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ABSTRACT
Modern smart home platforms facilitate home automation using
trigger-action routines. While routines enable flexible automation,
they may also cause serious threats to system integrity: untrusted
third-parties may use platform APIs to modify the abstract home
objects (AHOs) that high-integrity devices (e.g., security camera)
rely on (i.e., as triggers). As most AHO accesses are legitimate, ap-
plying naive information flow controls or removing permissions
would not only fail to prevent these problems, but also break useful
functionality. Therefore, this paper proposes the alternate approach
of home abstraction endorsement, which endorses a proposed AHO
change by correlating it with expected environmental changes. We
present the HomeEndorser framework, which provides a policy
model to express changes in device states as endorsement policy
templates that are automatically instantiated in a given configura-
tion (based on device availability/placement), and a platform-based
reference monitor to mediate all API requests to change AHOs.
We implement HomeEndorser as an enhancement to the Home-
Assistant platform, and demonstrate less than 10% performance
overhead and no false alarms under realistic usage, as well as derive
policy templates for 6 key AHOs.
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1 INTRODUCTION
The popularity of smart home devices [55] can be attributed in part
to the convenience of home automation, wherein smart devices au-
tomatically react to changes in the user’s physical environment. For
example, a user may configure a security camera to begin recording
when they leave home, but turn OFF when they return to preserve
their privacy [35]. Such automation is expressed using trigger-
action programs known as routines, that execute an action (turning
camera OFF) in response to a trigger (“away” to “home”).

Routines are often enabled via third-party integrations that au-
tomate device-actions by leveraging platform APIs to modify two
distinct types of objects, device states (e.g., the ON/OFF state of a
light bulb), and abstract home objects (AHOs) that are not device-
specific (e.g., home/away, hereby referred to as the home AHO).

A particularly dangerous attack vector that emerges from this
setting is where adversaries gain privileged access to devices indi-
rectly, by falsifying an AHO that a high-integrity device depends on
via a routine. For instance, consider a situation wherein an adver-
sary may want to disable the security camera to perform a burglary,
but may not have direct API access to it. An adversary with API
access to modify an AHO that the security camera depends upon
to deactivate, such as home/away being set to “home,” may disable
the security camera without direct access [29, 30].

A naive approach to address such false AHO-changes would
be to prevent third-parties from accessing AHOs altogether, or to
severely restrict permissions based on static [34, 44, 58] or run-
time context [27]. However, in practice, such solutions may result
in infeasible usability penalties, as AHOs are often computed via
third-party services of the user’s choice that infer AHOs by query-
ing a combination of device states [22], use other (proprietary)
approaches [51], or enable the user to set them [31]. Thus, at its
core, we recognize this as an integrity problem analogous to those
in operating systems: a high-integrity process (here, the security
camera) relies on the value of an object (i.e., the homeAHO) that can
be modified by untrusted parties. Hence, we must directly address
the lack of integrity validation of AHO changes in the smart home.

Information flow control (IFC) has often been proposed to ensure
the integrity of information consumed by sensitive processes [2,
15, 16, 33, 37, 64], through dominance checks that regulate flows
based on subject and object labels [2]. A simple IFC solution in
this case would be to mark AHOs such as home as high integrity,
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while marking third-party services as low integrity, which effec-
tively results in preventing third-parties from modifying AHOs.
However, such restrictions may prevent valid changes to AHOs
from services chosen by the user, resulting in false denials from
the user’s perspective; e.g., 19/33 NEST integrations from a prior
dataset [29] would be blocked due to such restrictive labeling.

IFC systems rely on endorsement [4, 63, 64] to overcome this
limitation, allowing trusted programs to change labels of objects
to permit flows that would normally violate IFC. However, deter-
mining when an endorsement is allowable in IoT systems is a chal-
lenge; indeed, prior work has often avoided addressing this directly,
and instead facilitates endorsement by assigning the authority to
certain trusted high-integrity processes, thereby delegating the
task of how to endorse correctly to the programmer or administra-
tor [8, 32, 33, 48]. However, in our case, smart home users may lack
information about dependencies among devices and AHOs to do
this correctly. So, we ask instead: Is there something else we can
rely on to provide endorsement for practical integrity validation?

