Model Driven Middleware

Presented by:
Thomas Repantis

trep@s. ucr. edu

I CS260-Seminar in Computer Science, Spring 2004 — p.1/2(

Overview

pplying Model Driven Architectures to Distributed
Systems.

Distributed Real-Time Embedded Systems
Component Middleware

Model Driven Middleware

Existing Work on Real-Time MDM

Our Vision for Fault-Tolerant, Secure MDM

g s~ Wb

. CS260-Seminar in Computer Science, Spring 2004 — p.2/2(

Distributed Real-Time Embedded
(DRE) Systems

Flectric Power Air Traffic. Ind.srial Process Military Medical

Grid Control Control Operalions Imaging

Networks:
* Large-scale
* Heterogeneous
* Dynamic

. CS260-Seminar in Computer Science, Spring 2004 — p.3/2(

DRE Requirements

Real-time:
* low latency, bounded jitter

» Availability:

* bounded fault propagation/recovery
* Security:

 authentication, authorization

* Physical Requirements:
* weight, power consumption, memory footprint

. CS260-Seminar in Computer Science, Spring 2004 — p.4/2(

Middleware
Services

Midd levare

Cperating Sys
£ Pratacaols

Hardware &
Metworks

Component Middleware

L
5
. Comporent refresh [E=fede] -
-L:Jh-l':d infa | -nl vyl Farel E FETE'Q
it - =
.:]':'."f.a._'h.a?_l_. 8 e T Comporent |
Ve radar W engiﬂn,_}__. leternp Engr e Mant, =
_ohrotte ;T 2| safel, . sescgmsiop | T et a
e el ﬁ_ 21| mode T F [=
thrust L . o _ Zeur R —
y oL i st |5 ——
i Joumur -
i | Conlaireer
—————————— —CONSUMSE-—-—— H | >3
. puhlishns puHIbhEb:
H ;nnnsun-.pf.
= Mlddleware Bus >
: _l E" .1.. |
P i e I Persistant l
o Prics Cranges .
Transactlon i Emit Chanaat .| | Security
— '\ o Fricers
Maotification Sarvicoe
Component Middleware Artifacts

» Control of QoS properties

* Platform independence

* Cost reduction

CS260-Seminar in Computer Science, Spring 2004 — p.5/2(

MIDDLEWARE ARCHS

Middleware Architectures

CORBA J2EE _NET
Apps Apps Apps

CORBA JZEE NET

Services Services Services

* Real-time CORBA
* Fault-tolerant CORBA

. CS260-Seminar in Computer Science, Spring 2004 — p.6/2!

Unresolved Challenges

* |solation of applications from middleware platforms
» Composing applications from components

» Configuring component middleware

* Automated deployment

 Satisfying multiple QoS properties simultaneously

Ad hoc (manual) techniques:
* Do not scale well
* Are tedious
* Are error-prone
* Lack verification and validation mechanisms

. CS260-Seminar in Computer Science, Spring 2004 — p.7/2!

MDA to the rescue...

MDA can express application functionality and QoS
requirements at higher levels of abstraction than by
using 3GLs:

* Model properties
* Analyze requirements
* Synthesize code
* Provision deployment

Integrated
Model

Platform-

Speclfic
Code
Generator

Executable synthesize

: Application
Specifications

Code

System

Constralnts o _ _
. CS260-Seminar in Computer Science, Spring 2004 — p.8/2(

Model Driven Middleware

Bridge the gap between specification and
Implementation:

* Compose applications from reusable components.
* Synthesize new extended components.
* Automate the configuration of QoS aspects.

* Model the interfaces of components in a standard
way.

» Easily handle changes in components.

. CS260-Seminar in Computer Science, Spring 2004 — p.9/2(

Flight Fiald Radar
Doty Schaduling Santrol

Camponant
A==amb by

|

Cartral

Bi=ine==
Lagie |

Caonfiguration
Matadata

Daploymant
£ —*

Caonfiguration
Machaniem

Cantainers

Caontainers

_(Canfig':ri:;wfﬂr;adah @ Middleware Framewaork

Compaonent Server

© © 0 © 0 © O

MDM Example

Configuring and deploying an application
services end-to-end

Composing companents into application
Server components

Configuring application campanent containers

Synthesizing application companent
implementations

Eynthesizing dynamic QoS provisioning
and adaptation logic

Synthesizing middleware-specific configurations

Synthesizing middleware implementations

CS260-Seminar in Computer Science, Spring 2004 — p.10/2

™ Companent & Home lrmepls

ESESES

Campanant Connaction
Spacifications

QoS
Mechanism
Flligns (P-daplm DI'I)

[QoS Policles }q———

Tool Chain

Existing Work on Real-Time MDM

Component Synthesis using Model Integrated Computing
(CoSMIC - Douglas Schmidt - Vanderbilt University)

Flight
Scheduling " Component Assernbly)
I‘ - I |

Specification

¥

Functional

Packaging

¥

Inistallation

¥

Cﬂmponent Server

Model

Configur-

ation

[]

Air Traffic Control

-

Planning

¥

Preparation

[]

Launching

L]

Benchmarklng

QoS

Assurance

-

L

Synthesis

scripts/metadata

CS260-Seminar in Computer Science, Spring 2004 — p.11/2

CoSMIC

* Each CoSMIC tool synthesizes metadata in XML
for use in the underlying middleware.

