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Overview

Applying Model Driven Architectures to Distributed
Systems.

1. Distributed Real-Time Embedded Systems

2. Component Middleware

3. Model Driven Middleware

4. Existing Work on Real-Time MDM

5. Our Vision for Fault-Tolerant, Secure MDM
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Distributed Real-Time Embedded
(DRE) Systems

Networks:
• Large-scale
• Heterogeneous
• Dynamic
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DRE Requirements

• Real-time:
• low latency, bounded jitter

• Availability:
• bounded fault propagation/recovery

• Security:
• authentication, authorization

• Physical Requirements:
• weight, power consumption, memory footprint
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Component Middleware

• Control of QoS properties
• Platform independence
• Cost reduction CS260-Seminar in Computer Science, Spring 2004 – p.5/20



Middleware Architectures

• Real-time CORBA
• Fault-tolerant CORBA
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Unresolved Challenges

• Isolation of applications from middleware platforms
• Composing applications from components
• Configuring component middleware
• Automated deployment
• Satisfying multiple QoS properties simultaneously

Ad hoc (manual) techniques:
• Do not scale well
• Are tedious
• Are error-prone
• Lack verification and validation mechanisms
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MDA to the rescue...

MDA can express application functionality and QoS
requirements at higher levels of abstraction than by
using 3GLs:

• Model properties
• Analyze requirements
• Synthesize code
• Provision deployment
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Model Driven Middleware

Bridge the gap between specification and
implementation:

• Compose applications from reusable components.
• Synthesize new extended components.
• Automate the configuration of QoS aspects.
• Model the interfaces of components in a standard

way.
• Easily handle changes in components.
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MDM Example
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Existing Work on Real-Time MDM

Component Synthesis using Model Integrated Computing
(CoSMIC - Douglas Schmidt - Vanderbilt University)
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CoSMIC

• Each CoSMIC tool synthesizes metadata in XML
for use in the underlying middleware.

• CoSMIC uses a Platform Specific Model to
integrate the modeling technology with the CIAO
QoS-enabled component middleware.
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CoSMIC Details

CoSMIC Modeling Paradigms:
• OCML (Options Configuration Modeling

Language) to model configuration parameters and
constraints and synthesize the middleware
configuration metadata.

• CADML (Component Assembly and Deployment
Modeling Language) to model component
assembly and deployment.
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Our Vision for Fault-Tolerant, Secure
MDM

Systems able to continue normal operation despite the
presence of hardware or software faults:

• Communication network failures
• Node failures
• Object failures

Different security levels and domains:

• Authentication
• Authorization
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Goals

Fault-tolerance:
• Automatic creation and allocation of replicas
• Automatic maintenance of replica consistency
• Automatic fault detection and recovery

Security:
• Automatic admission control
• Automatic conformance to specific security levels
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System Architecture

• Replication Manager
• Fault Detector
• Admission Manager

System Parameters:
• Probability of failure for each component
• Replication degree of each component
• Security level satisfied by each component
• Access privileges of each component

CS260-Seminar in Computer Science, Spring 2004 – p.16/20



A Model-Driven Approach

• Modeling of components
• Configuration of parameters
• Deployment
• Fault-tolerance and security assurance
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Conclusions

• Distributed Real-Time Embedded Systems are
increasingly being developed using component
middleware.

• Unresolved challenges include isolation of
applications from the middleware platform,
automatic application composition, and automatic
middleware configuration.

• Model Driven Architectures can provide a scalable
and verifiable solution to the above.

• Model Driven Middleware can automate the
creation, configuration, and deployment of
Real-Time, Fault-Tolerant, Secure distributed
applications. CS260-Seminar in Computer Science, Spring 2004 – p.18/20
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Thank you!

Questions/Comments?
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