virtual link latencies to guide the placement decisions of primary and

backup component replicas, to minimize the inter- and intra-operator communication costs

108

respectively. While the amount of data sj that needs to be transferred in every case is

defined by the application and cannot be affected by the placement decisions, we take it

into account in the placement decisions by weighing link latencies with sj . The fact that we

try to minimize the number of nodes to use for component replica placement, to maximize

availability, limits the number of latency measurements we need to perform and simplifies

the replica placement problem.

4.4 Distributed Placement Protocol

We now present our protocol for placing the component replicas of a distributed

stream processing application. Our primary goal is to provide a scalable distributed pro-

tocol that determines replica placement for high availability of the application. For place-

ment decisions that are equivalent in terms of availability, we seek to maximize the ap-

plication’s performance. Our protocol implements in a decentralized manner the three

decisions regarding: i) The collocation of components to maximize application availabil-

ity (Section 4.3.1), ii) the number of nodes to use for placement so that system resources

are not exceeded (Section 4.3.2), and iii) which nodes to use so that the communication

costs are minimized (Section 4.3.3). Component collocation is achieved by reusing nodes

for placement as much as possible. Resource overloads are avoided by taking into account

the nodes’ processing capacity and the virtual links’ network bandwidth in the placement

protocol. Finally, inter- and intra-operator communication costs are minimized by taking

into account the virtual links’ latencies in the placement decisions.

109

The placement algorithm takes as input a user stream processing request, described

by a query plan ξ and the component’s replication degree ̺. The output of the placement

algorithm is an application component graph λ, specifying the primary component replicas

that accomplish the application execution, and the nodes that are hosting them, as well as

a replication component graph ρ, specifying the backup component replicas that replicate

the output of the primaries, and the nodes that are hosting them.

Component replica placement decisions are carried out hop-by-hop. To this end, we

have implemented the following types of messages: Placement requests, placement replies,

placement negotiations, and placement decisions. We describe the contents of these mes-

sages as we introduce their role in the placement protocol. We now present the details

of the placement protocol, which include its three phases, namely the bootstrapping, the

propagation, and the completion, and focus on the six steps for primary and backup place-

ment, that are executed on every hop. A high level description of the placement algorithm

is shown in Figure 4.5.

Phase 1. Bootstrapping. The protocol execution begins with the submission

of a user request for a stream processing application, described by a query plan ξ, and the

replication degree ̺ of the application’s components. A user request is submitted directly

to a node vs, if the client is running the middleware, or redirected to a node vs that is

closest to the client based on a predefined proximity metric (e.g., geographical location). vs

bootstraps the placement protocol by sending the user request to the node(s) that host the

inputs of the application, which we call the source nodes. These nodes are usually pinned

110

Input: query plan ξ, replication degree ̺, node vs

Output: application component graph λ,

replication component graph ρ

for each node vi in path

perform transient resource allocation at vi

identify candidate nodes already used for placement

select candidate nodes meeting bandwidth requirements

sort candidate nodes by latency

for each primary replica of downstream component

send placement request or placement negotiation

receive placement reply

send placement decision

for each backup replica of current component

send placement decision

Figure 4.5: Placement algorithm.

where the data sources are, e.g., where a packet capturing device is located in the network

in the example of Figure 1.1. The source nodes are discovered by querying the DHT.

Each source node receives the user request and begins the component replica place-

ment by deciding the placement of the primary replicas of its downstream components in

the application component graph. For example, in Figure 4.4, where the application has

only one source node and this node has only one downstream component, the source node

decides the placement of replica c11.

111

Phase 2. Propagation. The node that becomes the host of a primary replica is

responsible for continuing the placement protocol. Becoming the host of a primary replica

and consequently agreeing to continue the placement protocol is achieved by accepting a

placement request. A placement request is sent from a node that makes a placement

decision for the primary replica of the next component in the application component graph

to a node that is requested to host this primary replica. A placement request includes the

query plan ξ, the application component graph λ to the extent that it has been defined so

far, the replication component graph ρ to the extent that it has been defined so far, the

replication degree ̺, and an index to identify which operator of the query plan the placement

request refers to. In addition to hosting the requested primary component replica, the node

receiving a placement request is also requested to find nodes to host this component’s

backup replicas and nodes to host the primary replicas of the downstream components of

this component. For example, in Figure 4.4, a placement request sent from the source node

to the node that is requested to host c11 makes the recipient responsible for finding nodes to

host c21, c31, and c12. We now describe the six detailed steps of the placement protocol that

are executed on each hop for placing the primary replica of each downstream component

and the backup replicas of the current component.

Step 1. Primary placement selection. A node decides upon the place-

ment of the primary replica of each of its downstream components based on three criteria:

First, nodes that have already been used for placing previous replicas for this particular

application are preferred. These nodes are identified by the (partial so far) application and

replication component graphs that are included in the placement request. Second, out of

112

these previously used nodes, we select the ones that have enough residual network band-

width to accommodate the bandwidth required by the output stream, i.e., the nodes for

which bsj
≤ rbej

. The bandwidth measurements are collected by the monitoring module,

as was described in Section 4.2. The bandwidth requirement of the output stream is cal-

culated according to the user-requested stream rate, and is included in the query plan ξ of

the placement request, as was described in Section 4.2. Third, the previously used nodes

that can sustain the required bandwidth are ordered from the closest to the most remote

in terms of communication latency lej
. The latency measurements are again collected by

the monitoring module as was described in Section 4.2. We call these nodes the closest

used candidates. The reason we try to reuse nodes is that, as we discussed in Section 4.3.1,

collocating component replicas on nodes, as much as the nodes’ resources permit it, maxi-

mizes application availability. If there are not enough closest used candidates to place all

the required primary replicas, closest candidates are used instead. To identify the closest

candidates, only the last two of the above three criteria are taken into account, i.e., the

residual network bandwidth and the communication latency.

Step 2. Primary placement negotiation. The placement of a primary

replica of a downstream component is decided directly by a node if this node hosts its only

upstream component. In Figure 4.4 for example this is the case for the host of c11, which can

decide the placement of c21 directly. However, when the downstream component has more

than one upstream components, its placement decision has to be cooperative, taking into

account the placement preferences of all the upstream components. The decision is made by

the upper node in the application component graph, taking into account all involved nodes’

113

placement preferences. For example, in Figure 4.4, the node hosting c41 can be decided by

both the nodes hosting c21 and c31. The upper node in the application component graph

is defined as the decision maker, which in this case is the node hosting c21. Thus, the host

of c31 informs the host of c21 of its placement preferences, before the host of c21 can decide

the placement of c41.

The nodes’ placement preferences are transferred using placement negotiation

messages. A placement negotiation is sent from a node that determines that a primary

replica of the next component in the application component graph can be decided by more

nodes than itself, to the upper node in the graph that can make such a decision. The

placement negotiation message includes ξ, λ, ρ, ̺, an index to identify which operator of

the query plan the placement negotiation refers to, and a list of nodes that the sender would

want the component to be placed on, ordered by their latency to the sender. This is the

list of closest used candidates the node constructs, or the list of closest candidates, if no

used candidates exist. Once the recipient receives placement negotiations from all upstream

components of a component that needs to be placed, it decides which node should be asked to

host the downstream component. It does so by finding the first intersection of the candidate

lists. The candidate lists are traversed from the list of the node with the highest requested

output bandwidth to that of the node with the lowest requested output bandwidth. This

way, the preferences are weighed according to the requested output bandwidth. Once the

candidate for hosting the primary replica of the downstream component has been identified,

either directly or through the negotiation process, a placement request is sent to it.

