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1 Introduction

Peer-to-peer (P2P) systems have attracted a lot of
interest, as a highly dynamic platform that enables
autonomous computing nodes to share resources and
services. Operation of all the peers as both clients
and servers, and without a central coordinator elim-
inates possible bottlenecks in terms of scalability or
reliability. Structured peer-to-peer systems, where
objects (or their indices) are located at specific nodes,
provide efficient location of objects, but have to main-
tain a lot of state information, while the nodes have
limited autonomy. On the other hand, in unstruc-
tured peer-to-peer systems, where objects are located
at random nodes, nodes can join the system quickly
and even leave it unexpectedly. More advantages of
unstructured peer-to-peer systems include their abil-
ity for self-organization, for adaptation to different
loads, and for resiliency to node failures.

However, in an unstructured topology several de-
sign issues arise, one of the most challenging of them
being the efficient search and retrieval of data. Specif-
ically, we are looking for a way to efficiently locate

an object in a fully decentralized, self-organizing net-

work, when a reference to that object is given. An
efficient search mechanism is important for the scal-
ability of the system.

Traditionally, search in unstructured peer-to-peer
networks is performed by flooding the immediate
neighbors and propagating the search query hop-by-
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hop, without taking into account the probability of a
node to be able to provide the asked object. Hence,
the search messages travel a large number of hops,
wasting processing power of many nodes, and pro-
ducing large amounts of network traffic, while the
answer to the query is delayed.

Organizing the nodes according to their inter-
ests [8], as well as using Bloom filters to summarize
the data that is stored in nodes [7] are two techniques
that have been proposed to tackle the aforementioned
problem.

When taking into account the interests, each peer
tries to move closer in the network to a peer that fre-
quently provides him with good results, by creating
a direct connection with that peer.

By having access to a synopsis of the data stored
in other peers, each node can decide where to propa-
gate a query that cannot be answered locally, in order
to maximize the probability for a fast reply. Hence,
apart from having Bloom filters that represent the
objects stored locally, each peer also shall maintain
Bloom filters of objects stored in remote peers.

Bloom filters are compact data structures for prob-
abilistic representation of a set, in order to support
membership queries [1]. The downside of the use of
Bloom filters, is that there is a small probability of
false positives in membership queries; in other words
an element might be incorrectly reported to be part
of the set.

Since having synopses of the contents of all the
peers is impossible due to bandwidth and storage
limitations, the question is which peers’ synopses to
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store, or to which peers to propagate our synopses.
The answer is not as obvious as in a hierarchical or-
ganization, where the data of all the following nodes
in the tree are summarized in the tree’s root node [6].
Among the choices are:

• The immediate peers,

• the peers that have served us/replied to our re-
quests, or the peers that have been served by
us/got a reply to their requests by us.

Obviously, the last choice identifies the peers that
share the same interests as we do, which may become
our immediate peers in the future.

In order to adapt our decision to the current status
of the network –and hence actively propagate syn-
opses more efficiently– we need to take into account
several parameters, which might include the follow-
ing:

Parameters regarding other peers (the environ-
ment):

• Coherency requirements they might have for
data they receive.

• Their stability, in terms of uptime, and history
(past encounters).

• The number of connections they maintain, and
the number of messages they route per time unit.

• Their proximity at the underlying physical net-
work.

• The administrative domain they belong.

• Their general and current networking, process-
ing, and storage capabilities.

Parameters regarding the local peer (ourselves):

• The number of queries we have received by a
peer, and their frequency.

• The number of replies we have provided a peer
with, and their frequency.

• The number of our stored objects.

• The popularity of our stored objects, in terms of
queries received for those objects, possibly dur-
ing a certain time period (e.g. between propa-
gating new synopses).

• Our general and current networking, processing,
and storage capabilities.

The update of the synopses is also an issue. Up-
dates can be generated periodically, or whenever an
object is added, deleted, or changed. Moreover when-
ever a peer joins the system updates need to be gen-
erated. Apart from the frequency of the updates, the
recipients of them have also to be selected, according
to the peers that keep a synopsis for the changing
peer.

Our contribution lies in the fact that, by propagat-

ing content synopses to peers that are selected adap-

tively, we make the search and retrieval of data in

unstructured peer-to-peer networks faster, and more

efficient in terms of bandwidth and processing power

usage.

