
Model Driven Middleware

Presented by:

Thomas Repantis

trep@cs.ucr.edu

CS260-Seminar in Computer Science, Spring 2004 – p.1/20



Overview

Applying Model Driven Architectures to Distributed
Systems.

1. Distributed Real-Time Embedded Systems

2. Component Middleware

3. Model Driven Middleware

4. Existing Work on Real-Time MDM

5. Our Vision for Fault-Tolerant, Secure MDM

CS260-Seminar in Computer Science, Spring 2004 – p.2/20



Distributed Real-Time Embedded
(DRE) Systems

Networks:
• Large-scale
• Heterogeneous
• Dynamic

CS260-Seminar in Computer Science, Spring 2004 – p.3/20



DRE Requirements

• Real-time:
• low latency, bounded jitter

• Availability:
• bounded fault propagation/recovery

• Security:
• authentication, authorization

• Physical Requirements:
• weight, power consumption, memory footprint

CS260-Seminar in Computer Science, Spring 2004 – p.4/20



Component Middleware

• Control of QoS properties
• Platform independence
• Cost reduction CS260-Seminar in Computer Science, Spring 2004 – p.5/20



Middleware Architectures

• Real-time CORBA
• Fault-tolerant CORBA

CS260-Seminar in Computer Science, Spring 2004 – p.6/20



Unresolved Challenges

• Isolation of applications from middleware platforms
• Composing applications from components
• Configuring component middleware
• Automated deployment
• Satisfying multiple QoS properties simultaneously

Ad hoc (manual) techniques:
• Do not scale well
• Are tedious
• Are error-prone
• Lack verification and validation mechanisms

CS260-Seminar in Computer Science, Spring 2004 – p.7/20



MDA to the rescue...

MDA can express application functionality and QoS
requirements at higher levels of abstraction than by
using 3GLs:

• Model properties
• Analyze requirements
• Synthesize code
• Provision deployment

CS260-Seminar in Computer Science, Spring 2004 – p.8/20



Model Driven Middleware

Bridge the gap between specification and
implementation:

• Compose applications from reusable components.
• Synthesize new extended components.
• Automate the configuration of QoS aspects.
• Model the interfaces of components in a standard

way.
• Easily handle changes in components.

CS260-Seminar in Computer Science, Spring 2004 – p.9/20



MDM Example

CS260-Seminar in Computer Science, Spring 2004 – p.10/20



Existing Work on Real-Time MDM

Component Synthesis using Model Integrated Computing
(CoSMIC - Douglas Schmidt - Vanderbilt University)

CS260-Seminar in Computer Science, Spring 2004 – p.11/20



CoSMIC

• Each CoSMIC tool synthesizes metadata in XML
for use in the underlying middleware.

• CoSMIC uses a Platform Specific Model to
integrate the modeling technology with the CIAO
QoS-enabled component middleware.

CS260-Seminar in Computer Science, Spring 2004 – p.12/20



CoSMIC Details

CoSMIC Modeling Paradigms:
• OCML (Options Configuration Modeling

Language) to model configuration parameters and
constraints and synthesize the middleware
configuration metadata.

• CADML (Component Assembly and Deployment
Modeling Language) to model component
assembly and deployment.

CS260-Seminar in Computer Science, Spring 2004 – p.13/20



Our Vision for Fault-Tolerant, Secure
MDM

Systems able to continue normal operation despite the
presence of hardware or software faults:

• Communication network failures
• Node failures
• Object failures

Different security levels and domains:

• Authentication
• Authorization

CS260-Seminar in Computer Science, Spring 2004 – p.14/20



Goals

Fault-tolerance:
• Automatic creation and allocation of replicas
• Automatic maintenance of replica consistency
• Automatic fault detection and recovery

Security:
• Automatic admission control
• Automatic conformance to specific security levels

CS260-Seminar in Computer Science, Spring 2004 – p.15/20



System Architecture

• Replication Manager
• Fault Detector
• Admission Manager

System Parameters:
• Probability of failure for each component
• Replication degree of each component
• Security level satisfied by each component
• Access privileges of each component

CS260-Seminar in Computer Science, Spring 2004 – p.16/20



A Model-Driven Approach

• Modeling of components
• Configuration of parameters
• Deployment
• Fault-tolerance and security assurance

CS260-Seminar in Computer Science, Spring 2004 – p.17/20



Conclusions

• Distributed Real-Time Embedded Systems are
increasingly being developed using component
middleware.

• Unresolved challenges include isolation of
applications from the middleware platform,
automatic application composition, and automatic
middleware configuration.

• Model Driven Architectures can provide a scalable
and verifiable solution to the above.

• Model Driven Middleware can automate the
creation, configuration, and deployment of
Real-Time, Fault-Tolerant, Secure distributed
applications. CS260-Seminar in Computer Science, Spring 2004 – p.18/20



References

1. Aniruddha Gokhale, Douglas C. Schmidt, Balachandran Natarajan, Jeff Gray, and
Nanbor Wang, “Model Driven Middleware”, Middleware for Communications, Wiley
and Sons, 2003.

2. Aniruddha Gokhale et al., “ Model Driven Middleware: A New Paradigm for
Deploying and Provisioning Distributed Real-time and Embedded Applications”,
Elsevier Journal of Science of Computer Programming: Special Issue on Model
Driven Architecture, 2004.

3. Aniruddha Gokhale et al., “CoSMIC: An MDA Generative Tool for Distributed
Real-time and Embedded Applications”, Workshop on Model-driven Approaches to
Middleware Applications Development at 4th IFIP/ACM/USENIX International
Conference on Middleware for Distributed Systems Platforms, 2003.

4. The OMG Real-Time CORBA Specification v1.1, 2002.

5. The OMG Fault Tolerant CORBA Specification v1.0, 2000.

6. The OMG MDA Guide v1.0.1, 2003.

CS260-Seminar in Computer Science, Spring 2004 – p.19/20



Thank you!

Questions/Comments?

CS260-Seminar in Computer Science, Spring 2004 – p.20/20


	Overview
	Distributed Real-Time Embedded (DRE)
Systems
	DRE Requirements
	Component Middleware
	Middleware Architectures
	Unresolved Challenges
	MDA to the rescue...
	Model Driven Middleware
	MDM Example
	Existing Work on Real-Time MDM
	CoSMIC
	CoSMIC Details
	Our Vision for Fault-Tolerant, Secure MDM
	Goals
	System Architecture
	A Model-Driven Approach
	Conclusions
	References
	Thank you!

