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Overview

Multiple threads executing on a single processor
without switching.

1. Threads

2. SMT

3. Hyper-Threading on P4

4. OS and Compiler Support

5. Performance for Different Applications
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Threads

• Process: “A task being run by the computer.”
• Context: Describes a process’s current state of

execution (registers, flags, PC...).
• Thread: A “light-weight” process (has its own PC

and SP, but single address space and global
variables).

• Each process consists of at least one thread.
• Threads allow faster context-switching and

fine-grain multitasking.
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Single-Threaded CPU

A lot of bubbles in the in-
struction issue and in the
pipeline!
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Single-Threaded SMP

Executing processes are
doubled, but bubbles are
doubled as well!
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Superthreaded CPU

Each issue and each
pipeline stage can con-
tain instructions of the
same thread only.
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Hyper-Threaded CPU (SMT)

Instructions of different
threads can be sched-
uled on the same stage.
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SMT vs TeraMTA

• Each processor of the TeraMTA has 128 streams,
that include a PC and 32 registers.

• Each stream is assigned to a thread.
• Instructions from different streams can be

pipelined on the same processor.
• However, in TeraMTA only a single thread is

active on any given cycle.
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SMT Benefits

SMT:
• Gives the OS the illusion of several (currently two)

logical processors.
• Makes efficient use of resources.
• Overcomes the barrier of limited amount of ILP

within just one thread.
• Is implemented by dividing processor resources to

replicated, partitioned, and shared.
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Replicated Resources

Each logical processor has independent:
• Instruction Pointer
• Register Renaming Logic
• Instruction TLB
• Return Stack Predictor
• Advanced Programmable Interrupt Controller
• Other architectural registers
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Partitioned Resources

Each logical processors gets exactly half of:
• Re-order buffers (ROBs)
• Load/Store buffers
• Several queues (e.g. scheduling, uop

(micro-operations))

Partitioning prohibits a logical processor from monopo-

lizing the resources.
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Statically Partitioned Queue

Specific positions are as-
signed to each proces-
sor.
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Dynamically Partitioned Queue

A limit is imposed to the
positions each processor
can use, but no specific
positions are assigned.
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Shared Resources

Each logical processor shares SMT-unaware
resources:

• Execution Units
• Microarchitectural registers (GPRs, FPRs)
• Caches: trace cache, L1, L2, L3

Sharing:
+ Enables efficient use of resources, but...

- Allows a thread to monopolize a resource (e.g. cache

thrashing).
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Pentium 4

• 32-bit

• 2.4 to 3.4 GHz clock frequency

• 800 MHz system bus

• 0.13-micron technology

• 8KB L1 data cache, 12KB L1
instruction cache, 256KB to 1MB
L2 cache, 2MB L3 cache

• NetBurst microarchitecture
(hyper-pipelined)

• Hyper-Threading technology
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Front-End Pipeline

(a) Trace Cache Hit

(b) Trace Cache Miss
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Out-Of-Order Execution Engine
Pipeline
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Implementation Goals Achieved

• Minimal die area cost (less than 5% more die
area).

• Stall of one logical processor does not stall the
other (buffering queues between pipeline logic
blocks).

• When only one thread is running, speed should be
the same as without H-T (partitioned resources
are dedicated to it).
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Single- and Multi-Task Modes

Partitioned resources are dedicated to one of the
logical processors when the other is HALTed.
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Operating System Optimizations

When the OS schedules threads to logical processors
it should:

• HALT an inactive logical processor, to avoid
wasting resources for idle loops (continuously
checking for available work).

• Schedule threads to logical processors on different
physical processors instead of the same (when
possible), to avoid using the same physical
execution resources.
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OS Optimizations

The Linux kernel (2.6 series) distinguishes between
logical and physical processors:

• H-T-aware passive and active load-balancing
• H-T-aware task pickup
• H-T-aware affinity
• H-T-aware wakeup
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Compiler Optimizations

Intel 8.0 C++ and FORTRAN compilers:

Automatic optimizations:
• Vectorization
• Advanced instruction selection

Programmer-controlled optimizations:
• Insertion of Streaming-SIMD-Extensions 3 (SSE3)

instructions
• Insertion of OpenMP directives
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Performance gain from automatic
optimizations

SPEC CPU 2000 shows significant speedup not only
from H-T specific (QxP) but even for general P4 (QxN)
optimizations.
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Performance gain from manual
optimizations

SPEC OMPM 2001 shows speedup achieved by
automatic optimizations in combination with OpenMP
directives.
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Thread-level Parallelism of Desktop
Applications

• Unlike server workloads, interactive desktop
applications focus on response time and not on
end-to-end throughput.

• Average response time improvement on dual- vs
uni-processor measured 22%.

• The application programmer has to exploit
multi-threading.

• More than 2 processors yield no great
improvements.
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Performance in Client-Server
Applications

While H-T offers no gain or degradation in API calls
and user application workloads, it achieves
considerable speedups in multi-threaded workloads.
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Performance in File Server
Workloads

Good speedups in multi-threaded workloads, whether
filesystem and socket calls, or just socket calls.

CS203B-Advanced Computer Architecture, Spring 2004 – p.27/32



Performance in Online Transaction
Processing

21% performance gain in the case of 1 and 2
processors.
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Performance in Web Serving

16 to 28% performance gain.
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Conclusions

• Hyper-Threading enables thread-level parallelism
by duplicating the architectural state of the
processor, while sharing one set of processor
execution resources.

• When scheduling threads, the OS sees two logical
processors.

• While not providing the performance achieved by
adding a second processor, Hyper-Threading can
offer a 30% improvement.

• Resource contention limits the performance
benefits for certain applications.

• Performance gains are evident in multi-threaded
workloads, which are usually found in servers.CS203B-Advanced Computer Architecture, Spring 2004 – p.30/32
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Thank you!

Questions/Comments?
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