Yes – the cyber-physical nature of the smart home provides us
with a unique opportunity for practical endorsement, in the form of
ground truth observations from devices (i.e., device state changes)
that can validate proposed changes to AHOs. For instance, we can
endorse the change to the homeAHO (from “away” to “home”) if the
door lock was legitimately unlocked (i.e., with the correct keycode)
recently, as it represents the home owner’s intent and attempt to
enter the home. In fact, rather than only depending on one device,
we can leverage all the devices that may observe state changes that
may correlate with each sensitive AHO change, such as motion
sensors, microphones, etc. that may be available to detect changes
that support the home AHO change. Thus, we state the following
claim that forms the foundation of this work:
Abstract home objects (AHOs) shared among third-party services
and devices for the purpose of home automation are inherently tied
to a home’s physical state. Thus, any state change or modification
to an AHO via an API call can be endorsed using the local context of
the home, consisting of changes in a combination of device states.

Contributions: We introduce the paradigm of home abstraction
endorsement to validate changes to AHOs initiated by untrusted
API calls, and propose the HomeEndorser framework to enable it.
HomeEndorser does not continuously monitor AHOs, but focuses
on API-induced changes to AHOs, and performs a sanity check
using policies that rely on recent physical state changes in smart
home devices. If the check fails, the state change is denied, and
the user is informed. HomeEndorser’s preemptive action prevents
future automation based on maliciously changed AHOs. We make
the following contributions in exploring this novel design space:
1. Home Abstraction Endorsement: We introduce home abstrac-
tion endorsement, which leverages local device state changes to
endorse proposed AHO-changes, thereby making IFC endorsement
practical by exploiting the cyber-physical nature of the smart home.
2. The HomeEndorser Framework: We design the HomeEn-
dorser framework consisting of (1) a policy model that allows a
unified expression of location-specific device instances within a sin-
gle policy (e.g., endorsing home via multiple physical entry points),
(2) a platform-based reference monitor that mediates sensitive state

changes using these policies, and finally, (3) a mechanism to enable
experts to generate endorsement policy templates (defined once for
all homes), which HomeEndorser then automatically instantiates
for each home, enforcing the most restrictive but feasible policy.
3. Evaluation: We implement HomeEndorser on HomeAssistant,
a popular open-source platform, and evaluate it with extensive
experimental and empirical analyses. (1) We demonstrate that the
home abstraction endorsement is feasible, even with a limited set of
correlating devices, by generating policies to endorse changes to the
home AHO. (2) We demonstrate the generality of our policy model
by identifying several attributes that may be used to endorse five
additional AHOs. (3)We show that HomeEndorser is not susceptible
to false denials, and in fact, may prevent accidental unsafe situa-
tions, by systematically testing it using 10 home usage scenarios,
drawn from prior work [28], and 400 realistic event sequences [35],
in a smart home (apartment) testbed. (4) We demonstrate the ef-
fectiveness of HomeEndorser’s integrity validation using specific
attack scenarios. (5) We measure HomeEndorser’s practical per-
formance overhead with micro/macro benchmarks (9.7-12.2% on
average). (6) Finally, we demonstrate the modest effort required to
generate policy templates, configure HomeEndorser in user homes,
and integrate HomeEndorser in popular platforms.

2 MOTIVATION
Instead of cloud-hosted ”apps“, current smart home platforms (e.g.,
SmartThings) provide API access to (1) device states of individual
devices (e.g., ON/OFF state), and (2) abstract home objects (AHOs)
that are not associated with any specific device (e.g., the home AHO
to indicate whether the user is home or away). This allows for
seamless integration with third-party services (e.g., IFTTT [24]).
Need for Integrity Validation of AHOs: AHOs are a key compo-
nent of routines, as they form the conditions that need to be met
for a routine to execute, e.g., turn the security camera on when user
is home. In fact, our empirical analysis of 184 SmartThings market-
place apps uncovered 33 unique flows to security-sensitive devices
through AHOs (full list in online appendix [21]). Since AHOs can be
designated by the user to be set in several ways, such as via a direct
command [31], a third-party service computing home AHO based
on phone’s location [57], or a proprietary/undisclosed method/de-
vice [51], this exposes a dangerous attack vector where adversaries
can gain privileged access to security-sensitive devices (e.g., door
lock) indirectly by falsifying an AHO’s state. For instance, an ad-
versary Bob who cannot compromise or modify a high-integrity
device directly can modify AHOs directly through an API to trigger
targeted routines and transitively attack the device.

