
Scaling a Monitoring Infrastructure for the Akamai Network

Thomas Repantis
Akamai Technologies
Cambridge, MA 02142

trepanti@akamai.com

Jeff Cohen
Akamai Technologies
Cambridge, MA 02142

jecohen@akamai.com

Scott Smith
Formerly of Akamai

Technologies
Cambridge, MA 02142
scott@clustrix.com

Joel Wein
Akamai Technologies
Cambridge, MA 02142
jwein@akamai.com

ABSTRACT
We describe the design of, and experience with, Query, a
monitoring system that supports the Akamai EdgePlatform.
Query is a foundation of Akamai’s approach to administer-
ing its distributed computing platform, allowing administra-
tors, operations staff, developers, customers, and automated
systems near real-time access to data about activity in Aka-
mai’s network. Users extract information regarding the cur-
rent state of the network via a SQL-like interface. Versions
of Query have been deployed since the inception of Aka-
mai’s platform, and it has scaled to support a distributed
platform of 60,000+ servers, collecting over 200 gigabytes of
data and answering over 30,000 queries approximately every
2 minutes.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications,
Distributed databases

General Terms
Design, Experimentation, Performance

Keywords
Distributed Systems, Scalability, Monitoring, Stream Pro-
cessing, Distributed Databases

1. INTRODUCTION
Akamai’s large-scale, on-demand, distributed computing plat-
form [9] offers a variety of services. These services range
from live and on-demand media streaming to the delivery of
static and dynamic HTTP content, and from the accelera-
tion of Web and IP applications to high-availability storage
and DNS. Supporting these services is a platform consisting
of over 60,000 servers deployed in 70 countries within about
1,000 autonomous systems. Each server runs multiple ap-
plications. As a result, Akamai’s platform consists of over 1
million distributed software components.

Due to the scale of the platform, its purely distributed ar-
chitecture, and the service requirements necessary to meet
customer needs, it is critical to have a reliable near real-
time monitoring infrastructure. Data must be collected from
the edge servers as fast as possible, to monitor the usage of
the platform, detect anomalies, and troubleshoot problems.

Query is a near real-time monitoring system developed at
Akamai to address these needs. It is used by operations
staff and administrators, software engineers, monitoring and
measurement systems, and indirectly by customers to glean
information regarding the current status of the Akamai plat-
form and the performance of the services it provides.

Data in Query is accessed via SQL queries, which allows
users a comprehensible, familiar, and precise way of de-
scribing the information they want. It also allows them to
combine data from many tables in traditional ways. For ex-
ample, the SQL query below could be issued to show the
average RSS memory usage of processes running as user id
5000, grouped by process name and software version, and
filtered to only include processes with an average memory
usage over 100MB:

SELECT p.process_name,

sv.version,

avg(p.rss) avg_memory

FROM processes p, software_versions sv

WHERE p.machine_id = sv.machine_id

AND p.uid=5000

GROUP BY 1,2

HAVING avg_memory > 100*1000000;

Scalability is an important design consideration in Query,
as it publishes data from tens of thousands of machines,
with the overall amount of published data growing steadily
over time. Query handles its scalability challenges by having
a hierarchical architecture that is largely highly distributed,
but exhibits some aspects of a hybrid centralized/distributed
design. We explain this architecture in Section 2, and the
lessons we have learned from building and operating Query
in Section 3. We describe some of the applications using
Query in Section 4 and the performance it provides them in
Section 5. We close by putting Query in the context of re-
lated work in Section 6 and present conclusions in Section 7.

2. QUERY ARCHITECTURE
2.1 Design Goals
As a monitoring system for an Internet-scale network, Query
has several design goals, including scalability, low latency,



reliability and fault-tolerance, data consistency and data
completeness, and providing an atomic snapshot of the Aka-
mai network. In addition, the design of Query must inte-
grate with our overall system design sensibilities, which in-
volve the use of redundant and distributed commodity hard-
ware as opposed to smaller numbers of higher-end special
purpose servers [2]. As it is difficult to achieve all of these in
one system, the design of such a system must make trade-
offs among these goals. We now discuss each goal of Query’s
design in more detail.

