
Distributed Trust Management ∗

Thomas Repantis

Department of Computer Science & Engineering

University of California, Riverside

trep@cs.ucr.edu

December 6, 2004

Abstract

Peer-to-peer systems are an attractive means of sharing data and ser-
vices. However, the problem of how to efficiently decide which peers
are to be trusted still remains unsolved. We are describing Eigen-
Trust [3], a protocol for reputation management in peer-to-peer net-
works. We compare it to four more protocols for decentralized trust
management we present, namely P2PRep [2], RCertPX [4], P-Grid [1],
and TrustMe [5].

1 Distributed Trust Management

Peer-to-peer (P2P) systems have attracted a lot of interest, as a highly
dynamic platform that enables autonomous computing nodes to share re-
sources and services. The advantages of peer-to-peer environments, espe-
cially of unstructured ones, include their ability for self-organization, for
adaptation to different loads, and for resiliency to node failures. Operation
of all the peers as both clients and servers, and without a central coordinator
eliminates possible bottlenecks in terms of scalability or reliability.

However, in an unstructured and decentralized topology several security
issues arise. One of the most challenging problems, that is still being actively

∗Course Project Report for CS236 - Database Management Systems, Fall 2004.

1



researched, is how to create a trusted network of peers in the absence of a
central trust managing authority. Trust is important when sharing data or
processing power, and crucial for e-commerce applications and auctioning.

By saying that peer A puts a level of trust into peer B, we mean that A
estimates the probability of B acting in a way that will allow A to achieve
a desired level of satisfaction.

One way a peer A can estimate the level of trust to put into another peer
B, is by being based on the reputation of peer B. The reputation of peer
B is measured from previous interactions of peer A with peer B, or also on
previous interactions of other peers with peer B. As the level of trust a peer
enjoys is based on its reputation, a peer is motivated to act according to the
rules of the network, whether these are to share content, not to cheat, or
anything else. Using the peers’ opinion to establish a reputation is a process
already very popular in the scientific community for example through peer
review or citations.

One of the main difficulties in managing reputation-based trust in P2P
networks is that information about peer interactions is spread across the
network, and no single peer has a complete global view of the peers’ repu-
tations. Furthermore, malicious peers might tamper with reputation infor-
mation while it is stored locally or transmitted, or even try to defame other
peers.

Kamvar, Schlosser, and Garcia-Molina present in [3] a distributed and
secure method to compute a global trust value for every peer in the network,
based on its complete history of uploads. By having access to a peer’s trust
value, other peers can choose from whom to download a file (with whom to
interact). This way, the propagation of inauthentic files or viruses can be
combatted and malicious peers can be identified and isolated. Attempting
to track down malicious peers is more effective than trying to identify inau-
thentic files, since malicious peers can generate unlimited inauthentic files,
if they are not isolated.

2 EigenTrust

In EigentTrust [3] each peer stores a local trust value for every peer it has
interacted with. The global trust value of a peer is generated by aggregat-
ing the local trust values of all peers regarding that particular peer in an

2



iterative process. In other words, the reputation of a peer is constructed by
aggregating the cumulative opinions all other peers in the network have of it.
The reputation of a peer is used to value the probability with which a peer
will provide authentic files, as well as the probability with which a peer will
provide accurate local trust values for other peers. Hence, in EigenTrust,
the global reputation of each peer is given by the local trust values assigned
to it by other peers, weighted by the global reputations of the assigning
peers.

2.1 Local Trust Values

Each time peer i downloads a file from peer j, it rates the transaction as
positive (tr(i, j) = 1 for a satisfactory transaction) or negative (tr(i, j) = −1
for an unsatisfactory transaction). The local trust value sij peer i holds for
peer j is the sum of the ratings of the individual transactions that peer i has
had with peer j:

sij =
∑

trij = sat(i, j) − unsat(i, j)

Before local trust values can be aggregated they have to be normalized.
A normalized local trust value is defined as:

cij =
max(sij ,0)∑
j
max(si,j ,0)

The above definition produces a value between 0 and 1 and helps in
computing the global trust value without a need for renormalization at each
iteration.

