
Decentralized Trust Management for
Ad-Hoc Peer-to-Peer Networks

Thomas Repantis Vana Kalogeraki
Department of Computer Science & Engineering

University of California, Riverside
Riverside, CA 92521

{trep,vana}@cs.ucr.edu

ABSTRACT
Modern mobile devices can form ad-hoc networks to au-
tonomously share data and services. While such self-orga-
nizing, peer-to-peer communities offer exciting collaboration
opportunities, deciding whether to trust another peer can be
challenging. In this work we propose a decentralized trust
management middleware for ad-hoc, peer-to-peer networks,
based on reputation. Our middleware’s protocols take ad-
vantage of the unstructured nature of the network to render
malicious behavior, such as lying and colluding, risky. The
reputation information of each peer is stored in its neighbors
and piggy-backed on its replies. By simulating the behav-
ior of networks both with and without a rating scheme we
were able to show that just a few dishonest peers can flood
the network with false results, whereas this phenomenon is
virtually eliminated when using our middleware.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems

General Terms
Algorithms, Design, Security

Keywords
Trust, reputation, peer-to-peer networks, ad-hoc, unstruc-
tured, decentralized.

1. INTRODUCTION
The vision of pervasive or ubiquitous computing has been

brought closer by advances in the networking, processing
and storage capabilities of personal mobile devices such as
laptops, cellphones, and PDAs [14]. Such devices can form
ad-hoc networks to autonomously share data and services [13].
Self-organizing, peer-to-peer networks, in which nodes act as
both clients and servers, and without a central coordinator,

c© ACM, 2006. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in 1-59593-421-9/06/11, MPAC 2006.
http://doi.acm.org/10.1145/1169075.1169081

offer exciting opportunities for dynamic and cost-effective
collaboration. Users can form localized communities to par-
ticipate in work-related projects, multi-player games, social
networks, or auctions. However, in an unstructured and
decentralized topology several security issues arise. One of
the most challenging problems is to enable a peer to decide
whether to trust another peer, in the absence of a central
trust managing authority [2]. Trust is important when shar-
ing data or processing power, and crucial for e-commerce
applications such as auctioning.

By saying that peer A puts a level of trust into peer B, we
mean that A estimates the probability of B acting in a way
that will allow A to achieve a desired level of satisfaction.
One way a peer A can estimate the level of trust to put into
another peer B, is based on the reputation of peer B. The
reputation of peer B is measured from previous interactions
of peer A with peer B, and also from previous interactions
of other peers with peer B.

One of the main difficulties in managing reputation-based
trust in ad-hoc, peer-to-peer networks is that information
about peer interactions is spread across the network, and no
single peer has a complete global view of the peers’ reputa-
tions. Furthermore, malicious peers might tamper with rep-
utation information while it is stored locally or transmitted,
or even try to defame other peers. A middleware solution
to these challenges can facilitate secure peer interoperability
without user intervention.

We have identified the following major requirements for a
reputation-based trust management middleware: i) To en-
able peers to identify trustworthy and untrustworthy peers
for the particular resource and level of trust they require. ii)
To be light-weight, so that the protocol overhead for iden-
tifying the peers’ trust level is not hindering their actual
interaction. iii) To be resistant to collusions; preventing ma-
licious peers from forming cliques to boost their reputation
or to defame other peers. iv) To be resistant to malicious at-
tempts to tamper with the reputation information of peers,
identifying such attacks.

Distributed trust management based on reputations has
been the focus of several research efforts. One of the main
challenges, which is also the focus of this work, is how to
decide where to store the reputation information. Storing
the reputation information in a distributed manner and con-
ducting polling to gather it, as proposed in [3], generates a
large amount of network traffic and delay. Storing the repu-
tation information in the peer this information refers to re-
quires complicated operations to ensure that this peer will
not tamper with its reputation [12]. On the other hand, stor-

ing the reputation information in just one peer is also risky,
since that peer is controlling another peer’s fate and may
try blackmailing or colluding with it. Anonymous storing
of reputation information [15] is complicated and requires
broadcasting, which has unacceptable overhead for an un-
structured, peer-to-peer system. Storing the same reputa-
tion information in a group of peers, like [8] proposes for
structured, peer-to-peer networks, seems a reasonable ap-
proach, since it will allow the comparison and verification
of the reputation information received by all or some of the
peers of that group.