* CoSMIC uses a Platform Specific Model to
integrate the modeling technology with the CIAO
Qo0S-enabled component middleware.

System
Congtrainis

ClLAC FPlug-ins

)

Synthesize &
Assemble

CosMIC

Executable
Specifications

Package
Deployment

F—————m| Assamblys
o

8]
%
Integrated :@ Zj\j T @ ClAC
Wodel CLAO Companent CCM
Repository Assembly

. CS260-Seminar in Computer Science, Spring 2004 — p.12/2

CoSMIC Detalls

oSMIC Modeling Paradigms:

* OCML (Options Configuration Modeling
Language) to model configuration parameters and
constraints and synthesize the middleware
configuration metadata.

« CADML (Component Assembly and Deployment
Modeling Language) to model component
assembly and deployment.

. CS260-Seminar in Computer Science, Spring 2004 — p.13/2

Our Vision for Fault-Tolerant, Secure
MDM

ystems able to continue normal operation despite the
presence of hardware or software faults:

» Communication network failures
* Node failures
* Object failures

Different security levels and domains:

* Authentication
* Authorization

. CS260-Seminar in Computer Science, Spring 2004 — p.14/2

Goals

ault-tolerance:
* Automatic creation and allocation of replicas

* Automatic maintenance of replica consistency

* Automatic fault detection and recovery

Security:

* Automatic admission control

* Automatic conformance to specific security levels

. CS260-Seminar in Computer Science, Spring 2004 — p.15/2

System Architecture

* Replication Manager

* Fault Detector
* Admission Manager

System Parameters:
* Probabillity of failure for each component
* Replication degree of each component
» Security level satisfied by each component
» Access privileges of each component

. CS260-Seminar in Computer Science, Spring 2004 — p.16/2.

A Model-Driven Approach

Modeling of components

* Configuration of parameters

* Deployment

* Fault-tolerance and security assurance

l CS260-Seminar in Computer Science, Spring 2004 — p.17/2

Conclusions

Distributed Real-Time Embedded Systems are
Increasingly being developed using component
middleware.

Unresolved challenges include isolation of
applications from the middleware platform,
automatic application composition, and automatic
middleware configuration.

Model Driven Architectures can provide a scalable
and verifiable solution to the above.

Model Driven Middleware can automate the
creation, configuration, and deployment of
Real-Time, Fault-Tolerant, Secure distributed
applications.

References

. Aniruddha Gokhale, Douglas C. Schmidt, Balachandran Natarajan, Jeff Gray, and
Nanbor Wang, “Model Driven Middleware”, Middleware for Communications, Wiley
and Sons, 2003.

. Aniruddha Gokhale et al., “ Model Driven Middleware: A New Paradigm for
Deploying and Provisioning Distributed Real-time and Embedded Applications”,
Elsevier Journal of Science of Computer Programming: Special Issue on Model
Driven Architecture, 2004.

. Aniruddha Gokhale et al., “CoSMIC: An MDA Generative Tool for Distributed
Real-time and Embedded Applications”, Workshop on Model-driven Approaches to
Middleware Applications Development at 4th IFIP/ACM/USENIX International
Conference on Middleware for Distributed Systems Platforms, 2003.

. The OMG Real-Time CORBA Specification v1.1, 2002.
. The OMG Fault Tolerant CORBA Specification v1.0, 2000.
. The OMG MDA Guide v1.0.1, 2003.

CS260-Seminar in Computer Science, Spring 2004 — p.19/2

Thank you!

uestions/Comments?

I CS260-Seminar in Computer Science, Spring 2004 — p.20/2

	Overview
	Distributed Real-Time Embedded (DRE)
Systems
	DRE Requirements
	Component Middleware
	Middleware Architectures
	Unresolved Challenges
	MDA to the rescue...
	Model Driven Middleware
	MDM Example
	Existing Work on Real-Time MDM
	CoSMIC
	CoSMIC Details
	Our Vision for Fault-Tolerant, Secure MDM
	Goals
	System Architecture
	A Model-Driven Approach
	Conclusions
	References
	Thank you!