114

Step 3. Primary placement evaluation. A node receiving a placement

request for hosting a primary replica evaluates whether it can accept it or not. To determine

whether to accept or deny a request a node checks whether: i) The profiled processing time

required for the operator of the primary replica to be instantiated will not exceed the

residual processing capacity of the node, i.e., poi
≤ rpvi

, and ii) The requested bandwidth

for the output of this primary replica will not exceed the residual network bandwidth on

the virtual links to the nodes that will be asked to host the downstream components of

this primary replica, and to the nodes that will be asked to host its backup replicas, i.e.,

bsj
≤ rbej

for all corresponding virtual links ej . For example, in Figure 4.4, a placement

request sent from the node v11 hosting c11 to the node v21 that is requested to host c21 will

be accepted only if po2 ≤ rpv21 , bs4 ≤ rbe21 41 , and bs4 ≤ rbe21 22 .

Both the bandwidth and the processing time requirements of a new placement are

included in the query plan ξ of the placement request. Bandwidth requirements bsj
are

calculated according to the user-requested stream rate, while processing time requirements

poi
are calculated according to the data rate and resource profiling results for the operators

(Section 4.2). The residual processing capacity rpvi
and the residual network bandwidth

rbej
are collected by the monitoring module of the node (Section 4.2).

Once a placement request has been evaluated, the node sends a placement reply

to the node that sent the placement request. The placement reply includes an identifier of

the request it is replying to and whether the request is accepted or denied.

Step 4. Primary placement decision. The node making the placement

decision of a primary replica waits for the closest used candidate’s placement reply. If the

115

placement request is denied, the next closest used candidate is contacted. If no closest used

candidates accept the placement, the closest candidates are contacted.

Once a placement request is accepted, a placement

decision is sent to the node that accepted, to complete the placement of the primary

component replica. A placement decision is sent from a node that makes a placement

decision for a component replica to the node that is requested to host this replica. The

placement decision includes the identifier of the application the component replica will be

a part of, a unique identifier of the component replica within the application, the operator

the component replica will be offering, and the fact that the component will be a primary

replica. The receiver of a placement decision allocates resources for the replica. This way,

overallocations caused by concurrent protocol executions are avoided.

Step 5. Backup placement selection. Once a node has placed all the

primary replicas of its downstream components in the application component graph, the

backup replicas of the current component are placed. For example, in Figure 4.4, the

host of c11 needs to place c12, after it has placed c21, and c31. The backup replicas are

again placed at the closest used candidates, to increase component collocation and hence

maximize application availability. If the replication degree exceeds the number of closest

used candidates, closest candidates are used instead. (Please note that replicas of the same

component can never be collocated.) The closest used candidates are identified following

the same procedure described for the placement selection of the primary replicas in step

1. The node deciding where to place a component’s backup replica is hosting the primary

replica that will generate the input of this backup replica. Therefore it can ensure that

116

the requested bandwidth for the input of the backup replica can be accommodated by the

residual network bandwidth on the virtual link to the node that will be asked to host it, i.e.,

bsj
≤ rbej

. Again, bsj
is included in the query plan ξ (Section 4.2), while rbej

is provided

by the monitoring module of the node (Section 4.2). A backup replica does not have

any additional requirements from the recipient regarding either processing or downstream

communication. Therefore, no placement request and reply procedure similar to the primary

replicas’ placement is required.

Step 6. Backup placement decision. The placement of each backup com-

ponent replica is completed by sending a placement decision to the node that has been

decided to be the host of the backup replica. In addition to the information included in

a placement decision of a primary replica, a placement decision now includes the fact that

the component being placed will be a backup replica. Again, the receiver of a placement

decision allocates resources for the backup replica to avoid overallocations.

Phase 3. Completion. We call the node(s) that host the outputs of the

application the destination nodes. These nodes are usually pinned where the data receivers

are, e.g., where a network operation center is located in the example of Figure 1.1. Once

a node that accepted a placement request notices that it only has the destination nodes as

its downstream nodes, it only has to place the backup replicas of the current component

and then the placement reaches completion. The node discovers the destination nodes

by querying the DHT. It then propagates the placement request for the application to

the destination nodes. The placement request now includes the complete application and

replication component graphs, specifying the placement of all primary and backup replicas.

117

The destination nodes propagate these to node vs, which now can inform the source nodes

to begin streaming.

If at any step of the placement protocol a node cannot find any candidate to

host the requested component replicas, regardless of collocation (availability) and latency

(performance) requirements, a failure message is returned to vs and then to the user and

the component replicas that had been placed so far are deallocated. This however is an

extreme case, indicating that the system does not have the required processing and network

resources to host the requested application.

Failure Handling. Failures of nodes during the protocol execution result to

message timeouts, causing the sender of the corresponding message to try the next avail-

able candidate for placement. To avoid message timeouts by detecting node failures in

advance, more elaborate failure detectors [81] can also be used. Moreover, failures affect-

ing component discovery are handled by the DHT [74]. Handling failures not during the

placement but during the stream processing application execution is a different and rather

complicated problem, considering the request rates and the real-time requirements of the

applications. Several mechanisms have been proposed to address this problem, including

checkpointing [18, 39], masking [79], logging [38], and trading-off consistency [11]. Since

our work focuses on placement to minimize failure probability and not on handling failures

during execution, existing solutions for the latter can be integrated in our architecture.

118

4.5 Experimental Evaluation

We have implemented in Synergy our replica placement protocol, as well as the

network monitoring application from the Stream Query Repository shown in Figure 1.11,

and have conducted a performance evaluation over PlanetLab. To evaluate Synergy ’s dis-

tributed placement protocol’s performance, we compared it to four more placement proto-

cols. Optimal places all primary component replicas on a node, and n backup replicas on

each of another ̺ − 1 nodes. As we described in Section 4.3.2, such a placement is prac-

tically infeasible due to the processing and bandwidth constraints. However, we include it

for comparison purposes, as it maximizes availability. Random places component replicas

on nodes randomly, as is done for example in [3]. Partition implements a scheme [98] that

aims to maximize inter-component correlation. Similar to RAID-1, it partitions nodes to

groups of ̺ nodes each and assigns all replicas of a component to one group every time.

[98] showed that this placement performs best for strict composite applications, therefore

we include it here as the current state of the art. Finally, Latency places components based

solely on network latencies, similarly to current placement protocols for distributed stream

processing systems [4,61] that seek to maximize application performance.

Each node in the system generates an application request that triggers component

replica placement. By sharing the system resources among multiple concurrent applications,

we do not give Synergy’s resource-aware placement protocol an advantage over the other

protocols, in terms of placement choices. In fact, due to resource sharing, Synergy results to

placing the component replicas of an application to n or more nodes. We present the average

1Application screenshots available at http://synergy.cs.ucr.edu/screenshots.html

119

results over the total number of participating nodes. We look at application availability

and replica failure ratio as metrics for availability, and at average inter- and intra-operator

delays as metrics for performance. For clarity purposes we do not include Latency when

evaluating availability, as it is equivalent to Random. Similarly, we do not include Optimal

when evaluating performance, as its inter-operator delay is 0, while its intra-operator delay

is equivalent to Random.

We experiment with different network sizes, percentages of failed nodes, applica-

tion component graph sizes, and replication degrees, to determine the sensitivity of our

results to all of these parameters. When kept constant, the values of the above parameters

are 20 nodes, 3 of them failing, 9 components in the application component graph (as in

Figure 1.1), and 2 replicas of each component. We artificially control node failures, while

ensuring that none of the PlanetLab machines actually failed during our experiments. We

chose a default failure percentage of 15% of the nodes, based on our analysis of actual ping

traces between all pairs of PlanetLab nodes, obtained from [62]. By parsing these traces

and considering that a node has failed whenever it is not reachable by any other node, we

found 15% to be a representative failure percentage. We experiment with fail-stop failures;

once a node has failed we regard all the components hosted by it, and all the applications

using these components, as permanently failed.