2.1.1 Scalability
Query needs to scale as both the amount of published data
and the number of queries being issued grow continuously.
The growth in the amount of published data is driven by
growth in the number of machines in the network (both to
scale mature services and initiate new services), the num-
ber of tables reported by old and new software components,
and the size of these tables, some of the largest of which
grow with the size of Akamai’s customer base and the size
of the network. Section 3 discusses techniques Query uses
to address its scalability needs.

2.1.2 Latency
Data provided by Query needs to be fresh. Although the au-
tomated response to network faults does not rely on Query,
the timely availability of recent monitoring data is impor-
tant to many applications. For example, system anomalies
must be detected quickly to enable a rapid investigation and
response. This is not possible if data are substantially out of
date. Not only do the data used to answer a query need to
be recent, but that answer needs to come back promptly. It
is unacceptable for an application or user to have to wait a
long time to get results. This leads to two notions of latency
in Query: data latency (how old are the data) and query re-
sponse time (how long does it take to get an answer). Query
uses caching to reduce both types of latency, as described in
Section 3.1. It also uses redundant machines to reduce the
load of queries on each machine, to reduce query response
time.

2.1.3 Reliability
With over 60,000 machines, some are always down or un-
reachable. Thus, Query’s design needs to handle machine
and connectivity failures gracefully. We address failures of
the query infrastructure with redundancy, whereas we ad-
dress failures of edge machines using algorithms for deciding
when to temporarily cease waiting for data from a particular
edge server. Section 3.6 discusses how Query handles faults
in more detail.

2.1.4 Eventual Consistency and Synchronization
Maintaining a consistent view of a network of over 60,000
machines is a significant challenge. Each Query Top-Level
Aggregator (TLA), which is a server that aggregates data
from across the network into tables, can see some portion
(possibly all) of the Akamai network. Query must guarantee
that if a row is published on a particular edge machine, then
every TLA that can see that edge machine will eventually
have that row. Furthermore, it must guarantee that the data
a TLA has from an edge machine can never become older;
that is, older data can be replaced with newer data, but not

the other way around. Finally, each TLA should have an
approximately synchronous snapshot of the network; no two
rows of data that it contains should have been published too
far apart in time. Keeping low latency and fault-tolerance
while guaranteeing universal consistency and synchroniza-
tion at all times would be prohibitively difficult. Therefore,
data completeness and synchronization within a TLA as well
as across TLAs are best-effort.

2.2 Distributed Architecture
Query has a hierarchical structure that allows it to scale.
The Akamai network is organized into clusters, which are
groups of machines in the same physical location. There
are thousands clusters of widely varying sizes, totaling over
60,000 machines. In each cluster, Query runs on each ma-
chine to collect data from all software components on that
machine that publish into Query. Within each cluster, a
set of machines called Cluster Proxies collect all the data
from the cluster and combine them. Top Level Aggrega-
tors (TLAs) combine data from all clusters into tables. The
TLAs then send copies of their tables to machines called
SQL parsers, which then receive queries and compute their
answers. While the TLA and the SQL parser functions can
be co-located on the same machines, separating them allows
them to be scaled separately (as TLA resources scale pri-
marily with network and table size, while SQL parsers scale
primarily with request load). Additionally, to help TLAs
cope with the data collection load, the function of applying
table updates can be split across multiple machines known as
TLA children. We discuss this in more detail in Section 3.5.
Figure 1 shows the basic Query architecture.

Some applications are not interested in data from the entire
network, so only certain TLAs can see all 60,000 machines.
Others can see only a subset of the clusters that serve a
common purpose. We call such a group of clusters a subnet-
work and a TLA that can see the entire Akamai platform a
Mega TLA. The smaller subnetworks are small enough that
the same machine has enough resources to both collect data
and provide answers to queries. We call such a machine a
TLA/SQL.