Therefore, this paper recognizes this problem as a smart home-
specific instance of the classical OS integrity problem (e.g., Biba [2]),
wherein a high-integrity process (i.e., the camera) relies on an object
(i.e., the home AHO) which can also be modified by low-integrity
process (e.g., the Kasa integration). Similar to OSes, platforms must
provide systematic integrity protections for high-integrity objects
(i.e., AHOs) since untrusted principles can access them in many
ways (e.g., numerous API calls or routines) to manipulate high-
integrity subjects (e.g., security sensitive devices).

Consider the following motivating example involving an attack
on a high-integrity device via the home AHO (inspired by a demon-
strated attack from prior work by Kafle et al. [29, 30]):
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Figure 1: An attack on the security camera through the manipula-
tion of two AHOs by adversary-controlled integrations.
Motivating Example: Alice uses two routines in her home (ad-
vertised by Simplisafe [50] and NEST [40]): (R1) the camera turns
ON when Alice leaves home and (R2) the camera turns OFF when
Alice returns home. Bob seeks to burglarize Alice’s home without
being monitored, but does not have direct API access to the camera.
However, Bob controls one (or more) third-party services connected
to Alice’s home, either because Alice installed Bob’s service, or Bob
compromised a vulnerable service (e.g., the TP-link Kasa via MiTM
attack, as demonstrated in prior work [29, 30]). Thus, Bob changes
home to the value “home”, falsely suggesting that Alice is home and
triggering (R1), thereby disabling the camera, as shown in Figure 1.

This problem is not just limited to the home AHO. Consider the
security_state AHO, also used in routines (e.g., from Ring [45],
fromTotalConnect [1]) to control security devices, which are ”armed“
when security_state is set to “deter”, and ”disarmed“ when it is
set to “ok”. If Bob controls a service with access to security_state,
he can set it to “ok” and disable the camera.
Threat Model: In line with the motivating example, we consider
an adversary who controls/compromises any third-party service
connected to the target‘s home, with the objective to indirectly
modify high-integrity devices. Such services can use the platform
APIs to create and trigger automations via AHOs. Similar to prior
work dealing with API misuse [5, 6, 13, 36], we assume the platform
to be trusted and devices to be tamper-proof, as an attacker with
direct access to either can simply set the device to their desired
state without having to use the API.

3 LIMITATION OF PRIOR APPROACHES
Based on the threat model, we now discuss the three main limita-
tions from prior approaches in addressing this problem:
1. Breaking functionalities:: As high-integrity devices rely on
AHOs, traditional wisdom dictates that low-integrity (or third-
party) integrations should simply be disallowed from writing to
these objects. However, API-based platforms are designed such
that integration/service of user‘s choice can control the platform,
e.g., IFTTT creating routines for Nest [23]. Thus, disallowing third-
parties from writing to AHOs breaks useful services (e.g., IFTTT,
Kasa), whichmay be a prohibitive cost in terms of user experience.In
fact, in 2019, Google had to backtrack [9, 19] after ending its “Works
with NEST” program in favor of the “Works with Google Assistant”
program that would only be open to vetted partners. Following
opposition from both users and third-party integrations [11, 12, 25],
it offered a more flexible program allowing broader integrations
access to the internal home states (including AHOs) [19].
2. Focus on App analysis: Most of prior work has attempted to ad-
dress this issue as an ”application“ security problem, which assumes
a different threat model no longer applicable in current, API-based
platforms. That is, prior work [5, 6, 27, 42, 44, 58] analyzes or in-
struments developer-defined automation programs (i.e.,IoT apps)

to limit privilege (or API access) based on whether apps require it.
However, this does not solve the core issue. First, IoT apps are now
black boxes. That is, platforms do not host apps anymore [52], and
connected third-party services trigger automations through the
platform API instead. Hence, prior solutions that rely on analysis or
instrumentation of source code (e.g., HAWatcher [17], IoTGuard [6]),
and those deployed outside of the platform (e.g., PFirewall [7]) both
fail as third-party services are closed-source and communicate with
the platform directly (i.e., cloud-to-cloud). Second, the lack of AHO
integrity cannot be addressed by limiting privilege. Even if we limit
API access exclusively to services that require it [47], an adversary
may still compromise those services and exploit the privilege (see
Motivating example in Section 2).
3. Lack of focus on AHOs: Similar to the focus on app analysis,
the policy enforcement in prior work [5–7, 42, 59, 61, 62] is de-
signed for a different threat model which does not address the core
issue of AHOmanipulation. The policy enforcement chiefly focuses
on (1) preventing unsafe states reached via “app interactions” or
“chaining” of multiple IoT apps (e.g., IoTGuard [6]), or (2) preventing
unsafe states in individual, sensitive devices such as a door lock (e.g.,
Expat [62]). However, none focus on AHO manipulations, allow-
ing an attacker to control routines, and bypass policy enforcement
altogether. For instance, consider this policy from Expat [62]: front-
DoorLock: Front door should be locked when the user is away. Expat
enforces this by checking the value of presence_state (analogous to
the home AHO). Hence, any third-party service that can modify
presence_state (e.g., demonstrated attack in prior work [29][30]) can
trivially bypass this policy.