We chose a default application component graph size of 9, capturing the graph

size of the implementation of the network monitoring application from the Stream Query

Repository we showed in Figure 1.1.

120

4.5.1 Application Availability

We first present the experimental results for the application availability achieved

by the different placement protocols. We measure availability by the percentage of successful

requests for composite applications.

Effect of component replication degree. When increasing the replication

degree of components, application availability increases. However, an intelligent replica

placement can achieve higher availability with a lower replication degree. This is shown

in Figure 4.6. Synergy achieves availability close to optimal even with a replication degree

of 2, by paying attention to the relative placement of replicas. In contrast, Random and

Partition require one more replica to achieve comparable availability.

Effect of application component graph size. To determine the effect of the

component graph size on application availability, we experimented with artificial graphs of

various sizes, as shown in Figure 4.7. In general, as the size n of the application component

graph increases, application availability decreases. This is because more nodes need to be

employed for hosting all the component replicas (since no replicas of the same component

can be hosted by the same node), while all of the components need to be available for

the application to be available. However, as Figure 4.7 shows, Synergy’s replica placement

protocol manages to maintain high availability even in larger application component graphs.

The reason lies in that Synergy reuses nodes to collocate component replicas. Hence, the

number of nodes used for placement does not linearly increase as the number of components

increases.

121

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 1.5 2 2.5 3 3.5 4

A
pp

lic
at

io
n

A
va

ila
bi

lit
y

Replication Degree

Effect of Replication Degree on Availability

Random
Synergy
Optimal
Partition

Figure 4.6: Replication degree sensitivity.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 6 8 10 12 14

A
pp

lic
at

io
n

A
va

ila
bi

lit
y

Application Component Graph Size

Effect of Application Component Graph Size on Availability

Random
Synergy
Optimal
Partition

Figure 4.7: Component graph size sensitivity.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 10 15 20 25 30

A
pp

lic
at

io
n

A
va

ila
bi

lit
y

Number of Nodes

Effect of Scale on Availability

Random
Synergy
Optimal
Partition

Figure 4.8: Scalability.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 5 10 15 20 25

A
pp

lic
at

io
n

A
va

ila
bi

lit
y

Percentage of Failed Nodes

Effect of Failure Percentage on Availability

Random
Synergy
Optimal
Partition

Figure 4.9: Failure percentage sensitivity.

Effect of scale. Figure 4.8 shows that the availability benefits of Synergy hold

regardless of the size of the network. This is because Synergy collocates replicas on nodes

that have already been used for placement as much as possible. Therefore it is not affected

by the available placement options that more nodes present. This is in contrast to Random

and Partition, which are blind to which nodes have already been used for placement for a

particular application and have a higher probability of spreading components as more nodes

are available.

122

Effect of failure percentage. When the percentage of failed nodes increases,

inevitably availability drops. However, as Figure 4.9 shows, Synergy manages to postpone

this phenomenon as much as possible, by using the minimum feasible number of nodes, thus

minimizing the probability that any of the component hosts will fail. Using the minimum

feasible number of nodes can only be achieved when placing components specifically catering

to an application request. This is why Partition does not achieve comparable availability,

since it statically places components to nodes, regardless of any particular application re-

quests.

4.5.2 Component Replica Failure Ratio

An intelligent replica placement achieves high application availability even when

the ratio of failed replicas to the number of total replicas, which we call replica failure ratio, is

high. This is because just one replica of each component needs to be available. For example,

Optimal can achieve availability 1 even if all nodes but one have failed, in which case the

replica failure ratio is maximum ((̺−1)·n
̺·n). To explore this we measure the replica failure

ratio and compare it to the application availability achieved by the different placement

protocols. We present results from varying both the network size and the percentage of

failed nodes.

Effect of scale. Figure 4.10 shows that the higher availability Synergy achieves

over its competitors does in fact stem from a smaller number of replica failures. This

is because Synergy’s replica placement protocol tries to minimize the number of nodes

123

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30

R
at

io
 o

f F
ai

le
d

C
om

po
ne

nt
 R

ep
lic

as

Number of Nodes

Effect of Scale on Failures

Random
Synergy
Optimal
Partition

Figure 4.10: Failure ratio with scale.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

R
at

io
 o

f F
ai

le
d

C
om

po
ne

nt
 R

ep
lic

as

Percentage of Failed Nodes

Effect of Failure Percentage on Failures

Random
Synergy
Optimal
Partition

Figure 4.11: Failure ratio and percentage.

used. Optimal’s placement protocol is even more intelligent, since it can achieve availability

equivalent to or higher than Synergy, even though its replica failure ratio is higher.

Effect of failure percentage. The conclusions that can be drown from the

effect of the percentage of failed nodes to the replica failure ratio, as shown in Figure 4.11,

are similar to the ones of the effect of network scale from Figure 4.10. Moreover, we see

that Partition is more appropriate as a placement strategy for distributed stream processing

applications than Random, since the availability it achieves is higher, even though their

replica failure ratios are similar.

4.5.3 Average Delay

We now discuss average delays attained, as they represent a measure of the per-

formance of an instantiated application.

Effect of scale on inter-operator delay. Figure 4.12 summarizes the perfor-

mance attained by a distributed stream processing application, as it is determined by the

communication delay between primary component replicas. Synergy’s placement protocol

124

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 15 20 25 30

In
te

r-
O

pe
ra

to
r

D
el

ay
 (

m
s)

Number of Nodes

Effect of Scale on Inter-Operator Delay

Random
Synergy
Latency
Partition

Figure 4.12: Scalability of inter-operator
delay.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 15 20 25 30

In
tr

a-
O

pe
ra

to
r

D
el

ay
 (

m
s)

Number of Nodes

Effect of Scale on Intra-Operator Delay

Random
Synergy
Latency
Partition

Figure 4.13: Scalability of intra-operator
delay.

focuses on maximizing the availability of an application and only takes performance into ac-

count when comparing placement decisions that are equivalent in terms of availability. Yet,

as Figure 4.12 shows, the performance of the applications placed with Synergy’s protocol is

comparable to those placed by Latency, which uses only performance as a placement crite-

rion. As expected, Random and Partition perform much worse, since they do not consider

communication delays in their placement decisions.

Effect of scale on intra-operator delay. The cost of keeping the backup

replicas up to date with their primary counterparts is summarized in Figure 4.13. Again,

Synergy manages to reduce the latency of these data transfers, while not sacrificing availabil-

ity. Since Latency can choose the closest nodes for placement among all nodes, regardless

of which have been used for placement so far, it can decrease intra-operator delay further.

However, as we already discussed this leads to low availability.

Effect of scale on gathering latency information. Table 4.14 lists the

average absolute time a node needs to gather latency information for virtual links to remote

nodes in the overlay. This affects how fast Synergy’s placement protocol can reach a decision.

125

Number of Nodes Latency Information Gathering Time (ms)

10 1827

20 2100

30 5539

Figure 4.14: Latency information gathering.

As we see, the required time remains in the order of a few seconds. The fact that we try

to minimize the number of nodes to use for replica placement to maximize availability also

limits the number of latency measurements we need to gather.

4.6 Conclusions

In this chapter we have studied the problem of component replica placement to

achieve high availability in distributed stream processing applications. This is the first work

we are aware of to discuss this problem. We have identified design principles for replica

placement that take into account the particular characteristics of these applications. We

have incorporated these principles in a distributed replica placement protocol, that aims to

maximize availability, while respecting resource constraints, and making performance-aware

placement decisions. Our protocol is decentralized, allowing nodes to proceed concurrently

with their placement decisions, and requiring only local knowledge. We have integrated our

replica placement protocol in Synergy, our distributed stream processing middleware. Our

experimental comparison over PlanetLab with the current state of the art corroborated our

claims that our techniques maximize availability, while sustaining good performance.

