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Overview

pplying Model Driven Architectures to Distributed
Systems.

Distributed Real-Time Embedded Systems
Component Middleware

Model Driven Middleware

Existing Work on Real-Time MDM

Our Vision for Fault-Tolerant, Secure MDM
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Distributed Real-Time Embedded
(DRE) Systems

Flectric Power Air Traffic. Ind.srial Process Military Medical

Grid Control Control Operalions Imaging

Networks:
* Large-scale
* Heterogeneous
* Dynamic
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DRE Requirements

Real-time:
* low latency, bounded jitter

» Availability:

* bounded fault propagation/recovery
* Security:

 authentication, authorization

* Physical Requirements:
* weight, power consumption, memory footprint
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» Control of QoS properties

* Platform independence

* Cost reduction
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MIDDLEWARE ARCHS

Middleware Architectures

CORBA J2EE _NET
Apps Apps Apps

CORBA JZEE NET

Services Services Services

* Real-time CORBA
* Fault-tolerant CORBA
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Unresolved Challenges

* |solation of applications from middleware platforms
» Composing applications from components

» Configuring component middleware

* Automated deployment

 Satisfying multiple QoS properties simultaneously

Ad hoc (manual) techniques:
* Do not scale well
* Are tedious
* Are error-prone
* Lack verification and validation mechanisms
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MDA to the rescue...

MDA can express application functionality and QoS
requirements at higher levels of abstraction than by
using 3GLs:

* Model properties
* Analyze requirements
* Synthesize code
* Provision deployment
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Model Driven Middleware

Bridge the gap between specification and
Implementation:

* Compose applications from reusable components.
* Synthesize new extended components.
* Automate the configuration of QoS aspects.

* Model the interfaces of components in a standard
way.

» Easily handle changes in components.
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MDM Example

Configuring and deploying an application
services end-to-end

Composing companents into application
Server components

Configuring application campanent containers

Synthesizing application companent
implementations

Eynthesizing dynamic QoS provisioning
and adaptation logic

Synthesizing middleware-specific configurations

Synthesizing middleware implementations
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CoSMIC

* Each CoSMIC tool synthesizes metadata in XML
for use in the underlying middleware.

* CoSMIC uses a Platform Specific Model to
integrate the modeling technology with the CIAO
Qo0S-enabled component middleware.
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CoSMIC Detalls

oSMIC Modeling Paradigms:

* OCML (Options Configuration Modeling
Language) to model configuration parameters and
constraints and synthesize the middleware
configuration metadata.

« CADML (Component Assembly and Deployment
Modeling Language) to model component
assembly and deployment.
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Our Vision for Fault-Tolerant, Secure
MDM

ystems able to continue normal operation despite the
presence of hardware or software faults:

» Communication network failures
* Node failures
* Object failures

Different security levels and domains:

* Authentication
* Authorization
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Goals

ault-tolerance:
* Automatic creation and allocation of replicas

* Automatic maintenance of replica consistency

* Automatic fault detection and recovery

Security:

* Automatic admission control

* Automatic conformance to specific security levels
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System Architecture

* Replication Manager

* Fault Detector
* Admission Manager

System Parameters:
* Probabillity of failure for each component
* Replication degree of each component
» Security level satisfied by each component
» Access privileges of each component
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A Model-Driven Approach

Modeling of components

* Configuration of parameters

* Deployment

* Fault-tolerance and security assurance
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Conclusions

Distributed Real-Time Embedded Systems are
Increasingly being developed using component
middleware.

Unresolved challenges include isolation of
applications from the middleware platform,
automatic application composition, and automatic
middleware configuration.

Model Driven Architectures can provide a scalable
and verifiable solution to the above.

Model Driven Middleware can automate the
creation, configuration, and deployment of
Real-Time, Fault-Tolerant, Secure distributed
applications.
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Thank you!

uestions/Comments?
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