2.2 Global Trust Value

Using the normalized trust values, a peer i can calculate the trust tik it
places in peer k, by adding all the opinions of its acquaintances about peer
k, weighted by the trust peer i places in them:

tik =
∑

j cijcjk

By using matrix notation, where C is the matrix [cij ] and ~ti the vector
containing the values tik we have:

~ti = CT ~ci

3



This trust values only reflect the experience of peer i and his acquain-
tances. To get a wider view, peer i will ask its friends’ friends (ti = (CT )2ci).
If this continues (ti = (CT )nci), it will have a complete view of the network
after a large number (n) of iterations. If n is large, the trust vector ~ti will
converge to the same vector for every peer i, namely to the left principal
eigenvector of C. Hence, ~t is a global trust vector, the elements of which
quantify how much trust the system as a whole places in peer j.

2.3 Basic EigenTrust Algorithm

The basic EigenTrust algorithm is just the computation of ~t = (CT )n~e),
for a large n, where ~e is defined as the m-vector representing a uniform
probability distribution over all m peers, ei = 1

m
. This is equivalent to

calculating ~t = (CT )n~ci, where ~ci is the normalized local trust vector of
some peer i, since both ~e and ~ci converge to the left principal eigenvector of
C.

By defining some distribution ~p of pre-trusted peers, the following are
achieved:

1. In the presence of malicious peers, ~t = (CT )n~p will converge faster
than ~t = (CT )n~e.

2. If peer i has no local trust value about any other peer, or if it has rated
all other peers with 0, cij is set equal to pj instead of being undefined.

3. By taking t(k+1) = (1 − a)CT t(k) + ap, where a is some constant less
than 1, or equivalently setting the opinion vector for all peers to be
~ci = (1 − a)~ci + a~p, each peer is forced to place at least some trust in
the peers p that are guaranteed not to be malicious. This helps a peer
not to be trapped by a malicious collective of peers, which give high
local trust values only to each other. Using ~p also makes the matrix
C irreducible and aperiodic, thus guaranteeing that the computation
will converge.

Summarizing the above, the basic EigenTrust algorithm is the iterative

calculation of t(k+1) = (1− a)CT t(k) + ap, starting from ~t(0) = ~p and ending
when the difference between t(k+1) and t(k) is less than a value e.

4



Ct(k+1)

i

iAi
P

td(k+1)

i Bi

Ai
Ct(k+1)

Figure 1: Distributed EigenTrust Algorithm (Ai: set of peers which have
downloaded files from peer i, Bi: set of peers from which peer i has down-
loaded files).

2.4 Distributed EigenTrust Algorithm

In the distributed EigenTrust algorithm each peer stores not only its local
trust vector ~ci, but also its own global trust value ti. Each peer computes
its own global trust value:

t
(k+1)
i = (1 − a)(c1it1

(k) + ... + cnitn
(k)) + api

Since peer i has had limited interaction with other peers, many of the
components in that equation will be zero. The distributed EigenTrust algo-
rithm can therefore be summarized as follows 1: Each peer i queries all peers

which have downloaded files from it, for t
(0)
j = pj, and then repeatedly:

• calculates t
(k+1)
i = (1 − a)(c1it1

(k) + ... + cnitn
(k)) + api,

• sends cijt
(k+1)
i to all peers j from which it has downloaded files, and

• receives all cjit
(k+1)
j from all peers which have downloaded files from

it,

until the difference between t
(k+1)
i and t

(k)
i is less than a value e. As can

be seen, only the pre-trusted peers need to need to know that they are
pre-trusted.

2.5 Secure EigenTrust Algorithm

In the secure EigenTrust algorithm, each peer i does not compute and report
its own trust value ti, so that reporting false trust values can be avoided.

5



Instead, a different peer in the network computes the trust value of peer
i. Moreover, in order to prevent malicious peers from reporting false trust
values for other peers, the trust value of peer i is computed by more than
one peer. Thus, using a DHT each peer is assigned M score managers, which
compute the trust value of that peer. If the global trust values returned by
the score managers differs, the value reported by the majority is regarded
as true. Dynamic leaves and joins of score managers are handled by the
DHT, while replication of the trust values guards against possible score
manager failures. The secure EigenTrust algorithm can thus be summarized
as follows 2: Each peer is assigned a number M of score managers, whose
DHT coordinates are determined by applying a set of one-way secure hash
functions to the peer’s unique identifier. Each score manager maintains the
opinion vector ci

d of the peers whose trust values it is appointed to calculate
(its daughters), as well as the set of peers its daughters downloaded files
from, the set of peers which downloaded files from its daughters and their
trust assessments regarding its daughters. Each peer i:

• submits its local trust values ~ci to its score managers,

• collects the local trust values of its daughters, and

• also collects the sets of the peers that have downloaded files from them,

• submits its daughters local trust values to other score managers,

• collects the sets of the peers from which its daughters have downloaded
files,

• and for each of its daughters it queries all peers which have downloaded
files from her for their opinion on her and repeatedly:

– computes the trust value of each of its daughters d t
(k+1)
d = (1−

a)(c1dt1
(k) + ... + cndtn

(k)) + apd,

– sends cdjt
(k+1)
d to all peers j from which its daughter has down-

loaded files, and

– receives all cjdt
(k+1)
j from all peers which have downloaded files

from its daughter,

until the difference between t
(k+1)
d and td(k) is less than a value e. The use of

hashing guarantees that the score managers do not know whose reputation
they calculate and that a peer cannot select its score manager.

6



Mii

Di

Di i

td(k+1)

Cdt(k+1)

Cd

Bd

Cd

Ci

Bdi

Ad i
Cdt(k+1)

CdP
Ad i

Mdi

i

Figure 2: Secure EigenTrust Algorithm (Ai: set of peers which have down-
loaded files from peer i, Bi: set of peers from which peer i has downloaded
files), M: set of Mothers (score managers), D: set of Daughters.

Peers may choose to bias their choice of download by a convex combina-
tion of the global trust values and their own local opinions of other peers,
i.e. using the trust values given by the vector ~tpersonal = d~t+(1−d)~c, where
d is a constant between 0 and 1.

In order to avoid a repetitive process, where a peer accumulates repu-
tation by providing files and thus becomes an even more popular download
source in the future, and hence accumulates even more reputation, the load
is distributed across peers in the network as follows: Among R responses a
peer i is chosen as a download source with probability ti∑R

j=0
tj

while a peer

j with trust value tj = 0 is selected with probability 10%. The selection of
peers with global trust value of 0 allows newcomers to eventually become
trusted members of the network.

2.6 Threat Models

The algorithm is evaluated against a variety of attacks: i) Individual Ma-
licious Peers, which provide inauthentic files and give high trust value to
downloads of inauthentic instead of authentic files, ii) Malicious Collectives,
where malicious peers provide inauthentic files and assign high trust value
only to other malicious peers, iii) Malicious Collectives with Camouflage,
where malicious peers also provide a percentage of authentic files, iv) Ma-
licious Spies, where a set of malicious peers provide authentic files so that

7



they can assign high trust values to a set of malicious peers that provide
inauthentic files.

3 Comparison With Other Distributed Trust Man-

agement Protocols

Several reputation-based, decentralized trust management protocols have
already been proposed. We here discuss four major ones and compare them
to EigenTrust.

3.1 P2PRep

In P2PRep [2] a polling based protocol is proposed and implemented (on top
of Gnutella), that uses public key cryptography for authentication. Every
peer stores its opinion of other peers in the network 3. Any peer A that wants
to query the trust value of another peer B broadcasts a query to the network.
The peers that have had transactions with B reply with their IP and port
in a message, encrypted with a public key A provided for that particular
query. The encryption of the votes guarantees their confidentiality, as well
as the confidentiality of the voters. By using a different public key for every
query, the source of the query is not traced back to A. A then individually
contacts a random set of the voters and asks them to confirm their votes, so
that fake messages are filtered out, and combines the valid votes to make a
decision.

In an enhanced version of the protocol 4, each peer stores not only
reputation information, regarding the resources offered by peers, but also
credibility information, regarding the votes peers express. The credibility
information is built by comparing after a transaction the peer’s own opinion
about a peer, to the reputation information other peers provided. The cred-
ibility information is used to properly weight votes coming from the same
peers in the future.

A modified version of the protocol is suggested for low-bandwidth net-
works, where reputation message exchanges are reduced by providing a
server-based functionality, whereby peers keep a record of positive votes
for them stated by others. A peer can provide those credentials to inter-
ested peers. Obviously that information has to be signed by the voters that
expressed it.