For fault-tolerance and scalability, most of Akamai’s systems
are highly replicated, and Query is no exception. Multiple
machines serve data for each subnetwork. If one SQL parser
goes down, applications switch to using another intended for
the same role. This happens transparently to the applica-
tions because they use DNS names to locate SQL parsers.
If one TLA goes down, SQL parsers switch to another. If
one Cluster Proxy goes down, TLAs switch to another. Fi-
nally, if an edge machine goes down, we omit rows from that
machine from Query until the machine comes back up.

2.3 Data Collection
When a user or application issues a query to a SQL parser,
the SQL parser checks if it has all the tables that query uses.
If it does, it computes the answer immediately. Otherwise,
it sends a request for any missing tables to the TLA. If the
TLA doesn’t have all the tables it needs, it requests the
missing ones from all Cluster Proxies, which then request
them from their respective clusters.

Upon receiving a request for a table, Query does not send



Figure 1: Basic query architecture.

the table back immediately, because that would violate our
best-effort synchronization. Instead, it includes the newly
requested table in its future nearly-synchronous snapshots.
We call each nearly-synchronous snapshot a generation; gen-
erations start at predefined intervals (such as every two min-
utes), with some variation based on system load. (We dis-
cuss this in more detail in Section 5.)

Every generation, every edge machine sends to each Cluster
Proxy all tables that the Cluster Proxy has requested, the
Cluster Proxies combine the data they have received and
send to each TLA all the tables that TLA has requested, and
the TLAs send to the SQL parsers all tables that each SQL
parser has requested. These sends are staggered such that
each step happens shortly after the prior step completes.
Once the SQL parser has all the tables, it answers the query.
Because of temporal locality of reference, tables are likely to
be reused again soon, so the SQL parser keeps requesting
each table until some period of time has elapsed with no
queries using it.

We know that some tables will be used frequently, so we
speed this process up dramatically for all of those common
cases by preemptively requesting those tables. We describe
that process in Section 3.1.

Collecting data from a large number of machines exposes
interesting tradeoffs between completeness and latency. For
example, if a TLA has only received a copy of a table from
half of the clusters, it could decide that it has the table, even
though it is incomplete, or it could wait before sending that
table to the SQL parsers. We choose completeness except in
extreme cases, to maximize the visibility into the network.
A Cluster Proxy, likewise, does not send a copy to the TLA
unless all machines in the cluster that have the table have
sent it. If an edge machine fails to provide a copy for three
minutes, the Cluster Proxy will drop that machine’s rows
entirely. A TLA will likewise drop a cluster that fails to
provide a table for three minutes after it is requested. A
TLA does not provide a table unless all Cluster Proxies that
have the table have sent their copies to the TLA.

Another motivation for this behavior is to provide clear se-

mantics that rows reported directly by down machines or
clusters will disappear after some period of time, thus sim-
plifying the interface provided to the users of Query. Sim-
ilarly, to provide clear semantics to Query’s users, tables
detailing the configuration of the network (such as the ta-
bles enumerating machines and clusters) are sourced, so as
to be guaranteed to be provided in their entirety.

2.4 Aggregator Sets
Query’s TLAs, TLA/SQLs, and SQL parsers (collectively
referred to as aggregators) are divided into aggregator sets
that serve a common purpose. Each aggregator set sees
tables from a particular part of the Akamai network and
is intended for certain users. That allows us to make sure
that critical applications get the performance they need. For
example, we do not want developers testing out queries to
interfere with automated systems collecting important infor-
mation used for operational monitoring of the network. We
therefore have sets of aggregators specifically for certain ap-
plications or groups of applications. We control the load on
critical aggregator sets to make sure they offer an acceptable
level of service.

3. TECHNIQUES AND EXPERIENCES
Query is used widely within Akamai. This popularity, com-
bined with application and network growth, has posed sig-
nificant scalability challenges. In this section, we discuss
the approaches we have developed and the lessons we have
learned from building and operating this system. We de-
scribe the architectural and administrative techniques we
have used to allow the system to continue to scale, and how
we manage the system so that each class of users and appli-
cations can access the information they need with reliability
guarantees appropriate to their requirements.