In this paper we propose a decentralized trust manage-
ment middleware for unstructured, ad-hoc, peer-to-peer net-
works, that is based on reputation. To achieve the afore-
mentioned goals and overcome the limitations of the exist-
ing schemes, we propose storing the reputation information
in a group of peers that is not easily identifiable, so that
collusions and blackmailing are hindered. Thus, in our mid-
dleware the reputation information of each peer is stored
in its neighbors and piggy-backed on its replies to requests
for data or services. The novelty of our middleware lies in
the fact that it relies on the lack of network structure to
manage reputation information in a secure way. The lack of
structure and the dynamic nature of the network are usually
regarded as obstacles in managing trust information in self-
organizing networks. Our approach utilizes these character-
istics to build a self-organizing, non-intrusive trust manage-
ment infrastructure resistant to tampering and collusions.
Our experiments show that a few dishonest peers can se-
riously threaten the operation of an ad-hoc, peer-to-peer
network, and that our trust management middleware can
effectively prevent this from happening.

The rest of the paper progresses as follows: We discuss
our system model in section 2, and our system’s operation
in section 3. Section 4 describes how representative attacks
are prevented, while section 5 elaborates on system algo-
rithms. Section 6 presents our experimental evaluation. Re-
lated work is discussed in section 7, and section 8 concludes
the paper and summarizes our contributions.

2. SYSTEM MODEL
We assume a logical network of peers that provide data

or services to each other. We will use the term object to
collectively refer to both data and services. Each peer pi is
identified by a public/private key pair, and maintains con-
nections to other peers. The network is unstructured, decen-
tralized and self-organizing, meaning that peers make their
own decisions as to which peers to connect to or to query for
objects. Each peer that offers an object oj to another peer
receives a rating rj . A peer’s reputation Ri is defined as the
sum of ratings it has received so far, Ri =

P

j
rj . When a

peer acts as a consumer of an object, its goal is to identify
the peer with the highest reputation, that is offering the par-
ticular object. Knowing the peer’s reputation the consumer
can decide whether to trust the provider, depending on the
minimum trust level Lj it requires for this particular type

of object. For example, a peer might have different required
trust levels for different types of transactions, depending on
their cost. While the minimum trust levels are set once by
the user, discovering the providers with the highest reputa-
tion Ri and comparing Ri to Lj to decide whether a peer can
be trusted (if Ri ≥ Lj) are the responsibilities of the trust
management middleware. When a peer acts as a provider of

an object, its goal is to have as many consumers as possible.
This can result in monetary gain, privileges as a consumer,
or any other benefit defined by an incentives policy, such
as [17]. Since the way for a provider to attract more con-
sumers is to have a reputation higher than their trust level,
every provider’s goal is to have as high a reputation as pos-
sible. Honest peers try to boost their reputation by offering
objects as promised, to receive good ratings. Malicious peers
try to either increase their reputation by tampering with it,
without actually having received the corresponding ratings,
or decrease the reputation of other peers, to increase their
own chances of being selected as providers.

3. SYSTEM OPERATION
A peer ps searches for an object by sending query mes-

sages to its immediate neighbors. These queries are evalu-
ated locally in each peer and in case a peer pr offers a match-
ing object, the positive reply (query-hit) is returned to ps.
The queries are propagated further, until their number of
hops to travel (Time To Live –TTL) expires. Similarly to
Gnutella [4], every query is identified by a globally unique
identifier (GUID), which we call the transaction GUID –

TID. The TID is the same for the query message, and the
possible query-hit, and rating messages that are produced
as a result of this query. It is defined as a random number,
generated by the peer ps that produced the query, together
with its public key. The query-hits follow the same path as
the queries to reach ps. This is easily achieved by the peers
caching the TID from a query they have routed and using
the reverse route when routing the corresponding query-hit,
which has the same TID.