126

Chapter 5

Related Work

In this chapter we discuss research efforts related to the problems we have ad-

dressed in this work. We extend our discussion in three directions, relevant to the tech-

niques we have discussed in each chapter of the dissertation. Section 5.1 presents research

works relevant to the problem of component composition (discussed in chapter 2). Sec-

tion 5.2 presents work relevant to the problem of load balancing (discussed in chapter 3).

Finally, Section 5.3 presents efforts related to the problem of high availability (discussed in

chapter 4).

5.1 Component Composition

Distributed stream processing has been the focus of several recent research ef-

forts from many different perspectives. In [4, 61, 78] the placement problem of a complete

component graph in a DSPS to make efficient use of the network resources and maximize

query performance is discussed. Our work is complementary, in that our focus is on the

127

effects of sharing existing components, and we address partial component graph deploy-

ment only when previously deployed components cannot be reused. While [61] mentions

component reuse, they do not focus on the impact on already running applications. [46]

describes an architecture for distributed stream management that makes use of in-network

data aggregation to distribute processing and reduce communication overhead. A clustered

architecture is assumed, as opposed to Synergy’s totally decentralized protocols. Service

partitioning to achieve load balancing taking into account the heterogeneity of the nodes

is discussed in [29], while load balancing based on the correlation of the load distributions

across nodes is proposed in [96]. While a balanced load is the final selection criterion among

candidate component graphs in Synergy as well, our focus is on QoS provisioning. The

distributed composition probing approach is first presented in [32, 35]. Synergy extends

this work by considering stream reuse and evaluating the impact of component sharing.

Our techniques for distributed stream processing composition apply directly to multimedia

streams [20,44,65,66] as well.

Application task assignment has also been the focus of many grid research efforts.

GATES [21] is a grid-based middleware for distributed stream processing. It uses grid re-

source discovery standards and trades off accuracy with real-time response. While we also

address real-time applications, our focus is on the composition of the application component

graph. Similarly, work on grid resource management focuses on optimally assigning indi-

vidual tasks to different hosts, rather than instantiating composite network applications.

Work on resource discovery such as SWORD [58] can assist in component composition, and

is thus complementary to ours.

128

Component composition has also been studied in the context of web services from

several aspects, such as coordinating among different services to develop production work-

flows [84], or providing reliability through replication [14]. Similar problems are also en-

countered when providing dynamic web content at large scales [7], or personalized web

content [23], the changing and on-demand nature of which render them more challenging

than static content delivery [41].

While we focus on component composition for stream processing, our techniques

may be applicable to other domains of composite applications with QoS requirements,

such as QoS-sensitive web services. Similar to Synergy, works on web service composi-

tion [50, 99, 101] take into account QoS metrics. They discuss dynamic composition algo-

rithms that select web services so that utility is maximized [50], end-to-end QoS is guar-

anteed [99], or maximized [101]. [99] proposes heuristics with near-optimal solutions in

polynomial time, while [101] presents optimal solutions using integer programming. The

main difference between these approaches and Synergy is that they propose centralized so-

lutions that rely on global knowledge, whereas Synergy employs a distributed composition

protocol. While centralized solutions might be appropriate for a web services environment,

a distributed approach is more suitable for highly-dynamic and very large-scale distributed

stream processing environments [6,35,46,61,94]. However, our maximum sharing discovery

and QoS impact projection algorithms are independent of the composition protocol. There-

fore they could be combined with existing web service composition approaches [50,99,101].

129

5.2 Load Balancing

In distributed stream processing systems, work on the placement of components

to make efficient use of resources and to maximize application performance [4, 61, 78] is

complementary to ours. Any technique for deploying new components can be used, once all

the nodes hosting a particular component type are overloaded. Additionally, the migration

techniques presented in [61] can be used as an alternative to our migration protocol, com-

plementing the prediction mechanisms for QoS violations presented here. Similarly, work

on component composition [25, 35, 66, 68] or application adaptation [10, 20, 40, 46, 65] can

assist in load balancing, complementing our migration-based solution. Load balancing for

distributed stream processing applications has also been studied [12,29,80,95,96,104]. We

differ from these approaches in that we focus on the application QoS, rather than the system

utilization. Furthermore, we propose a hot-spot prediction framework to drive proactive

migration decisions. Load shedding [13, 85, 86, 88, 90] has been explored before as a means

to alleviate application hot-spots in stream processing systems. Our goal when alleviat-

ing application hot-spots via migration is to do so in a less intrusive manner. Similar to

our work, [90] identifies the need for proactive QoS management and proposes operator

selectivity estimation using sampling. Their methods however refer to centralized stream

processing on a single node.

Workload prediction has been studied in various contexts and [77] discusses how

some workloads have been shown to be most accurately represented by open models, while

others by closed ones. Dinda [24] has shown the effectiveness of linear models in predicting

host load, network bandwidth, and performance data. In the domain of grid computing

130

multi-resource prediction has been proposed [48], where the processor utilization is cross-

correlated with the memory utilization. We also utilize cross-correlation, but between dif-

ferent nodes rather than between different resources. Performance prediction for multi-tier

web servers [82,102] is also relevant to our work, provided that all tiers are considered and

not just one which is assumed to be the bottleneck. [82] proposes a model based on queuing

theory, to predict performance as a function of the transaction mix. For stream processing

applications however, rate fluctuations rather than the type of required processing affect

performance. For the same reason, certain assumptions regarding the distribution of arrival

rates that are needed for queueing analysis, may not hold. [102] proposes a model based on

regression to predict the processing cost of web transactions and drive capacity planning

decisions. We also employ linear regression but focus on online execution time prediction.

Load balancing in peer-to-peer systems has also been a topic of recent research [30,

103]. The focus there is on distributing objects evenly among peers, to improve resource

utilization. In contrast, we focus on managing the load incurred by applications executing

on top of a peer-to-peer network, in order to improve their performance.

Finally, process migration has been employed to provide dynamic load distribution,

fault resilience, improved system administration, and data access locality in a variety of

domains, ranging from operating systems to batch application execution and mobile agents.

An overview of related research can be found in [52]. Here we explore how migration can be

used to alleviate imbalances caused by fluctuations in the rates of long-running distributed

applications.

131

5.3 High Availability

Existing research in the area of high availability for distributed stream processing

systems [11, 18, 38, 39, 79] has focused on efficient replica state maintenance to mask com-

ponent failures. To this extent, recovery mechanisms [38], failure masking [79], consistency

trade-offs [11], and checkpoint scheduling [18,39] have been explored. In this work we focus

on replica placement to maximize application availability. Therefore, techniques like the

above are complementary to ours and can be integrated in our system.

Placement of components or operators has been investigated to maximize the

performance of distributed stream processing systems [4,61,78]. In order to limit the number

of nodes to be examined for placement, previous approaches employ heuristics that consider

only a subset of all nodes [4], or employ a latency space [61]. In our case, the number of nodes

to be examined for placement is limited by the fact that we want to collocate components

as much as possible to maximize availability. As was already discussed in Section 4.3.1,

a performance-oriented placement results to random relative replica placement with low

availability.

Replica placement has been studied extensively in distributed systems, both with

availability and with performance in mind. However, the focus of research in distributed

storage [3,5,42,75], distributed databases [28,60,63,91], distributed object systems [26,27,

31,45,57,64,93], and web services [14,84] is on the availability of individual objects.