3.1 Caching, Prediction, and Compression Poli-
cies

Query employs a variety of policies to anticipate what data
will be necessary to answer near-term future queries. In
some sense, an aggregator contains the subset of global net-
work data that constitute its best guess at what will be re-
quested soon. It constructs this guess by requesting certain
tables in advance (a process called prewarming), caching
certain subqueries, and requesting updates for recently re-
quested tables.

Each aggregator reads a configuration file (distributed dy-
namically through Akamai’s configuration management sys-
tem[11]) telling it what tables to prewarm. These tables are
requested in each generation, even if no query has recently
asked for them. As a result, as soon as a query arrives that
wants to use only prewarmed tables, its answer can be com-
puted immediately, ensuring that our most urgent queries
complete quickly. Combined with the fact that a table that
is not prewarmed is requested for some period of time after
it is used (with that clock resetting after each later use),
the vast majority of queries can complete without having to
wait for Query to fetch tables.

Query caches the results of its views during each genera-
tion of tables, and its configuration files define views that
describe many common sub-queries. This simplifies users’



SQL code and enables Query to compute the result of each
view only once per cycle.

To minimize the communication related to collecting data
from the edge, Query does not send full copies of every ta-
ble. Instead, each cluster sends each TLA only the infor-
mation about what has changed since the last generation.
This saves about half the bandwidth Query would need to
use otherwise. To further reduce bandwidth consumption,
data are being compressed before being transmitted.

3.2 Network Partitioning
The Akamai network is not entirely homogeneous. For ex-
ample, machines performing infrastructural tasks are often
separated into different subnetworks from machines serving
end-user requests. Often times, queries only need data from
one of these types of machines. Because each subnetwork is
somewhat smaller than the whole, an aggregator talking to
only that subnetwork will have an easier time scaling than
one combining data from across the entire network. Ev-
ery subnetwork has such aggregators, and most queries use
them. Only those queries that use the Mega aggregators,
whose purpose is to join data from all subnetworks, experi-
ence the complete effects of our scale. Other techniques in
this section are used to mitigate or eliminate those effects.

3.3 User Partitioning
Different users or applications have different requirements
for Query. Some users need Query to handle a large volume
of data, such as for analyzing traffic patterns across all ma-
chines. Other users need Query to handle as little data as
possible, so that it can aggregate data and answer queries
quickly with a high level of availability, so that Akamai op-
erations can be alerted to anomalies requiring investigation.
Some users need to test queries to understand the impact
of their resource utilization on Query SQL parsers. These
requirements are challenging to satisfy simultaneously.

We solve this problem by partitioning the use of Query. De-
pending on the volume of data and the load of queries we
send to a TLA or SQL parser, it will have a certain speed
of response and level of reliability. We divide up the load so
that critical applications have their own dedicated aggrega-
tors, and no application runs against aggregators that fail
to meet its reliability needs.

3.4 Table partitioning
In addition to partitioning based on subnetworks and usage,
Query allows for table partitioning. Using this technique,
aggregators for the same subnetwork and usage only serve
a subset of tables, to reduce their load. Table partitioning
significantly improves Query’s performance and relies on two
features of the usage pattern: (1) although SQL theoretically
allows any set of tables to be joined, only certain sets can be
joined to produce anything interesting; and (2) although the
sets of tables that are used together can theoretically change
at any time, in practice they change very slowly. Typically,
we can divide the tables used by a particular user into several
sets of approximately equal size. This can only go so far, as
one of the partitions will still need to have all the tables used
by the most resource-intensive query. But it means we can
scale up to the point where a single query takes all of the

resources of the machine. Indeed, a few Query machines are
currently deployed to repeatedly answer a single resource-
intensive query for a customer-facing application.

Partitioning is most useful if it can be done transparently to
Query’s users. Rather than pointing to specific Query ma-
chines, applications reference partitions in a manner that
can be rapidly changed as partitions are reconfigured. Ad-
ditionally, aggregators can send back messages redirecting
users to other partitions, based on their view of how other
aggregators are configured.