Every immediate neighbor of pr, through which a query-
hit of this peer travels, is responsible for adding the rep-
utation of pr to the query-hit message. Depending on the
topology of the network, pr has several immediate neighbors
and all of them are responsible for piggy-backing its reputa-
tion to its query-hit messages. The peer ps that generated
the query compares all query-hits originating from the same
peer pr, to ensure that all report the same reputation for it.
The reputation R of each peer is associated at ps with a con-
fidence value C, which is equal to the number of peers that
have reported R. Honest peers are encouraged through C

to maintain multiple neighbors, which makes attacks riskier,
due to the entropy introduced by the unstructured topology
as we explain in the following sections. The necessity of hav-
ing more than one neighbor reporting the same reputation
is further explained in section 4.1, while the importance of
the confidence value is explained in section 4.4.

Figure 1 shows an example of a query and query-hit ex-
change. Let us assume that peer A (ps) creates a query with
TTL = 3 that is propagated and eventually reaches F (pr),
who –having the object– creates a query-hit. That reply fol-
lows the same path as the query to reach A. The neighbors
of F, namely C and D add its reputation to the query-hit,
before propagating it further. In this topology two query-
hits will be generated, so that peer A will be able to verify
that F’s reputation on both of them is the same. This re-
dundancy is newly introduced, since normally F would have
just replied once. Since F’s neighbors do not know if they
will be the only ones propagating the current query-hit, they
cannot risk tampering with the reputation.

After an interaction, ps rates the object it was provided.
The rating message is signed by ps and propagated using

A

BC

D

E

F

G

H

I

J

K

Q

Q

QH

QH

Q

Q

Q
QH+R

QH+R

Q

QH+R
QH+R

Figure 1: Query and query-hit example.

r

A

BC

D

E

F

G

H

I

J

K

r

r

r

r r

r

r

r

Figure 2: Rating example.

the same flooding-based mechanism as the query message.
However, the TTL of the rating message is larger than the
TTL of the query message by 1, so that the rating can reach
all the neighbors of the peer pr that is being rated.

Figure 2 shows an example of rating. After A uses the ob-
ject provided by F, it creates a rating message, with TTL =
3 + 1 = 4, that is propagated and reaches all of F’s imme-
diate neighbors (C, D, G, H, J), who update the reputation
they store for F. The rating message also reaches peers like
B and E, that will not store the rating of F, since they are
not its neighbors and do not maintain its reputation.

Each of pr’s neighbors stores locally the query-hit’s TID
when piggy-backing pr’s reputation on its query-hit. The
TID contains the public key of ps, that was contained in the
query. The public key is used to verify the signed rating
produced by ps if the transaction takes place. Storing the
query-hits’ TIDs enables each neighbor to keep track of the
query-hits pr has produced. Once a rating is received, it
also contains the TID of the original query and query-hit.
This enables the neighbors to associate the rating with the
original query-hit. While a query-hit may not always result
to a transaction and a corresponding rating, a rating must
always contain a TID seen by the neighbor in the past, as
long as the rating’s TTL has not expired. This enables the
neighbors to detect collusions and is explained in section 4.4.
The TIDs are periodically purged from the neighbors, but
are stored for long enough time, to ensure that it will be
possible for the rating to be associated with the query-hit,
if the transaction actually takes place.

4. ATTACKS
We now present several attacks of malicious peers and

show how our middleware prevents them, by storing each
peer’s reputation in all of its immediate neighbors.

4.1 Tampering
Alter Reputation. A peer does not store its own rep-

utation, thus it cannot tamper with it. A malicious peer
however can change the reputation it stores for one of its
neighbors. Yet, such an attempt is detected by the recipi-
ent of the query-hit (the generator of the query, ps), since
multiple neighbors of pr, depending on the topology, will re-
port pr’s reputation and all of them should report the same
value. In other words, a neighbor reporting bogus reputa-
tion might be revealed, since it may not be the only one
answering, due to the unstructured topology. For example,
in figure 1, A will make sure that the reputation of F re-
ported by both C and D is the same. The redundancy in

reputation reports and the unknown topology also deter ran-
dom peers from altering reputations they propagate, since
the alterations might be revealed.