Therefore, there is a need for a solution that is (1) practical, i.e.,
does not break functionality by preventing all third-party access
to AHOs, and (2) effective, enabling integrity validation of AHO
changes. This paper proposes a moderate route i.e., runtime vali-
dation of proposed AHO changes, to enable proactive integrity
checking that is compatible with platform design and user choices.

4 DESIGN GOALS
This paper introduces the novel paradigm of home abstraction
endorsement that provides the following integrity guarantee for
AHOs: In the event that an untrusted service uses the platform
API to modify a critical AHO (e.g., home), the modification will be
allowed iff it is consistent with the local state of the home, composed
of the physical device states. Our approach builds upon the concept
of trusted “guards” in the Biba integrity model [2], wherein a high
integrity subject cannot receive input from a low integrity subject
unless it is endorsed by a trusted guard. Similarly, we envision
endorsement policies that apply trusted device states and hence
serve as the trusted guards, ensuring the validity of API requests
to change AHOs. The following goals guide our design:
G1 Expressive and Practical Endorsement Policies. The endorsement

policy structure must be designed in a way that allows it to
express common deployment factors in smart homes that may
affect the endorsement, such as device availability and locality.

G2 Complete Mediation. Given that third-party services (or apps)
are black boxes [18, 54], the reference monitor should be app-
agnostic, i.e., should not depend on the analysis/instrumenta-
tion of apps/services, but should provide complete mediation
for all API calls that modify AHOs, irrespective of their origin.
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Figure 2: A conceptual overview of home abstraction endorsement.
G3 Tamperproofness. Although our endorsement approach relies

on device states, several device states may be modifiable by
untrusted services via API. Thus, our reference monitor must
only rely on trustworthy states modifiable only by devices.

G4 Freshness. Endorsing an AHO change may require the reference
monitor to examine recent changes in the states of physical
devices, rather than simply reading the current state (e.g., as
sensors may reset after apprising the platform of an event).

G5 Minimal Performance/Management Overhead. The framework
should minimize any delay perceivable by the user, as well as
deployment and management effort.

5 THE HOMEENDORSER FRAMEWORK
We propose HomeEndorser, a framework that enables home ab-
straction endorsement as shown in Figure 2. When a third party
service attempts to modify an AHO using the platform-API, Home-
Endorser enforces an integrity check in addition to the platform’s
permission check for endorsing the proposed change. To endorse,
HomeEndorser checks the corresponding endorsement policy that
uses recent changes in device-attributes/states. For example, to en-
dorse a proposed change from “away” to “home” in the home AHO,
one possible policy would be: if door-lock has been unlocked recently
(i.e., using the correct keycode), then ALLOW the change, else DENY.

Key observation: HomeEndorser’s endorsement policy design
accounts for device locality or placement in the home, due to a key
observation: while AHOs such as home, fire, or security_state
are global values that apply to the entire home, a valid change in
them can be sufficiently reflected in one or more localized events.
For example, a proposed change from “away” to “home” in the
home AHO would be valid if the door lock at the front door was
unlocked successfully, or if the one in the back was unlocked suc-
cessfully. Similarly, a state change to fire is valid if any of the
smoke detectors, in any one location in the home, detects smoke.

Location-specific policy model: This observation motivates our
location-specific policy model (see Sec. 5.1), in which policy tem-
plates are composed of mutually exclusive, location-specific predi-
cates, with each predicate representing device states at a particular
location in the house, only one of which has to be satisfied for
endorsement. The benefit of such a model is that the user does not
need to have the devices available at all possible locations, but any
one location, making it more practical (G1). However, a tradeoff is
that our model does not currently support AHOs that do not ex-
hibit this property (i.e., require devices’ state from several locations
together for endorsement), although we have not encountered such
an example in the 5 other AHOs studied (see Sec. 7.2).