Similar to distributed stream processing systems, applications built on object-,

component-, or service-based architectures, such as CORBA [26, 27, 31, 57] or Enterprise

JavaBeans [93], or on multi-tier architectures [28, 60] are composite. While research in

132

fault tolerance for such applications addresses timeliness and correctness in the presence of

failures, it does not focus on the relative placement of objects. This is because usually an

application server can host all the primary object replicas of such an application (similarly

to our Optimal placement algorithm). Due to the high processing volume and rate required

by distributed stream processing applications, as well as the amount of data that would

have to be transferred to an individual host, this approach is usually not feasible in a

distributed stream processing system. Our placement mechanisms however can be applied to

distributed object systems, if the primary replicas of the objects of a composite application

are distributed.

Similar to distributed stream processing applications, the applications considered

in [45] have both fault tolerance and timeliness requirements. To address these needs, a

two-tier replication architecture is constructed, depending on the consistency requirements

of the replicas. Replica selection algorithms are then proposed to satisfy the applications’

timing requirements. This way, clients that can tolerate weaker consistency can take ad-

vantage of faster service time. Unlike distributed stream processing applications however,

the applications described in [45] follow a single-object paradigm, where a client request

involves one object, instead of multiple.

The only study of the availability of multi-object operations in distributed sys-

tems we are aware of is [98] (with the theoretical analysis provided in [97]), which compares

the availability achieved by several DHTs with regards to the strictness of an application.

We are able to achieve higher availability than the protocol that is identified as best for

strict operations in [98], by performing an ad-hoc placement of the replicas, once an ap-

133

plication request arrives. Distributed stream processing applications further differ from

static distributed applications, in that replicas communicate with each other. This includes

communication both between primaries as well as between primaries and backups. This

communication affects application performance and therefore is taken into account by our

placement protocol.

134

Chapter 6

Conclusions and Future Work

In this dissertation we have discussed techniques for providing Quality of Service

(QoS) support for distributed stream processing applications. We have also presented the

implementation of the techniques we propose in Synergy, our peer-to-peer distributed stream

processing middleware. We have extended our efforts towards three directions. First, we

have discussed how end-to-end delay QoS requirements can be taken into account when

composing a new application. Second, we have discussed how an application can continue

adhering to these requirements while executing. Third, we looked at availability as a QoS

metric and we have discussed placement of component replicas to maximize it.

6.1 Concluding Remarks

Synergy’s sharing-aware component composition algorithms are completely de-

centralized and focus on reusing both streams and components. We have proposed QoS

projection to ensure that the QoS requirements of the currently running applications will

135

not be violated when admitting a new application. Synergy’s load management architecture

focuses on application hot-spot prediction and alleviation. The algorithms we propose for

hot-spot prediction are based on the statistical methods of linear regression and correla-

tion, utilizing only light-weight, passive measurements. Statistics collection and hot-spot

prediction and alleviation are carried out at run-time by all nodes independently, building

upon a fully decentralized architecture. To alleviate hot-spots, Synergy empowers nodes

to autonomously migrate the execution of stream processing components using a migra-

tion protocol that offers minimal disruption in the application execution. Finally, Synergy

employs a distributed replica placement protocol that aims to maximize application avail-

ability, while respecting resource constraints, and making performance-aware placement

decisions. The protocol is decentralized, allowing nodes to proceed concurrently with their

placement decisions, and requiring only local knowledge.

We have implemented our techniques in a software prototype of Synergy, a multi-

threaded system of about 35,000 lines of Java code. Deploying the system over PlanetLab

using a real network monitoring application operating on traces of real streaming data

has enabled us to conduct a thorough experimental evaluation of our techniques. More

information on the Synergy middleware can be found at http://synergy.cs.ucr.edu

6.2 Future Directions

Our future work includes the integration of iterative execution of Synergy’s com-

position protocol with techniques for increasing application reliability. This can enable

distributed stream processing systems that are more reliable in the presence of overloads,

136

as well as more robust against node or link failures at run-time or during composition. To

offer fault tolerance, either reactive or proactive failure recovery schemes can be used [33].

In reactive recovery a new application component graph is composed upon failure, while

in proactive recovery backup application component graphs are maintained. Integrating

replication with composition can also increase fault tolerance.

Adhering to QoS requirements by eliminating hot-spots is an important step to-

wards dependable distributed stream processing applications. In this work we have focused

on shared processing power as a cause for application hot-spots. As part of our future

work we plan to investigate extending our architecture to include multiple shared system

resources, such as bandwidth, memory, or storage, in addition to the processor. State

transfer when migrating complex components is another important area of future work.

It would also be interesting to incorporate to our middleware current research

on fault tolerant distributed stream processing systems, such as checkpointing techniques

for consistency maintenance and failover techniques for failure masking. Finally Synergy’s

replica placement protocol could be integrated with performance-oriented placement pro-

tocols, which would include maximizing the availability of already deployed application

component graphs.

We have also identified several directions towards long-term future work. A key

challenge for the future will be to provide distributed systems that can keep up with the

current user growth, while providing QoS guarantees. This translates to designing sys-

tems that can cope with the data volumes generated by Internet-scale applications, while

providing the real-time and highly available services users are accustomed to.

137

Replication of stream processing components can alleviate performance bottle-

necks or also increase the fault-tolerance of distributed stream processing applications.

However, when splitting the processing load among multiple components, a fundamental

trade-off exists: Consistent replication, in which components have an accurate view of each

other’s state at all times incurs high synchronization and communication overheads. This

is particularly true for stream processing systems, that deal with high volumes of data that

are updated continuously. Existing stream sketching and aggregation techniques can pos-

sibly be applied on replication and integrated with consistency protocols. Such techniques

can enable accurate state reconstruction, while minimizing the amount of data that needs

to be transferred between replicas. Furthermore, existing consistency protocols may need

to be revisited to apply on such highly loaded environments, and it would be interesting

to investigate what requirements can be relaxed with minimal effect on application accu-

racy, to enable efficient replication. Since a stream processing application is described by a

graph, graph theory can help determining which components will benefit most the overall

performance if replicated.

As human supervision has evolved into the major factor of the total cost of IT

operations, designing large-scale systems that can achieve QoS goals while being easy to

manage will be of key importance. Enabling systems to make adaptive decisions regard-

ing load and topology management can be an important step in that direction. While

load management has been the focus of several research efforts, several issues remain open

with regards to topology management. When overlay networks are employed, the dis-

crepancy between overlay and physical routing, also known as overlay stretch, can affect

138

considerably the application performance. Even when direct connections between nodes are

employed, they need to be decided adaptively, according to the currently executing appli-

cations. Making these decisions at a large scale is non-trivial. For example, in a distributed

stream processing system, each node hosts multiple components, each of which participates

in several applications. Ideally, the connections between nodes should match the component

interactions, as they evolve. Especially for stream processing applications, in which large

volumes of data are transferred between nodes, topology can affect application performance

in a crucial way. By making use of data mining and machine learning techniques to model

component interactions, it would be interesting to identify communication patterns, and

drive adaptive topology management decisions.

Incorporating security, trust, and privacy requirements in the design of distributed

stream processing systems is another important parameter to take into account, as multiple

entities representing businesses or individual users engage in high volumes of unsupervised

transactions. Sharing data and using remote services while abiding to access control re-

quirements poses significant challenges in loosely coupled, unstructured, and large-scale

distributed systems. It would be interesting to investigate how applications invoking mul-

tiple services hosted by different nodes can be composed while respecting data access re-

strictions. To achieve this cryptographic techniques such as private information retrieval

and zero-knowledge proofs may be adapted to specific application domains, and virtual-

ization and Service-Oriented Architecture can help in enforcing isolation and autonomy

requirements.