Alter Ratings. Similarly, tampering with a peer’s rating
could be detected by that peer. For example, in figure 2, F
could detect a change in its rating by D, by comparing it to
the rating it received from C for the same query-hit. How-
ever, comparisons like this are not needed, because ratings
are signed by their creator ps. This way, the recipients of
the rating, namely the neighbors of the peer pr that offered
the object, can verify that no peer on the way has altered
the rating in any way. They already have ps’s public key,
cached in the TID of the corresponding query-hit. Signing
the rating messages is needed not only to prevent alterations
by random peers on the way, but also to prevent alterations
by the peer the rating refers to. For example, in figure 2, F
is asked to propagate its own rating. Even though if a rat-
ing altered by F was stored in G, H, and J, peers C and D
would still have the correct value and the discrepancy would
be noted in future reputation reports, having digitally signed
ratings minimizes the risk of a successful alteration.

4.2 Blackmailing
Peers store their neighbors’ reputation and their neighbors

store theirs’. This balance of power makes blackmailing in-
feasible. Furthermore, if just one neighbor decides to report
bogus reputation, it is running the risk of being identified
as was described in section 4.1.

4.3 Multiple Ratings
A malicious peer can try to submit multiple positive or

negative ratings for others. Such an attack would be mounted
by impersonating multiple ratings coming from the same or
different peers (public keys). In either case, since no query-
hits with the same TIDs as the ratings are stored in the
neighbors, they can detect the discrepancy. In other words,
maximally one rating per TID is stored in every neighbor.

4.4 Collusions
Symmetric Boost. A collusion can take place in which

two neighbors agree to boost each other’s reputation. This
however would be revealed by the replies of the rest of the
neighbors, for both peers. Thus, to mutually boost each
other’s reputation, all neighbors of each peer would have
to cooperate and consequently all of their neighbors, until
the whole network was part of the collusion. For example, in
figure 1, if F and C decided to boost each other’s reputation,
D, G, H, and J (for F), as well as B (for C) would have to
cooperate too, and consequently also I (for H), K (for J), E

(for D), and A (for B).
Incomplete Asymmetric Boost. An attack that would

seem more feasible would be for a malicious peer to bribe
some of its neighbors to boost its reputation, without how-
ever the attacker boosting their reputation in return. Obvi-
ously, the attacker would not propagate query-hits through
the neighbors that do not store the boosted reputation, oth-
erwise the discrepancy in the reporting values would be
noted in the recipient of the query-hits. This attack how-
ever is detected by the neighbors that are not part of the
collusion, due to the fact that they are comparing the TIDs
of the ratings they receive, with the query-hit TIDs they
keep stored. In more detail, they would receive ratings for
their neighbor with TIDs they have not propagated, and
those ratings would have a TTL that has not expired. For
example, in figure 2 if D had been excluded from propagat-
ing a query-hit of F, it would detect the discrepancy when
receiving the corresponding rating. On the contrary, G, H,
and J will not be alarmed since the rating reaches them but
its TTL expires. This means that they are the TTL+1 hop
of the rating. Therefore the query (that traveled through
TTL hops) did not reach them and they were not supposed
to propagate a corresponding query-hit. B and E are not
alarmed either, since they received a rating for a peer that
is not one of their neighbors and they can safely ignore it.

Complete Asymmetric Boost. An even more elab-
orate collusion involves a malicious peer bribing all of its
neighbors to boost its reputation, without the attacker boost-
ing their reputation in return. Since all peers participating
in the protocol are now malicious the attack cannot be de-
tected. This attack however reveals the use of the confidence
value C. The higher the number of peers that report a repu-
tation value R, the higher the number of peers the attacker
would have to bribe. Thus, an attacker maintaining just a
small number of bribed neighbors will only gain a reputation
with a small confidence.

The lack of structure is usually regarded as a major hin-
drance in managing trust information in unstructured, peer-
to-peer systems. Our approach is novel, in that it utilizes
exactly this characteristic to create an environment that
makes tampering with reputation information cumbersome
and risky. Higher reliability –at a higher message overhead–
can be achieved by storing the reputation of each peer in
neighbors more than one hop away.

5. SYSTEM ALGORITHMS
Even though the focus of this work is on how to decide

where to store the reputation information, the algorithms for
selecting and for rating the provider of an object are also of
interest, as are peer dynamics. The algorithm for selecting
the provider with the best reputation might weigh the rat-
ings, according to the personal opinion of the peer for the
raters, or according to the raters’ reputation as peers or even
as raters. In addition to the reputation of a provider Ri and
the minimum trust level for a particular object acceptable
by the consumer, Lj , we have introduced one more factor in
the peer selection, namely the confidence Ci in the reported
Ri for each provider. Currently we let the consumer set min-
imum confidence levels Kj per object, once. Consequently
we let the middleware select the provider with maximum
Ri, as long as Ri ≥ Lj and Ci ≥ Kj . For providers with
equal Ri’s other criteria, such as the network distance, can
be utilized to break the tie.