3.5 Clustering
Collecting, decoding, and combining data from over 60,000
machines and sending that to SQL parsers can be too heavy
a task for a single TLA. Therefore, the load of a TLA can be
shared among multiple machines: a TLA, and zero or more
machines called TLA children. Each TLA can be told to
distribute a certain set of tables among its TLA children by a
configuration file, a process called deferring. Upon receiving
tables from a cluster, the TLA will send the deferred tables
to the TLA children, who will decode them, combine the
copies from all the clusters, and encode them into the same
efficient form the TLA uses to talk to SQL parsers. The
TLA children then send back the encoded form of the table,
and the TLA sends it to the SQL parsers along with tables
from the TLA itself and from all other TLA children.

3.6 Handling Faults
With over 60,000 machines publishing into Query and over
a hundred aggregators, some Query machines are down or
unreachable at any time. In this section we discuss how
Query copes with these failures. We also discuss what we
have learned about tradeoffs between fault tolerance and
fault isolation.

Query needs to handle failures of edge machines, dropped
connections to edge machines, and aggregator failures. The
latter are handled using redundancy. If a TLA goes down,
its SQL parsers can switch to any of several others in the
same aggregator set. If a SQL parser goes down, its users can
still use others in the same aggregator set. Redundancy also
helps address the failures of edge machines, since each cluster
will have multiple Cluster Proxies. However, when an entire
cluster of edge machines becomes unavailable, for example,
due to a connectivity issue, aggregators temporarily drop it,
instead of holding up new table updates waiting for its data
or serving overly stale data.

Some of Query’s features illustrate tradeoffs between fault
tolerance and fault isolation. For example, fault tolerance
dictates that if a SQL parser is talking to a TLA, and that
TLA goes down, the SQL parser should switch to another
TLA. Fault isolation, on the other hand, dictates that the
SQL parser should be prevented from talking to another
TLA, because the TLA may have gone down due to the size
of the request from the SQL parser, in which case switching
would just impact another TLA. By default, SQL parsers
can switch to other TLAs in the same aggregator set. By
changing configuration, SQL parsers can be rapidly reconfig-
ured to only utilize a subset of the TLA set. That gives oper-
ations staff the flexibility needed to choose the best approach
for every level of load and quality of availability needed.



4. APPLICATIONS
In this section, we describe some of the most significant users
of Query.

One of the most important Query users is Akamai’s “alert
system”, used to identify anomalies on the network. The
alert system is based on SQL queries called “alerts” that are
executed periodically. These alerts are defined by develop-
ers or operations engineers, and trigger based on violations
of invariants (i.e., rows are returned by a SQL query) or
when reported parameters cross thresholds. For example,
an alert might indicate that a machine has been automat-
ically taken out of service due to a hardware problem and
needs repair. Alerts that trigger are responded to based on
their priority and utilize associated procedures which define
an appropriate response. This application depends upon
several of Query’s main design goals, including its near real-
time view of the network and the completeness of the data
it provides. The alerting system relies on high availability
and low latency of data, but has load that remains fairly
constant over time.

Another important Query user is a historical data collection
system which is used for tracking quantitative metrics about
Akamai systems over time and displaying them in graphs.
Again, this system is based on user-defined queries that are
executed periodically, and currently supports over 15,000
such queries. This system depends on a different set of fea-
tures from the alert system. While latency is extremely im-
portant for alerts, historical data collection has lower latency
requirements, counting instead on completeness, scalability
(due to its high load), and eventual consistency. The graphs
in Section 5 were collected with this system.

Finally, a variety of systems give access to Query data to
Akamai’s customers, including graphs available to the gen-
eral public on the Akamai website [13]. These applications,
often result in a lower system load than some other appli-
cations, but have a need for reliability, completeness, and
correctness.

5. PERFORMANCE
In this section we present some of the interesting aspects of
Query’s performance. As the Akamai network has grown by
multiple orders of magnitude, the techniques we described
in Section 3 have allowed Query to keep data latency and
response time within fairly constant bounds.