Flexible policy templates and automatic instantiation: Home-
Endorser’s flexible policy model allows general expert-defined pol-
icy templates (see Sec. 5.3) that it automatically instantiates in the

context of a user’s home (G5), using information on device avail-
ability and placement that is readily available in most smart home
platforms (see Sec. 5.2). More specifically, HomeEndorser instan-
tiates the most restrictive but feasible policy for each AHO-
change to be endorsed, i.e., location-specific predicates containing
the largest aggregate of device-attributes that can be satisfied with
devices available at each corresponding location. We define a policy-
template generation methodology that allows experts to use open
coding to define endorsement policy templates in a systematic,
ground-up manner (see Sec. 5.3), using automatically-generated
endorsement attributes, i.e., trusted device-attributes that are either
read-only or highly restricted by platforms, ensuring tamperproof-
ness (G3).

Reference Monitor: HomeEndorser’s reference monitor is inte-
grated into the user’s smart home platform in the form of an en-
dorsement check in the platform’s subsystem responsible for ex-
ecuting all API calls, ensuring complete mediation (G2, Sec. 5.2).
Note that HomeEndorser’s reference monitor considers the most
recent changes in device-attributes (G4), rather than just the cur-
rent state, as the two may be different, since most sensors reset
after a change, and because the most recent changes provide the
context for endorsing the proposed AHO change. This decision is
instrumental in eliminating unnecessary false denials (see Sec. 7.3).

5.1 Policy Model
A key challenge for HomeEndorser is designing a policy model that
can alleviate two practical constraints. First, endorsement policies
may consist of multiple device-attribute pairs that must be checked
together. Second, as described previously, AHO-changes can be
endorsed via mutually-exclusive, localized state changes; e.g., the
front door lock or the back door lock can either endorse a change
to home. We account for these constraints with a policy template
expressed as a Disjunctive Normal Form (DNF) boolean formula:
Definition 1 (Endorsement Policy). The policy for endorsing a
change in AHO 𝑥 to value 𝑦, 𝑃𝑥 (𝑦), is a DNF formula composed of
one or more location-specific predicates (𝐿𝑖 ), i.e., 𝑃𝑥 (𝑦) = 𝐿1 ∨ 𝐿2
∨ ... ∨ 𝐿𝑛 , where a location-specific predicate is defined as follows:
Definition 2 (Location-specific Predicate). A location-specific pol-
icy predicate 𝐿𝑖 for location 𝑖 (e.g., entryway), i.e., 𝐿𝑖 = 𝑑 𝑗∧𝑑𝑘∧...𝑑𝑚 ,
is a conjunction of one or more device-attribute checks 𝑑 𝑗 , defined
as follows:
Definition 3 (Device-attribute Check). A device-attribute check 𝑑 𝑗
is a condition 𝑑 𝑗 == 𝑠 , where 𝑠 is a physical state that the particular
device-attribute must have exhibited in the recent past, for the
device-attribute check to return true.

To illustrate, let us express the policy from the motivating exam-
ple for endorsing the home AHO’s change to “home”. We express
the policy using a door lock and a motion sensor at the entry way,
as well as the same devices at the rear entrance:

𝑃home(home) = (door-lock_lock == UNLOCKED ∧
motion_sensor == ACTIVE)𝑓 𝑟𝑜𝑛𝑡−𝑑𝑜𝑜𝑟

∨
(door-lock_lock == UNLOCKED ∧

motion_sensor == ACTIVE)𝑏𝑎𝑐𝑘−𝑑𝑜𝑜𝑟
The above policy considers both the door lock being unlocked, and
motion being sensed, to prevent false negatives. That is, for both the
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conditions above to be true, a user would have to unlock the door
and then enter, i.e., confirming that they are home. On the contrary,
if the user unlocks but leaves without entering, this policy condition
would correctly result in a denial (as shown in Sec. 7.3). Similarly,
the disjunction among location-specific predicates enables their
independent evaluation, thereby allowing the AHO-change as long
as any one evaluates to true. Finally, we define two policy actions:
ALLOW and DENY, corresponding to the true or false values that the
DNF formula results in, respectively.