2 System Model

We assume a logical network of peers that store
objects. Each peer maintains connections with
other peers. The network is decentralized and self-
organizing, meaning that peers make their own de-
cisions on which peers to connect to or to query for
objects. Each peer builds a synopsis of its content
and sends it to some of its neighbors. The recipients
of the synopsis are selected adaptively, by taking into
account the parameters mentioned previously. Peers
search for objects by sending query messages to their
immediate neighbors. Those queries are evaluated
locally in each peer and in case there are matching
objects, results are returned to the searching peer.
When a query arrives, a peer searches its local syn-
opsis for results and also routes the query to those of
its neighbors whose synopses have the closest match.
Figure 1 shows an example of our system’s operation.

3 Architecture

Our protocol includes the following main steps:
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Figure 1: System operation example. According to
its criteria, peer C propagated its content synopsis S
only to peer B. B based on S was able to route peer
A’s query Q only to C, and the result QH is routed
back to A.

1. Each peer creates a synopsis of its local content,
using a Bloom filter.

2. When a peer is connected to the system, it prop-
agates its local content synopsis to its neighbors.

3. Each peer stores the content synopses of its
neighbors.

4. Each peer also maintains statistics regarding its
neighbors. Specifically, it keeps track of the
number of queries it has received from each of
its peers, and of the number of local hits these
queries have generated. It also counts the total
number of queries it has received.

5. Every time the total number of received queries
reaches a certain threshold (currently 100 mes-
sages), a peer sends its local content synopsis
to peers that are selected adaptively. Currently,
the synopsis is sent to the neighbor that has sent
the most queries, and to the one whose queries
generated the most local hits.

6. When a peer receives a query, apart from search-
ing its local content, it also searches the content

synopses of its neighbors. It forwards the query
to all the peers whose synopses state that they
contain the requested object. Only if the object
is not found in any content synopsis, is the query
forwarded to all the neighbors.

The searching in our protocol differs from the
Gnutella traditional flooding-based search algorithm,
in that the queries are routed –as far as possible– only
to peers that seem to have the requested objects. The
content synopses propagation in our protocol differs
from a traditional Bloom filter propagation, in that
the content summaries are not propagated to all the
neighbors, but each peer decides which peer to pro-
vide with an update of its content synopsis, adapting
to the load he receives from the peers. Frequent up-
dates are especially useful for applications where the
content of the peers changes rapidly.

4 Simulation Results

We have compared our algorithm for adaptive data
propagation (ADP) with an algorithm where each
peer simply propagates a Bloom filter of its content to
all its neighbors (BF), and with the Gnutella search-
ing algorithm (GNT).

In order to be able to evaluate systems of thou-
sands of peers, we have implemented the algorithms
on top of the Gnutella [4] unstructured peer-to-peer
network using the NeuroGrid simulator [5]. Neuro-
grid is scalable, since it simulates the protocols at
message- and not at packet-level. The implementa-
tion was done in approximately 2500 lines of Java.
The main classes include the following:

• ADPGnutellaNetwork

• ADPGnutellaNode

• ADPGnutellaMessageHandler

• ADPGnutellaNetworkStatistics

• ContentSynopsis

• ConentSynopsisMessage

• BloomFilter
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We used counting Bloom filters, so that hashes
landing in the same position are counted. We used
a 4-bit counter, filters of 10bits length, and 4 hash
functions. For the hash functions we used SHA-1, a
cryptographic message digest algorithm that hashes
arbitrary length strings to 160bits. The hash func-
tions are built by dividing the SHA-1 output into
groups. We used the following simulation parame-
ters:

• 300 possible Documents

• 400 possible Keywords

• 30 Documents per Node

• 1 Keyword per Document

• 50 Maximum Connections per Node

• TTL 7

Our metrics try to measure both the utilization of
the resources, and the efficiency of the system, and
therefore include the traffic overhead (number of mes-
sages), and the query success rate. Our results are
averages of 5 measurements.

Figures 2 3 show that by propagating the content
synopses adaptively we can route queries more effi-
ciently, maximizing the hits. Furthermore, as figure 4
shows, the amount of queries that are propagated by
error, due to false positives in the Bloom filters, is be-
coming smaller, since the content synopses are more
accurate.