The algorithm for rating a provider might use a scale
that allows comparison with the current rating average for
a provider. In that way, ratings far away from the average
might be noted, and the responsibility of the rater might also
be rated. Moreover, both the object provider and consumer
may rate each other. Currently we do not associate the rep-
utation of a peer as a provider with any reputation it may
have as a rater. Therefore, to rate providers we use a simple
binary rating scheme, to denote dissatisfaction (-1) or satis-
faction (+1) with an object. This scheme allows the ratings
given by different peers to be as comparable as possible, as
it leaves little room for subjective interpretation. Further-
more, it enables ratings to be assigned automatically, since
success or failure in the consumption of an object are easier
to be determined than user satisfaction.

Issues related to peer dynamics are also interesting. We
briefly discuss peer reconnection here and leave as future
work a thorough investigation of highly dynamic networks,
such as those formed by mobile peers. When a peer enters
the system it receives the reputation of the peers it connects
to from their neighbors. Its new neighbors receive any ex-
isting reputation it has by its old neighbors which still store
it together with its public key1. Not all of the old neighbors
need to be online at the same time for the reputation to be
retrieved. These two types of updates are achieved follow-
ing protocols similar to the exchange of query and query-hit
messages described earlier. If a peer is new in the network,
its reputation is zero and it is built as the peer engages in
transactions. By not giving any initial reputation to new-
comers, we discourage peers with bad reputation to leave
the system and reenter under a new identity, since building
a reputation is a tedious process. Furthermore, this partic-
ular kind of attack, also known as the sybil attack, in which
a malicious peer assumes multiple identities, has been the
study of recent research [19]. Our middleware, which pro-
vides the infrastructure to store reputation information per-
taining to an identity, can be combined with a solution such
as [19] to prevent peers from joining under a new identity.

6. EXPERIMENTAL EVALUATION
We conducted an evaluation of our middleware in net-

works of thousands of peers, implementing it on top of the
Gnutella [4] unstructured, peer-to-peer network, using the
NeuroGrid simulator [7]. We used 3000 types of objects,
distributed uniformly (30 objects per peer) across randomly
connected peers. In each experiment we ran 100 random
searches and averaged our results from 5 measurements.

Apart from the honest peers, that provide the objects they
claim they have, we included a number of dishonest peers
in the network. These malicious peers claim that they have
every object they are asked for, in other words reply with
a bogus query-hit to every query they receive, without of
course being able to provide the real requested object. We
observed the effect of that behavior on the operation of the
network, with and without using a rating scheme. When
the rating scheme is used, we assume that the malicious
peers can only cheat once, since then they are discovered
and receive a bad rating that discourages other peers to
interact with them.

1They will delete it once the peer reconnects to another
place, since its new neighbors will be responsible for storing
that information from now on.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100

A
ve

ra
ge

 N
um

be
r o

f F
al

se
 M

at
ch

es

Percentage of Honest Nodes

Average Number of False Matches

Without Using Ratings Using Ratings

Figure 3: False matches to a search, for

varying percentage of honest peers.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

A
ve

ra
ge

 P
re

ci
si

on

Percentage of Honest Nodes

Average Precision

Without Using Ratings Using Ratings

Figure 4: Proportion of genuine matches,

for varying percentage of honest peers.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 1000 2000 3000 4000 5000 6000 7000

A
ve

ra
ge

 N
um

be
r o

f F
al

se
 M

at
ch

es

Number of Nodes

Average Number of False Matches

Without Using Ratings Using Ratings

Figure 5: False matches to a search, for

varying total number of peers.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000

A
ve

ra
ge

 P
re

ci
si

on

Number of Nodes

Average Precision

Without Using Ratings Using Ratings

Figure 6: Proportion of genuine matches,

for varying total number of peers.

Variable percentage of dishonest peers. For the first
experiment, we kept the total number of peers to 1000, and
we varied the number of honest peers in the network. Our
goal was to determine to what extent the percentage of dis-
honest peers affects the operation of the network.