5.1 Data Latency
Data latency refers to how stale data collected from the edge
are at the time they reach the aggregators. Figure 2 shows
data latency over a one-day period for a heavily loaded
Mega aggregator that spans the entire network. Data la-
tency drops every three minutes, indicating that it takes the
machine about three minutes to collect, decode, and com-
bine data from all of the clusters of edge machines.

5.2 Query Response Time
Figure 3 shows the average elapsed time in milliseconds for
queries issued to a Mega aggregator used by one particular
application over an one-week period. This response time is
the latency experienced by users or applications querying the

Figure 2: Data latency (in seconds) over a day on a
heavily loaded aggregator.

system. It includes the time required to obtain the requested
data and process any particular query. It also includes any
queueing delays on the aggregator due to other concurrently
executing queries. Thus, the response time depends on data
availability and query complexity, but also on aggregator
load.

One interesting observation about this graph is its apparent
wave-like shape. As the total utilization of the Akamai net-
work varies based on time-of-day, and because some query
tables are sized proportionally to the current network uti-
lization, aggregator load also varies based on time-of-day.
The two lower peaks are for Saturday and Sunday.

6. RELATED WORK
Query has been in development for approximately 12 years.
Rather than comparing Query today to the state of the art
at its inception, in this section we reference related work
that has appeared throughout Query’s lifetime.

Large-scale network monitoring systems face challenges re-
lated both to data volume and network size, as well as net-
work and machine failures. SDIMS [15] attacks the scala-
bility challenges by using Distributed Hash Tables to create
scalable aggregation trees. It also uses lazy and on-demand
reaggregation to adjust to network and node reconfigura-
tions.

PRISM [6] employs imprecision to tackle both scalability
and failures. Arithmetic imprecision bounds numeric in-
accuracy, temporal imprecision bounds update delays, and
network imprecision bounds uncertainty due to network and
node failures. Employing imprecision enables PRISM to re-
duce its monitoring overhead and yet provide consistency
guarantees despite failures.

Several system administration tools such as Nagios [8] and
SCOM [12] exist for monitoring network services and ma-
chine resources. Query serves a similar purpose, by allowing
users to specify complex monitoring tasks using a SQL-like
interface.



Figure 3: Query response time (in milliseconds) over
a week. The oscillation is due to patterns of network
usage. The size of many tables grows and shrinks
with network load, which varies over the course of
the day.

Real-time processing of high-volume, continuously updated
data has been the focus of several research efforts in the area
of stream processing systems. Telegraph [3], STREAM [7],
and Aurora/Medusa [4] were the first generation of such
systems, focusing on providing a SQL-like interface to query
continuously updated data. Borealis [1], as a continuation
of the Aurora Project focused on the challenges related to
implementing such a system in a distributed fashion, with
particular emphasis in load shedding and fault-tolerance.
Synergy [10] has focused on composing distributed stream
processing applications, while paying attention to their end-
to-end Quality of Service requirements.

Distributed stream processing has been the focus of several
industrial research efforts as well. IBM’s System S [14] has
focused on a variety of stream processing applications with
highly variable rates, utilizing a large number of stream pro-
cessing nodes. AT&T’s Gigascope [5] has focused on moni-
toring network traffic at extremely high-volumes.

7. CONCLUSIONS
We have discussed the design, implementation, and lessons
learned from operating Query, Akamai’s large-scale monitor-
ing system. Query enables the processing of data from over
60,000 edge servers in near real-time. The availability of a
powerful SQL-like interface to that data has been an impor-
tant element in how we manage our network. In this paper
we have focused on the design choices that enable Query to
scale as the network size, the data volume, and the number
of queries grow. We have shown how Query addresses these
scalability challenges, while providing a data latency in the
order of minutes and an average query response time in the
order of tenths of a second.

8. ACKNOWLEDGMENTS
The authors would like to thank everyone who has devel-
oped and supported Query throughout the years, including
Andy Berkheimer, Josh Buresh-Oppenheim, Timo Burkard,

James Chalfant, Ron Chaney, Greg Fletcher, Stephen Gildea,
Dan Katz, Sef Kloninger, Alan Krantz, Phil Lisiecki, An-
drew Logan, Brian Mancuso, Erik Nygren, Tim Olsen, James
Park, Jan-Michael Santos, and Brad Wasson.