139

Bibliography

[1] D.J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.H. Hwang,
W. Lindner, A.S. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik.
The design of the Borealis stream processing engine. In Proceedings of the Second
Biennial Conference on Innovative Data Systems Research, CIDR, Asilomar, CA,
USA, January 2005.

[2] T.F. Abdelzaher. An automated profiling subsystem for QoS-aware services. In Pro-
ceedings of the 6th IEEE Real-Time Technology and Applications Symposium, RTAS,
Washington, DC, USA, June 2000.

[3] A. Adya et al. FARSITE: Federated, available, and reliable storage for an incompletely
trusted environment. In Proceedings of 5th Symposium on Operating Systems Design
and Implementation, OSDI, Boston, December 2002.

[4] Y. Ahmad and U. Çetintemel. Network-aware query processing for stream-based
applications. In Proceedings of the 30th International Conference on Very Large Data
Bases, VLDB, Toronto, Canada, August 2004.

[5] A.S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.P. Martin, and C. Porth. BAR fault
tolerance for cooperative services. In Proceedings of 20th Symposium on Operating
Systems Principles, SOSP, Brighton, UK, October 2005.

[6] L. Amini, N. Jain, A. Sehgal, J. Silber, and O. Verscheure. Adaptive control of
extreme-scale stream processing systems. In Proceedings of the 26th International
Conference on Distributed Computing Systems, ICDCS, Lisboa, Portugal, July 2006.

[7] C. Amza, A.L. Cox, and W. Zwaenepoel. A comparative evaluation of transparent
scaling techniques for dynamic content servers. In Proceedings of the 21st International
Conference on Data Engineering, ICDE, Tokyo, Japan, April 2005.

[8] N. Antunes, C. Fricker, F. Guillemin, and Ph. Robert. Integration of streaming
services and TCP data transmission in the Internet. Elsevier Performance Evaluation,
62(1–4):263–277, October 2005.

140

[9] M.J. Karam A.P. Markopoulou, F.A. Tobagi. Assessing the quality of voice communi-
cations over Internet backbones. IEEE/ACM Transactions on Networking, 11(5):747–
760, October 2003.

[10] R.H. Arpaci-Dusseau. Run-time adaptation in river. ACM Transactions on Computer
Systems, 21(1):36–86, February 2003.

[11] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker. Fault-tolerance in
the Borealis distributed stream processing system. In Proceedings of ACM SIGMOD,
Baltimore, MD, USA, June 2005.

[12] M. Balazinska, H. Balakrishnan, and M. Stonebraker. Contract-based load manage-
ment in federated distributed systems. In Proceedings of Networked System Design
and Implementation, NSDI, San Francisco, CA, USA, March 2004.

[13] P. Barlet-Ros, G. Iannaccone, J. Sanjus-Cuxart, D. Amores-Lpez, and J. Sol-Pareta.
Load shedding in network monitoring applications. In Proceedings of the 2007
USENIX Annual Technical Conference, Santa Clara, CA, USA, June 2007.

[14] A. Bartoli, R. Jimenez-Peris, B. Kemme, C. Pautasso, S. Patarin, S. Wheater, and
S. Woodman. The ADAPT framework for adaptable and composable web services.
IEEE Distributed Systems On Line, Web Systems Section, September 2005.

[15] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, L. Peterson, T. Roscoe, and
M. Wawrzoniak. Operating systems support for planetary-scale network services. In
Proceedings of the 1st Symposium on Networked Systems Design and Implementation,
NSDI, San Francisco, CA, USA, March 2004.

[16] K.P. Birman. The process group approach to reliable distributed computing. Com-
munications of the ACM, 36(12):37–53, December 1993.

[17] N. Budhlraja, K. Marzullo, F. B. Schneider, and S. Toueg. Primary-Backup protocols:
Lower bounds and optimal implementations. In Cornell University Technical Report
TR-92-1265, January 1992.

[18] Z. Cai, V. Kumar, B.F. Cooper, G. Eisenhauer, K. Schwan, and R.E. Strom. Utility-
driven proactive management of availability in enterprise-scale information flows. In
Proceedings of 7th Middleware, Melbourne, November 2006.

[19] S. Chandrasekaran, O. Cooper, A. Deshpande, M.J. Franklin andJ.M. Hellerstein,
W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and Mehul Shah. Tele-
graphCQ: Continuous dataflow processing for an uncertain world. In Proceedings of
the First Biennial Conference on Innovative Data Systems Research, CIDR, Asilo-
mar, CA, USA, January 2003.

[20] F. Chen, T. Repantis, and V. Kalogeraki. Coordinated media streaming and transcod-
ing in peer-to-peer systems. In Proceedings of the 19th International Parallel and
Distributed Processing Symposium, IPDPS, Denver, CO, USA, April 2005.

141

[21] L. Chen, K. Reddy, and G. Agrawal. GATES: A grid-based middleware for distributed
processing of data streams. In Proceedings of the 13th IEEE International Symposium
on High-Performance Distributed Computing, HPDC-13, Honolulu, HI, USA, June
2004.

[22] L. Cherkasova and M. Gupta. Analysis of enterprise media server workloads: Access
patterns, locality, content evolution, and rates of change. IEEE/ACM Transactions
on Networking, 12(5):781–794, October 2004.

[23] M. Colajanni, R. Grieco, D. Malandrino, F. Mazzoni, and V. Scarano. A scalable
framework for the support of advanced edge services. In Proceedings of the 2005 Inter-
national Conference on High Performance Computing and Communications, HPCC-
05, Sorrento, Italy, September 2005.

[24] P.A. Dinda. Design, implementation, and performance of an extensible toolkit for
resource prediction in distributed systems. IEEE Transactions on Parallel and Dis-
tributed Systems, 17(2):160–173, February 2006.

[25] Y. Drougas, T. Repantis, and V. Kalogeraki. Load balancing techniques for dis-
tributed stream processing applications in overlay environments. In Proceedings of
the 9th International Symposium on Object and Component-Oriented Real-Time Dis-
tributed Computing, ISORC, Gyeongju, Korea, April 2006.

[26] P. Felber, B. Garbinato, and R. Guerraoui. The design of a CORBA group commu-
nication service. In Proceedings of 15th Symposium on Reliable Distributed Systems,
SRDS, Ontario, Canada, October 1996.

[27] P. Felber and P. Narasimhan. Experiences, approaches and challenges in building
fault-tolerant CORBA systems. IEEE Transactions on Computers, 54(5):497–511,
May 2004.

[28] S. Frølund and R. Guerraoui. e-Transactions: End-to-end reliability for three-tier
architectures. IEEE Transactions on Software Engineering, 28(4):378–395, April 2002.

[29] B. Gedik and L. Liu. PeerCQ: A decentralized and self-configuring peer-to-peer in-
formation monitoring system. In Proceedings of the 23rd International Conference on
Distributed Computing Systems, ICDCS, Providence, RI, USA, May 2003.

[30] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica. Load balancing
in dynamic structured P2P systems. In Proceedings of INFOCOM, Hong Kong, March
2004.

[31] A. Gokhale, B. Natarajan, D.C. Schmidt, and J. Cross. Towards real-time fault-
tolerant CORBA middleware. Cluster Computing, 7(4):331–346, October 2004.

[32] X. Gu and K. Nahrstedt. Distributed multimedia service composition with statistical
QoS assurances. IEEE Transactions on Multimedia, 8(1):141–151, February 2006.

142

[33] X. Gu and K. Nahrstedt. On composing stream applications in peer-to-peer environ-
ments. IEEE Transactions on Parallel and Distributed Systems, 17(8):824–837, July
2006.

[34] X. Gu, Z. Wen, and P.S. Yu. BridgeNet: An adaptive multi-source stream dissemina-
tion service overlay. In Proceedings of IEEE INFOCOM 2007, Anchorage, AK, USA,
May 2007.