Figure 3 shows the average number of false matches, i.e.,
bogus query-hits. Without utilizing the rating scheme, this
is quite high, even for relatively small percentages of dis-
honest peers. By using the rating scheme the number of
false matches is virtually eliminated, even for networks with
many malicious peers.

Figure 4 shows the average precision, i.e., the average pro-
portion of query-hits that were genuine (not bogus). When
using the rating scheme, that proportion remains very high.
Surprising are the results when not using any rating scheme.
The precision remains practically close to zero, even when
80% of the peers are honest. If 1 out of 10 peers is dishon-
est, 9 out of 10 query-hits are bogus. This means that a few
dishonest peers have the ability to flood the network with
false matches, representing a real threat to its operation.
Variable number of peers. It was interesting to see if dis-
honest behavior is equally threatening for larger-scale net-
works. Therefore in the second experiment we kept the per-
centage of honest peers to 75%, and we varied the total
number of peers in the network.

Figure 5 shows the average number of bogus query-hits.
Without using the rating scheme, the number of false matches
grows very fast for large networks. Again, the rating scheme
prevents this behavior.

Figure 6 shows the average proportion of genuine query-
hits. Again by using the rating scheme this proportion re-
mains high, even for large networks. However, without a

rating scheme, the dishonest peers present a threat even to
large-scale networks. Even though 3 out of 4 peers are hon-
est, the percentage of genuine query-hits remains close to
zero. We observe that the dishonest peers are able to flood
even large networks.

7. RELATED WORK
Several peer-to-peer reputation systems have already been

proposed, taking different approaches as to where to store
the reputation information. In RCertPX [12] a reputation
certificate is stored in the peer that it refers to and is up-
dated after each transaction. To avoid tampering, the last
rater always digitally signs the whole certificate. Thus, the
last rater needs to be online for another peer to be able
to verify the certificate’s correctness. Another complication
arises from the fact that a rater and a ratee could collude to
change all the ratings of the ratee. In P2PRep [3] a polling-
based protocol is proposed and implemented. Any peer that
wants to query the trust value of another peer, broadcasts
a query to the network, collects the replies, and individu-
ally contacts the voters for confirmation. Apart from the
network traffic generated and the delay of the process, this
approach counts only the reviews of present peers that can
be reached. A similar approach of voting, but on the repu-
tation of objects instead of that of peers, is implemented in
Credence [18], while TrustGuard [16] focuses on identifying
feedback that does not correspond to actual transactions.

TrustMe [15] identifies anonymity as an important feature
of trust-managing systems. The trust rating of each peer is
placed at another random peer, which replies to all queries
for the trust values it holds. One drawback of the protocol
is that it relies on broadcasting, making it unacceptable for

large-scale, unstructured networks. EigenTrust [8], a global
variable regarding a peer’s reputation is stored in a peer’s
mother peers. The global variable is generated by aggregat-
ing local variables in all peers, in an iterative process. The
algorithm does not prevent mother peers from blackmailing
a peer, nor from colluding against a peer.

In NICE [9] cooperating peers form a graph, and a peer
providing a service is responsible to prove its reliability to a
peer that would like to use it, by finding a path in the graph
to that peer. However during this discovery process flooding
is used and many irrelevant peers may be contacted. More-
over, since the peer providing a service is gathering its rep-
utation information, it may omit bad ratings. In [1] a trust
managing system on top of the P-Grid peer-to-peer system
is described. Complaints about peers are stored in a virtual
binary search tree. However no measures are taken against
peers storing complaints about themselves, or against ma-
licious peers, which might tamper with ratings while they
transmit them. Similar to EigenTrust, P-Grid requires a
network structure to be maintained, for the reputation in-
formation to be stored and retrieved.

Challenges related to the mobility of nodes have also been
the focus of recent research efforts, identifying the mobility
patterns of nodes [11], their location [5], time, context [10],
and current environmental conditions [6] as other important
factors related to trust.