9. REFERENCES
[1] D. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,

M. Cherniack, J. Hwang, W. Lindner, A. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and
S. Zdonik. The design of the Borealis stream
processing engine. In Proceedings of the Second
Biennial Conference on Innovative Data Systems
Research, CIDR, Asilomar, CA, USA, January 2005.

[2] M. Afergan, A. LaMeyer, and J. Wein. Experience
with some principles for building an internet-scale
reliable system. In Proceedings of the 2nd USENIX
Workshop on Real, Large Distributed Systems,
WORLDS, San Francisco, CA, USA, December 2005.

[3] S. Chandrasekaran, O. Cooper, A. Deshpande, M. F.
andJ.M. Hellerstein, W. Hong, S. Krishnamurthy,
S. Madden, V. Raman, F. Reiss, and M. Shah.
TelegraphCQ: Continuous dataflow processing for an
uncertain world. In Proceedings of the First Biennial
Conference on Innovative Data Systems Research,
CIDR, Asilomar, CA, USA, January 2003.

[4] M. Cherniack, H. Balakrishnan, M. Balazinska,
D. Carney, U. Cetintemel, Y. Xing, and S. Zdonik.
Scalable distributed stream processing. In Proceedings
of the First Biennial Conference on Innovative Data
Systems Research, CIDR, Asilomar, CA, USA,
January 2003.

[5] C. Cranor, T. Johnson, O. Spataschek, and
V. Shkapenyuk. Gigascope: a stream database for
network applications. In Proceedings of the 2003 ACM
SIGMOD International Conference on Management of
Data, San Diego, CA, USA, June 2003.

[6] N. Jain, P. Mahajan, D. Kit, P. Yalagandula,
M. Dahlin, and Y. Zhang. Network imprecision: A
new consistency metric for scalable monitoring. In
Proceedings of the 8th USENIX Symposium on
Operating Systems Design and Implementation
(OSDI), San Diego, CA, USA, December 2008.

[7] R. Motwani, J. Widom, A. Arasu, B. Babcock,
S. Babu, M. Datar, G. Manku, C. Olston,
J. Rosenstein, and R. Varma. Query processing,
resource management, and approximation in a data
stream management system. In Proceedings of the
First Biennial Conference on Innovative Data Systems
Research, CIDR, Asilomar, CA, USA, January 2003.

[8] Nagios. http://www.nagios.org/, 2010.

[9] E. Nygren, R. Sitaraman, and J. Sun. The Akamai
Network: A platform for high-performance Internet
applications. ACM SIGOPS Operating Systems
Review, 44(3), July 2010.

[10] T. Repantis, X. Gu, and V. Kalogeraki. QoS-aware
shared component composition for distributed stream
processing systems. IEEE Transactions on Parallel
and Distributed Systems (TPDS), 20(7):968–982, July
2009.

[11] A. Sherman, P. Lisiecki, A. Berkheimer, and J. Wein.
ACMS: The Akamai configuration management
system. In Proceedings of the 2nd USENIX Symposium



on Networked Systems Design and Implementation
(NSDI), Boston, MA, USA, May 2005.

[12] System Center Operations Manager (SCOM).
http://www.microsoft.com/systemcenter/en/us/

operations-manager.aspx, 2010.

[13] Visualizing Global Web Performance with Akamai.
http://www.akamai.com/html/technology/

visualizing_akamai.html, 2010.

[14] K. Wu, P. Yu, B. Gedik, K. Hildrum, C. Aggarwal,
E. Bouillet, W. Fan, D. George, X. Gu, G. Luo, and
H. Wang. Challenges and experience in prototyping a
multi-modal stream analytic and monitoring
application on System S. In Proceedings of the 33rd
Very Large Databases Conference (VLDB), Vienna,
Austria, September 2007.

[15] P. Yalagandula and M. Dahlin. A scalable distributed
information management system. In Proceedings of the
2004 ACM SIGCOMM International Conference on
Data Communication, Portland, OR, USA, August
2004.