[35] X. Gu, P.S. Yu, and K. Nahrstedt. Optimal component composition for scalable
stream processing. In Proceedings of the 25th IEEE International Conference on
Distributed Computing Systems, ICDCS, Columbus, OH, USA, June 2005.

[36] M.A. Hammad, M.J. Franklin, W.G. Aref, and A.K. Elmagarmid. Scheduling for
shared window joins over data streams. In Proceedings of the 29th International
Conference on Very Large Data Bases, VLDB, Berlin, Germany, September 2003.

[37] N. Hu and P. Steenkiste. Exploiting internet route sharing for large scale available
bandwidth estimation. In Proceedings of Internet Measurement Conference, IMC,
New Orleans, LA, October 2005.

[38] J.H. Hwang, M. Balazinska, A. Rasin, U. Çetintemel, M. Stonebraker, and S. Zdonik.
High-availability algorithms for distributed stream processing. In Proceedings of 21st
International Conference on Data Engineering, ICDE, Tokyo, Japan, April 2005.

[39] J.H. Hwang, Y. Xing, U. Çetintemel, and S. Zdonik. A cooperative, self-configuring
high-availability solution for stream processing. In Proceedings of 23rd International
Conference on Data Engineering, ICDE, Istanbul, Turkey, April 2007.

[40] V. Kalogeraki, F. Chen, T. Repantis, and D. Zeinalipour-Yazti. Towards self-
managing qos-enabled peer-to-peer systems. Self-Star Properties in Complex Informa-
tion Systems, Hot Topics in Computer Science, Springer Lecture Notes in Computer
Science, 3460:325–342, May 2005.

[41] P. Karbhari, M. Rabinovich, Z. Xiao, and F. Douglis. ACDN: A content delivery
network for applications. In Proceedings of 21st ACM SIGMOD Conference, Madison,
WI, USA, June 2002.

[42] A.M. Kermarrec and C. Morin. Smooth and efficient integration of high-availability
in a parallel single level store system. In Proceedings of Euro-Par, August 2001.

[43] L. Kleinrock. Queueing Systems. Volume 1: Theory. John Wiley and Sons Inc., New
York, NY, USA, 1975.

[44] F. Kon, R. Campbell, and K. Nahrstedt. Using dynamic configuration to manage a
scalable multimedia distributed system. Computer Communications Journal, 24:105–
123, 2001.

143

[45] S. Krishnamurthy, W.H. Sanders, and M. Cukier. An adaptive quality of service aware
middleware for replicated services. IEEE Transactions on Parallel and Distributed
Systems, 14(11):1112–1125, November 2003.

[46] V. Kumar, B.F. Cooper, Z. Cai, G. Eisenhauer, and K. Schwan. Resource-aware dis-
tributed stream management using dynamic overlays. In Proceedings of the 25th IEEE
International Conference on Distributed Computing Systems, ICDCS, Columbus, OH,
USA, June 2005.

[47] J. Ledlie, P. Gardner, and M. Seltzer. Network coordinates in the wild. In Proceedings
of Networked System Design and Implementation (NSDI), Cambridge, MA, USA,
April 2007.

[48] J. Liang, K. Nahrstedt, and Y. Zhou. Adaptive multi-resource prediction in dis-
tributed resource sharing environment. In Proceedings of the 4th International Sym-
posium on Cluster Computing and the Grid, CCGRID, Chicago, IL, USA, April 2004.

[49] P.M. Melliar-Smith and L.E. Moser. Surviving network partitioning. IEEE Computer,
31(3):62–68, March 1998.

[50] D. Menasce. Composing web services: A QoS view. IEEE Internet Computing,
8(6):88–90, November/December 2004.

[51] M.G. Merideth, A. Iyengar, T.A. Mikalsen, S. Tai, I. Rouvellou, and P. Narasimhan.
Thema: Byzantine-fault-tolerant middleware for web-service applications. In Pro-
ceedings of 24th Symposium on Reliable Distributed Systems, SRDS, Orlando, FL,
October 2005.

[52] D.S. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou. Process migra-
tion. ACM Computing Surveys, 32(3):241–299, September 2000.

[53] D.C. Montgomery and G.C. Runger. Applied Statistics and Probability for Engineers.
John Wiley & Sons Inc., New York, NY, USA, 2006.

[54] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C. Ol-
ston, J. Rosenstein, and R. Varma. Query processing, resource management, and
approximation in a data stream management system. In Proceedings of the First Bi-
ennial Conference on Innovative Data Systems Research, CIDR, Asilomar, CA, USA,
January 2003.

[55] National Institute of Science and Technology. Secure Hash Standard (SHA1). Federal
Information Processing Standard, FIPS 180-1, April 1995.

[56] NLANR/DAST Iperf. http://dast.nlanr.net/Projects/Iperf/, 2005.

[57] Object Management Group. Fault tolerant CORBA. OMG Technical Committee
Document formal /02-06-59, Chapter 23, CORBA/IIOP 3.0.3, 2004.

144

[58] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat. Design and implementa-
tion tradeoffs for wide-area resource discovery. In Proceedings of 14th IEEE Interna-
tional Symposium on High-Performance Distributed Computing, HPDC-14, Research
Triangle Park, NC, USA, July 2005.

[59] D. Oppenheimer, B. Chun, D. Patterson, A.C. Snoeren, and A. Vahdat. Service
placement in a shared wide-area platform. In Proceedings of the 2006 USENIX Annual
Technical Conference, Boston, MA, USA, June 2006.

[60] M. Patino-Martinez, R. Jimenez-Peris, B. Kemme, and G. Alonso. Consistent
database replication at the middleware level. ACM Transactions on Computers,
23(4):1–49, 2005.

[61] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and M. Seltzer.
Network-aware operator placement for stream-processing systems. In Proceedings of
the 22nd International Conference on Data Engineering, ICDE, Atlanta, GA, USA,
April 2006.

[62] PlanetLab All Pairs Pings. http://pdos.csail.mit.edu/~strib/pl_app/, 2005.

[63] C. Plattner, G. Alonso, and M. T. zsu. DBFarm: A scalable cluster for multiple
databases. In Proceedings of 7th Middleware, Melbourne, Australia, November 2006.

[64] Y. Ren, D.E. Bakken, T. Courtney, M. Cukier, D.A. Karr, P. Rubel, C. Sabnis,
W.H. Sanders, R.E. Schantz, and M. Seri. AQuA: An adaptive architecture that
provides dependable distributed objects. IEEE Transactions on Computers, 52(1):31–
50, January 2003.

[65] T. Repantis, F. Chen, and V. Kalogeraki. Cooperative media processing and stream-
ing. In 7th Annual Industry Day Poster Session, University of California, Riverside,
Second Best Graduate Poster Award, October 2005.

[66] T. Repantis, Y. Drougas, and V. Kalogeraki. Adaptive resource management in peer-
to-peer middleware. In Proceedings of the 13th International Workshop on Parallel
and Distributed Real-Time Systems, WPDRTS, Denver, CO, USA, April 2005.

[67] T. Repantis, X. Gu, and V. Kalogeraki. QoS-aware shared component composition for
distributed stream processing systems. IEEE Transactions on Parallel and Distributed
Systems, TPDS, To appear.

[68] T. Repantis, X. Gu, and V. Kalogeraki. Synergy: Sharing-aware component
composition for distributed stream processing systems. In Proceedings of the 7th
ACM/IFIP/USENIX International Middleware Conference, MIDDLEWARE, Mel-
bourne, Australia, November 2006.