Figure 5 shows that the traditional flooding max-
imizes the number of objects found. However this
comes at a high cost in message transfers, as figure 7
shows. By comparing the adaptive Content Synopses
Propagation to the propagation of Bloom filters to all
the neighbors, we conclude that the number of mes-
sages sent is lowered when propagating adaptively
(figure 8), whereas the amount of objects not found
is not that smaller (figure 6).

Examining the number of nodes reached during a
search lets us conclude again that GNT reaches a
lot of nodes unnecessarily (figure 9), whereas ADP
reaches even less nodes than BF (figure 10). More-
over, using the Bloom filters (ADP, GNT), the first
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Figure 2: Queries found in neighbors’ content syn-
opses.
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Figure 3: Queries not found in neighbors’ content
synopses.
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Figure 4: Queries falsely propagated.
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Figure 5: Number of matching objects found for a
search.
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Figure 6: Number of matching objects found for a
search.
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Figure 7: Number of messages sent during a search.
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Figure 8: Number of messages sent during a search.

hit to a query is achieved a little bit earlier (fig-
ures 11 12).

Figures 13 14 show that –as expected– flooding
(GNT) discovers a higher proportion of all possible
matches than ADP and BF. However, as figures 15 16
show, this comes at the high cost of message trans-
fers, which becomes enormous as the number of nodes
increases.

5 Related Work

Several mechanisms have been proposed to improve
searching and update propagation in peer-to-peer
networks.

In Planet-P [2] two data structures are replicated
globally: A membership directory and a compact
content (term-to-peer) index. Members gossip about
changes to keep these data structures updated and
loosely consistent. Gossiping is done by pushing ru-
mors to random peers and by pulling (anti-entropy)
information from random peers. A content ranking
algorithm based on the vector space ranking model is
also used, to find only highly relevant documents to
a query. The set of terms in each peer’s local index
is summarized using a Bloom filter. The global index
is used to find peers that have a term, and then the
local index is used to return the specific documents.
Gossiping is done when a Bloom filter changes, when
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Figure 9: Number of nodes reached during a search.
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Figure 10: Number of nodes reached during a search.
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Figure 11: The TTL of the first message that found
the first match (i.e. how many hops before the first
hit).
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Figure 12: The TTL of the first message that found
the first match (i.e. how many hops before the first
hit).
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Figure 13: Proportion of all possible matches that
was actually discovered.
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Figure 14: Proportion of all possible matches that
was actually discovered.
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Figure 15: Average Recall divided by the number of
messages transferred.
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Figure 16: Average Recall divided by the number of
messages transferred.

a new member joins, when a previously off-line mem-
ber rejoins, but not when a member leaves, temporar-
ily or permanently. The cost of storing and main-
taining the global data structures makes the system
unsuitable for users with modem-speed connections,
low storage capabilities, or for networks of more than
some thousand peers.

P-Grid [3] uses a hybrid push/pull rumor spread-
ing algorithm, that offers probabilistic guarantees, in-
stead of ensuring strict consistency. A new update is
pushed by the initiator to a subset of peers that are
affected by it, because they have the original version
of the data item, and is further propagated by them.
Peers that have been disconnected, that have not re-
ceived updates for a long time, or that have received
a pull request but are not sure if they have the latest
update, pull updates from one or more other peers.
Two parameters, the probability of forwarding an up-
date, and the fraction of the total replicas to which
peers initially decide to forward an update, are im-
portant for the spreading of the rumors.

CUP (Controlled Update Propagation) [10] is used
for maintaining caches of metadata for locating con-
tent. A node receives and propagates updates only
when it has personal economic incentive to do so, in
other words only when the benefit from the propa-
gation outweighs the cost of it. The investment re-
turn is secured when a node can answer queries us-
ing the stored metadata, instead of having to further
forward them. Each node decides whether to reg-
ister for receiving and propagating updates for an
item according to popularity ( based on the num-
ber of queries received for that item)-based incen-
tives, either probabilistic, or log-based, also taking
into account its workload and/or network connectiv-
ity. Query coalescing is utilized, enabling nodes to
push only one query when receiving multiple queries
for a stale item. Updates are either deletes, refreshes,
or appends. Each node keeps for each key a flag in-
dicating whether the node is waiting for a response
to a query for that key, as well as an interest bit vec-
tor, that indicates which neighbors are interested in
receiving updates for that key.