8



Figure 3: Sequence of messages and operations in the basic polling protocol
of P2PRep (a) and download of files from the selected servent (b) [2].

Figure 4: Sequence of messages and operations in the enhanced polling
protocol of P2PRep (a) and interaction with the selected servent (b) [2].

9



Apparently, the polling procedure described in P2PRep requires a lot of
additional messages and generates large amounts of network traffic, while
also delaying the process of downloading a file. To reduce the generated
traffic the horizon of a peer might be shortened. In that way a peer will
only poll a small portion of the network. This however will enable the poller
to only get a reasonable number of votes for peers that are very active. Not
only is the polling mechanism limited to the reviews of the peers that are
reached, but the reviews of peers that are not currently present in the system
are obviously not taken into account. This is not the case in EigenTrust, the
iterative process of which shall however also produce a significant amount of
traffic. P2PRep offers the advantage of not requiring any particular network
structure, whereas EigenTrust relies on a DHT to assign score managers to
peers.

3.2 RCertPX

In RCertPX [4] a reputation certificate (RCert) 5 is created and is stored in
the peer that it refers to. After each transaction the reputation certificate
is updated. In order to eliminate the possibility of tampering with the rep-
utation certificate, the last rater always digitally signs the whole certificate.
When a peer wants to interact with another peer, it requests its reputation
certificate, and it contacts the last rater, in order to verify the correctness
of the certificate. If the last rater is unavailable, the one before it is con-
tacted. Since every rater revokes the previous reputation certificate, a peer
can only use the latest reputation certificate, that includes all the ratings.
When a peer wants to decide with which peer it should do a transaction, it
contacts all peers that offer the service/data and they provide it with their
reputation certificates. The peer then contacts the latest rater of each peer
to determine if its reputation certificate is still valid 6.

The network traffic produced by RCertPX is relatively low, as well as the
decision delay. Furthermore, even if some peers have left, their ratings are
still available. Also important is the fact that the ratings cannot be changed
once they are determined. In that way, a peer will not be able to change its
rating of another peer if it becomes a competitor. However, the protocol is
complicated, especially when the last rater is offline, which is often the case
in P2P systems. In that case, a group of previous raters for each peer, instead
of a single rater, has to be contacted. The protocol uses ratings even from
untrusted peers, which might be even more critical in the case a rater and

10



Figure 5: Format of the reputation certificate (RCert) [4].

Figure 6: RCertPX Protocol [4].

11



Figure 7: Virtual binary search tree provided by P-Grid example [1].

a ratee collude to change the ratings. A peer can collude with another peer
so that previous certificates will not be revoked and therefore bad ratings
may be lost. Even though the protocol is complicated, to ensure that a peer
will not tamper with its reputation, it does not rely on a particular network
structure, unlike EigenTrust.

3.3 P-Grid

In [1] a trust managing system on top of the P2P system P-Grid is de-
scribed. The reputation of a peer in this system is expressed as the number
of complaints he has (not) received from other peers. Complaints can be
filed from a peer receiving or providing a service or file. Hence, when in-
vestigating complaints regarding a peer, both complaints about the peer
acting as a service provider as well as a service user are taken into account.
If an observed value of complaints exceeds the general average of the trust
measure too much, the peer is regarded as dishonest. The complaints re-
garding a peer are stored in a virtual binary search tree 7. These include
both complaints by and about a peer. The P-Grid infrastructure governs
the insertion and querying of complaints.

Replication in storage satisfies the integrity of the stored complaints in
a probabilistic manner. This means that complaints that are related to a

12



peer are stored in and provided by more than one peer. The complaints
are replicated to such an extent, that the probability of getting inauthen-
tic complaints by malicious peers is less than an acceptable fault-tolerance
threshold. Hence, this scheme provides only probabilistic guarantees re-
garding the accuracy of the rating. Moreover, peers might store complaints
about themselves. Even though this might be a rare case there is no pro-
vision for it. Furthermore no measures are taken against malicious peers
which might tamper with ratings while they are transferred. This problem
is left to be bypassed by the unrestricted connectivity a network like the In-
ternet provides. Similar to EigenTrust, P-Grid requires a network structure
to be maintained, for the reputation information to be stored and retrieved.