8. CONCLUSIONS
We have proposed a decentralized trust management mid-

dleware based on reputation, for ad-hoc, peer-to-peer net-
works. We have shown how random topologies that may
be created make malicious behavior like lying and collud-
ing risky. Moreover, all peers are equally powerful, con-
trolling the fates of their neighbors, while their fates are
controlled by their neighbors. The unstructured nature of
ad-hoc, peer-to-peer networks is usually regarded as an ob-
stacle in ensuring trust. Our middleware relies on exactly
this characteristic to achieve this goal and to avoid relying on
a central authority. We have tried to keep our middleware’s
protocol simple and easy to build on top of infrastructures
already available for the exchange of messages, to minimize
its overhead. The communication overhead of polling-based
protocols is avoided and the only extra messages introduced
are those carrying a new rating. Furthermore, the ratings
of peers that have left the system are still present. Our fu-
ture work includes investigating the effects of mobility and
elaborating on the peer selection and rating algorithms.

9. ACKNOWLEDGMENTS
We wish to thank Chinya V. Ravishankar and Dimitrios

Gunopulos for their helpful advice during the initial phase
of this work.

This research has been supported by NSF Awards 0330481
and 0627191.

10. REFERENCES
[1] K. Aberer and Z. Despotovic. Managing trust in a

peer-2-peer information system. In International

Conference on Information and Knowledge

Management, CIKM, 2001.

[2] V. Cahill et al. Using trust for secure collaboration in
uncertain environments. IEEE Pervasive Computing,

2:52–61, 2003.

[3] F. Cornelli, E. Damiani, S. D. C. di Vimercati,
S. Paraboschi, and P. Samarati. Choosing reputable
servents in a P2P network. In International World

Wide Web Conference, WWW, 2002.

[4] Gnutella Protocol Development.
http://rfc-gnutella.sourceforge.net/, 2003.

[5] T. Horozov, N. Narasimhan, and V. Vasudevan. Using
location for personalized POI recommendations in
mobile environments. In International Symposium on

Applications on Internet, SAINT, 2006.

[6] M. Huebscher and J. McCann. A learning model for
trustworthiness of context-awareness services. In 2nd

International Workshop on Pervasive Computing and

Communication Security, PerSec, 2005.

[7] S. Joseph. An extendible open source P2P simulator.
P2P Journal, pages 1–15, November 2003.

[8] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina.
The eigentrust algorithm for reputation management
in P2P networks. In International World Wide Web

Conference, WWW, 2003.

[9] S. Lee, R.Sherwood, and B.Bhattacharjee. Cooperative
peer groups in NICE. In IEEE INFOCOM, 2003.

[10] J. Liu and V. Issarny. Enhanced reputation mechanism
for mobile ad hoc networks. In International

Conference on Trust Management, iTrust, 2004.

[11] L. Mcnamara, C. Mascolo, and L. Capra. Trust and
mobility aware service provision for pervasive
computing. In 1st International Workshop on

Requirements and Solutions for Pervasive Software

Infrastructures, RSPSI, 2006.

[12] B. Ooi, C. Liau, and K. Tau. Managing trust in
peer-to-peer systems using reputation-based
techniques. In International Conference on Web Age

Information Management, WAIM, 2003.

[13] T. Repantis and V. Kalogeraki. Data dissemination in
mobile peer-to-peer networks. In International

Conference on Mobile Data Management, MDM, 2005.

[14] M. Roman et al. Amiddleware infrastructure for active
spaces. IEEE Pervasive Computing, 1:74–83, 2002.

[15] A. Singh and L. Liu. TrustMe: Anonymous
management of trust relationships in decentralized
P2P systems. In International Conference on

Peer-to-Peer Computing, P2P, 2003.

[16] M. Srivatsa, L. Xiong, and L. Liu. TrustGuard:
Countering vulnerabilities in reputation management
for decentralized overlay networks. In International

World Wide Web Conference, WWW, 2005.

[17] Q. Sun and H. Garcia-Molina. SLIC: A selfish
link-based incentive mechanism for unstructured
peer-to-peer networks. In International Conference on

Distributed Computing Systems, ICDCS, 2004.

[18] K. Walsh and E. Sirer. Experience with an object
reputation system for peer-to-peer filesharing. In
Networked Systems Design and Implementation,

NSDI, 2006.

[19] H. Yu, M. Kaminsky, P. Gibbons, and A. Flaxman.
SybilGuard: Defending against sybil attacks via social
networks. In ACM SIGCOMM, 2006.