Breadth and Depth Bloom filters have been used
to make searching of hierarchical data more efficient.
In [6] each node maintains a local filter, summarizing
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the documents stored locally, and one or more merged
filters, summarizing the documents of its neighbor-
ing nodes. When a query reaches a node, the node
first checks its local filter and uses the merged filters
to direct the query only to those nodes whose fil-
ters match it. To summarize hierarchical data, such
as XML documents, Breadth and Depth multi-level
Bloom filters are introduced. Following a hierarchi-
cal organization, specifically one that is based on the
similarity on content (on filters) and is controlled by a
similarity threshold, enables efficient query routing.
Effort is made to propagate only the minimum up-
date information (just the differences in the merged
filters).

In QRP (Query Routing Protocol) of RFC-
Gnutella 0.6 [4] ultrapeers are responsible for filtering
queries and only forwarding those to the leaf nodes
that are most likely to have a match. This filtering
is done by looking the query words through a hash
table that is sent by the leaf node to its ultrapeer.

There has also been work on keyword searching in
DHTs. In [9] each node in the DHT stores a list
of nodes that contain a specific keyword. Inverted
indices are used, that map each word found in any
document to a list of the documents that contain
that word. The partitioning is vertical, meaning that
each node maintains pointers to all the documents
that contain a specific word. Bloom filters are used
to reduce the bandwidth required to answer “AND”
queries (which need the cooperation of more peers’
incremental results to be answered), and to cache
document lists. According to the virtual hosts ap-
proach that is used, a node participates in the peer-
to-peer system as several logical hosts, proportional
to its request processing capacity.

Also relevant is work done on filtering and dis-
seminating streaming data [11]. In order to pro-
vide updates of highly dynamic, streaming, and ape-
riodic data, an organization of data repositories is
proposed. The repositories are organized hierarchi-
cally, with those that have the highest coherency re-
quirements placed closer to the data source. Data
updates are pushed down that hierarchy, only to the
repositories that require them (according to their co-
herency requirements). Repositories are placed in a
way that their coherency requirements are just met,

so that repositories with more stringent coherencies
end up serving repositories with more loose coheren-
cies. Back-up parents are used to handle repository
or communication link failures. Active back-up par-
ents deliver data with less stringent coherency, reduc-
ing the overhead of providing resiliency and enabling
the detection of the failure.

There has also been work in caching the results of
queries, while partitioning a network in layers. In [12]
in addition to a local index, that keeps indices of lo-
cal files, each peer maintains a response index, which
caches the query results that flow through the peer.
That type of uniform index caching saves network
bandwidth, but does not avoid a large amount of du-
plicated caching, due to the cache hit overlap between
the neighboring peers. Instead of caching query re-
sponses in all peers along the returning path, dis-
tributed caching attempts to cache the responses only
in selected peers. Specifically, peers are separated in
groups (layers), and a response is cached in a peer,
only if the hash value of the query is the same as the
peer’s group ID. Accordingly, a query is forwarded
only to neighbors with a group ID that matches the
hash value of the query. Following this approach,
there exists the possibility of missing matched peers
or objects. To avoid these misses, pushing the in-
dices of objects whose hash values do not match a
peer’s group ID to matching neighboring peers is also
introduced. By using distributed caching and adap-
tive searching and by dividing the network in layers,
search traffic is reduced significantly, while the query
success rate is not degraded. However the partition-
ing in layers is done arbitrarily.

Our work can be seen as an extension to [8] and [7],
in that the content summaries that have also been
presented there are propagated to peers that are se-
lected adaptively.

6 Conclusions

By propagating content synopses to peers that are se-
lected adaptively, we manage to make the search and
retrieval of data in unstructured peer-to-peer net-
works faster, and more efficient in terms of bandwidth
and processing power usage. However, –as expected–
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the recall of the flooding-based search is not reached.
The main advantage of our protocol, namely the re-
duction of search messages, is particularly evident in
large-scale networks. Moreover, by frequently propa-
gating content updates to the peers that need them
the most (which are selected adaptively), instead to
all the neighbors, we can keep the number of mes-
sages low, and yet route queries accurately. The ad-
vantages of our adaptive approach are even more ev-
ident in applications where the content of the peers
changes rapidly.

Our future work includes the comparison of our
push-based protocol to an analogous pull-based, as
well as investigating the effect of propagation of con-
tent synopses to peers further than the immediate
neighbors. Moreover, taking into account more pa-
rameters when deciding where to propagate the con-
tent synopses might also be interesting.
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