3.4 TrustMe

TrustMe [5] identifies anonymity of both the trust host and the trust query-
ing peer as an important feature of trust-managing systems. Anonymity
can protect both peers reporting poor trust values and peers asking for the
trust values of other peers. Public-private key pairs are used by TrustMe to
preserve anonymity. The trust rating of each peer is placed at a set of ran-
dom (and equally distributed amongst all nodes of the network) peers, which
replies to all queries for the trust values it holds. A peer can anonymously
issue a query and get the trust value without needing to know where that
value is stored. Similarly only the trust holding agents of a peer are able to
identify rating messages regarding that peer. In more detail, the procedure
includes the bootstrapping of the system, where peers become trust holding
agents for other peers, querying about a peer’s reputation, receiving replies
by the trust holding agents of that peer, collecting proof-of-interaction after
two peers interact, and finally reporting a rating to be stored by the trust
holding agent of a peer, after the interaction with that particular peer 8.
The use of more than one trust holding agents for a peer reduces the possi-
bility of manipulating rating messages. The use timestamps prevents peers
from replaying old rating messages. As already mentioned messages are
encrypted and signed to ensure anonymity and integrity.

Like EigenTrust, TrustMe takes into account reports even of peers that
have left the system and also achieves small decision time. Unlike Eigen-
Trust, it also provides secure communication between the peers hosting the
trust value of a peer and the peers querying it, in addition to anonymity of
both. Moreover TrustMe is not vulnerable to group threats, in which ma-
licious groups of nodes can monitor where trust holding agents are hashed.

13



report

j

reply

query

THA

THA

j

proof of interaction
ji

j
j THA

Figure 8: Messages exchanged in TrustMe.

Finally, since TrustMe does not rely on a DHT infrastructure, it is not vul-
nerable to DHT threats like malicious routing information tampering and
malicious lookup replies. However, TrustMe suffers from a serious draw-
back, namely that it relies on broadcasting for both querying and reporting
trust values. The simulations show that TrustMe is twice as expensive in
generated messages as a polling based system like P2PRep, where only the
query is broadcasted. Caching trust values for a certain amount of time can
reduce the protocol overhead and the response times of the querying peers.
The reliance on broadcasting, with the amount of network traffic that this
generates, makes TrustMe unacceptable for large-scale, unstructured net-
works.

4 Conclusion

We have presented EigenTrust, a distributed and secure algorithm for com-
puting global trust values of peers in a peer-to-peer network. The global
trust value of a peer is computed by calculating the left principal eigenvec-
tor of a matrix of normalized local trust values, that summarize the entire
system’s history with the particular peer.

Even though EigenTrust relies on a DHT to assign peers to score man-
agers, we can envision an unstructured version of the algorithm, where
trusted peers in a neighborhood are responsible for storing the trust val-
ues of peers in their vicinity, and the trust values are weighted according to
credibility of the raters or the similarity in the interests of the peers.

We have also presented four more protocols for decentralized trust man-
agement, namely P2PRep, RCertPX, P-Grid, and TrustMe, and compared
them with EigenTrust. The major parameters of the comparison have been
the reliance on a particular network infrastructure, the amount of traffic

14



generated, which can be regarded as the protocol overhead, the persistence
of the protocol, meaning whether it is able to take into account the opinions
of nodes that have left the system, and the defense the protocol provides
against a variety of known attacks.

References

[1] K. Aberer and Z. Despotovic. Managing trust in a peer-2-peer informa-
tion system. In Proceedings of the International Conference on Informa-
tion and Knowledge Management, CIKM, 2001.

[2] F. Cornelli, E. Damiani, S. De Capitani di Vimercati, S. Paraboschi,
and P. Samarati. Choosing reputable servents in a P2P network. In
Proceedings of the International World Wide Web Conference, WWW,
2002.

[3] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The EigenTrust
algorithm for reputation management in P2P networks. In Proceedings
of the International World Wide Web Conference, WWW, 2003.

[4] B. C. Ooi, C. Y. Liau, and K. L. Tau. Managing trust in peer-to-
peer systems using reputation-based techniques. In Proceedings of the
International Conference on Web Age Information Management, WAIM,
2003.

[5] A. Singh and L. Liu. TrustMe: Anonymous management of trust rela-
tionships in decentralized P2P systems. In Proceedings of the Interna-
tional Conference on Peer-to-Peer Computing, P2P, 2003.

15