[69] T. Repantis, X. Gu, and V. Kalogeraki. Synergy: A distributed stream processing
middleware. In Graduate Research Awards and Colloquium, University of California,
Riverside, Honorable Mention, June 2007.

145

[70] T. Repantis and V. Kalogeraki. Alleviating hot-spots in peer-to-peer stream process-
ing environments. In Proceedings of the 5th International Workshop on Databases,
Information Systems and Peer-to-Peer Computing, DBISP2P, Vienna, Austria,
September 2007.

[71] T. Repantis and V. Kalogeraki. Hot-spot prediction and alleviation in distributed
stream processing applications. In Proceedings of the 38th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks, DSN, Anchorage, AL,
USA, June 2008.

[72] T. Repantis and V. Kalogeraki. Replica placement for high availability in distributed
stream processing systems. In Proceedings of the 2nd International Conference on
Distributed Event-Based Systems (DEBS), Rome, Italy, July 2008.

[73] T. Repantis, V. Kalogeraki, and X. Gu. Synergy: Quality of service support for
distributed stream processing systems. In Graduate Research Awards and Colloquium,
University of California, Riverside, Graduate Research Award, June 2008.

[74] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In Proceedings of the IFIP/ACM Inter-
national Conference on Distributed Systems Platforms, MIDDLEWARE, Heidelberg,
Germany, November 2001.

[75] F. Schintke and A. Reinefeld. Modeling replica availability in large data grids. Grid
Computing, 1(2):219–227, June 2003.

[76] F.B. Schneider. Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Computing Surveys, 22(4):299–319, December 1990.

[77] B. Schroeder, A. Wierman, and M. Harchol-Balter. Open versus closed: A caution-
ary tale. In Proceedings of the 3rd Symposium on Networked Systems Design and
Implementation, NSDI, San Jose, CA, USA, May 2006.

[78] S. Seshadri, V. Kumar, and B.F. Cooper. Optimizing multiple queries in distributed
data stream systems. In Proceedings of the 2nd IEEE International Workshop on
Networking Meets Databases, NetDB, Atlanta, GA, USA, April 2006.

[79] M.A. Shah, J.M. Hellerstein, and E. Brewer. Highly available, fault-tolerant, parallel
dataflows. In Proceedings of ACM SIGMOD, Paris, France, June 2004.

[80] M.A. Shah, J.M. Hellerstein, S.Chandrasekaran, and M.J. Franklin. Flux: An adap-
tive partitioning operator for continuous query systems. In Proceedings of the 19th
International Conference on Data Engineering, ICDE, Bangalore, India, March 2003.

[81] K.C.W. So and E.G. Sirer. Latency and bandwidth-minimizing failure detectors. In
Proceedings of 2nd EuroSys Conference, Lisboa, Portugal, March 2007.

[82] C. Stewart, T. Kelly, and A. Zhang. Exploiting nonstationarity for performance
prediction. In Proceedings of EuroSys, Lisbon, Portugal, March 2007.

146

[83] Stream Query Repository: Network Traffic Management. http://infolab.

stanford.edu/stream/sqr/netmon.html, 2002.

[84] S. Tai, R. Khalaf, and T. Mikalsen. Composition of coordinated web services. In
Proceedings of the ACM/IFIP/USENIX 5th International Middleware Conference,
Toronto, Canada, October 2004.

[85] N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker. Load shed-
ding in a data stream manager. In Proceedings of the 29th International Conference
on Very Large Data Bases, VLDB, Berlin, Germany, September 2003.

[86] N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker. Load shed-
ding in a data stream manager. In Proceedings of the 29th International Conference
on Very Large Data Bases, VLDB, Berlin, Germany, pages 309–320, September 2003.

[87] The Internet Traffic Archive. http://ita.ee.lbl.gov/html/traces.html, 1994.

[88] Y.C. Tu, S. Liu, S. Prabhakar, and B. Yao. Load shedding in stream databases: A
control-based approach. In Proceedings of the 32nd International Conference on Very
Large Data Bases, VLDB, Seoul, Korea, pages 787–798, September 2006.

[89] UC Berkeley Sonoma Dust. http://www.cs.berkeley.edu/~get/sonoma/data.

html, 2004.

[90] Y. Wei, V. Prasad, S.H. Son, and J.A. Stankovic. Prediction-based QoS manage-
ment for real-time data streams. In Proceedings of the 27th IEEE Real-Time Systems
Symposium, RTSS, Rio de Janeiro, Brazil, December 2006.

[91] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Understanding
replication in databases and distributed systems. In Proceedings of 20th IEEE In-
ternational Conference on Distributed Computing Systems, ICDCS, Taipei, Taiwan,
April 2000.

[92] B. Wong, A. Slivkins, and E.G. Sirer. Meridian: A lightweight network location service
without virtual coordinates. In Proceedings of ACM SIGCOMM, Philadelphia, PA,
USA, August 2005.

[93] H. Wu and B. Kemme. Fault-tolerance for stateful application servers in the presence
of advanced transaction patterns. In Proceedings of 24th Symposium on Reliable
Distributed Systems, SRDS, Orlando, FL, October 2005.

[94] K.L. Wu, P.S. Yu, B. Gedik, K.W. Hildrum, C.C. Aggarwal, E. Bouillet, W. Fan, D.A.
George, X. Gu, G. Luo, and H. Wang. Challenges and experience in prototyping a
multi-modal stream analytic and monitoring application on System S. In Proceedings
of the 33rd International Conference on Very Large Data Bases, VLDB, Vienna,
Austria, September 2007.

147

[95] Y. Xing, J.H. Hwang, U. Cetintemel, and S. Zdonik. Providing resiliency to load
variations in distributed stream processing. In Proceedings of the 32nd International
Conference on Very Large Data Bases, VLDB, Seoul, Korea, September 2006.

[96] Y. Xing, S. Zdonik, and J.H. Hwang. Dynamic load distribution in the Borealis stream
processor. In Proceedings of the 21st International Conference on Data Engineering,
ICDE, Tokyo, Japan, April 2005.

[97] H. Yu and P.B. Gibbons. Optimal inter-object correlation when replicating for avail-
ability. In Proceedings of 26th Symposium on Principles of Distributed Computing,
PODC, Portland, OR, USA, August 2007.

[98] H. Yu, P.B. Gibbons, and S. Nath. Availability of multi-object operations. In Pro-
ceedings of 3rd Symposium on Networked Systems Design and Implementation, NSDI,
San Jose, CA, USA, May 2006.

[99] T. Yu, Y. Zhang, and K.J. Lin. Efficient algorithms for web services selection with
end-to-end QoS constraints. ACM Transactions on the Web, 1(1):1–26, May 2007.

[100] E.W. Zegura, K. Calvert, and S. Bhattacharjee. How to model an internetwork. In
Proceedings of IEEE INFOCOM 1996, San Francisco, CA, USA, March 1996.

[101] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang.
QoS-aware middleware for web services composition. IEEE Transactions on Software
Engineering, 30(5):311–327, May 2004.

[102] Q. Zhang, L. Cherkasova, and E. Smirni. A regression-based analytic model for
dynamic resource provisioning of multi-tier appications. In Proceedings of the 4th
IEEE International Conference on Autonomic Computing, ICAC, Jacksonville, FL,
USA, June 2007.

[103] X. Zhou and W. Nejdl. Priority based load balancing in a self-interested P2P network.
In Proceedings of the 4th International Workshop on Databases, Information Systems
and P2P Computing, DBISP2P, Seoul, Korea, pages 355–367, September 2006.

[104] Y. Zhou, B.C. Ooi, and K.L. Tan. Dynamic load management for distributed con-
tinuous query systems. In Proceedings of the 21st International Conference on Data
Engineering, ICDE, Tokyo, Japan, April 2005.

148