5.2 Secure and Practical Enforcement
In a manner similar to prior solutions in the broader modern OS
security space [20, 38, 39], we design HomeEndorser’s enforcement
as an enhancement to the OS (i.e., the platform) itself. This decision
is influenced by how third-party services are currently integrated
in smart home platforms (e.g., NEST and SmartThings v3), i.e., as
cloud endpoints that use RESTful APIs to interact with the platform,
but execute on their own proprietary servers, without a way for
the platform to inspect them. Therefore, our decision ensures that
HomeEndorser will mediate all API commands from third-parties
before they are executed (G2), in a manner agnostic to how third
party integrations are implemented/deployed (e.g., as black box
network endpoints). We now describe the three design components
of HomeEndorser’s enforcement, as shown in Figure 3.

1. Deployment-aware Policy Instantiation: When HomeEn-
dorser is first set up in a home, it leverages the platform’s internal
bookkeeping systems to extract all devices and device-locations.
Then, for each AHO the user decides to endorse, it uses the policy
templates (generated by experts using the policymodel, as described
later in Sec. 5.3) to instantiate the most restrictive but feasible policy,
i.e., a policy consisting of the largest applicable location-specific
predicate(s), given the available devices and their locations. Such
dynamic and adaptive instantiation is necessary to apply the policy
templates to any home, given that a typical user’s setup may only
have a small subset of all the devices that can endorse a particular
change, and only at a few (or single) locations. For instance, for a
user who has a door lock and a motion sensor only at their front
door, the policy template in Section 5.1 is instantiated as only one
location predicate representing the said devices at the front door:

𝑃home(home) = (door-lock_lock == UNLOCKED ∧
motion_sensor == ACTIVE)𝑓 𝑟𝑜𝑛𝑡−𝑑𝑜𝑜𝑟

Thus, HomeEndorser enforces the most restrictive, feasible pol-
icy for devices at each individual location in the home, and also
reinstantiates the policy upon a configuration change, i.e., device
addition, removal or relocation (see Sec. 6 for implementation).

2. The Endorsement Check: HomeEndorser mediates all API re-
quests, but only invokes the endorsement check if an AHO selected
by the user for endorsement is about to be modified, in a manner
similar to performance-preserving hook activations proposed for
Android [20] (G5). HomeEndorser retrieves the instantiated policy
for the AHO-change being endorsed and collects the most recent
state changes of all the device-attributes in it. If the state of all the
device-attributes in any predicate matches with the current policy,
the decision is ALLOW, else DENY (and the user is notified).

Additionally, HomeEndorser considers the most granular value
of a device-attribute for the endorsement check. For instance, con-
sider that when Alice leaves, she sets home AHO to “away”. To
circumvent HomeEndorser, Bob could attempt to modify home (i.e.,
back from “away” to “home”) at the time of Alice’s departure. This
is possible because Alice leaving or coming home both involve (1)
unlocking the door, and (2) triggering the door-way motion sensor.
A naive endorsement approach would allow the AHO change by
considering these state changes, even when triggered in the oppo-
site order, because it matches 𝑃ℎ𝑜𝑚𝑒 (home). However, smart home
devices provide unique device attribute values even for similar ac-
tions, i.e., the state value for unlocking the door using the keypad
is different than simply unlocking it from the inside (e.g., “owner”
in the former case, and “manual” in the latter). HomeEndorser
considers this available granularity, preventing such an attack.

3. Retrievingmost recent changes using Platform State Ma-
chine: A naive approach of executing an endorsement check would
be to query each device’s current state at the time of check. However,
such a check would most certainly fail and lead to false denials
because most sensors detect and report a change, and then reset
to a predefined neutral state. For example, recall the endorsement
policy predicate to endorse home consisting of the door lock and
the motion detector (assuming single location for simplicity):

door-lock_lock == UNLOCKED ∧ motion_sensor == ACTIVE

Unless the check happens exactly at the moment the user enters,
the motion sensor resets to INACTIVE immediately after detecting
motion, causing a false denial. Thus, for correct endorsement, we
check the most recent but fresh change in the device states (G4), i.e.,
the last state change before the states automatically reset, within a
configurable time threshold to ensure freshness (e.g., one minute).
Since HomeEndorser obtains all recent device state changes and
their timestamps from the platform state machine (see Sec. 6), it
can discard states that are older than the preconfigured threshold,
thereby preventing historical old states from causing false allows.

5.3 Data-driven Policy Template Generation
HomeEndorser defines a data-driven methodology to enable experts
(e.g., security researchers, platform vendors) to enumerate general
endorsement policy templates that HomeEndorser automatically in-
stantiates in the context of end-user homes (as described in Sec. 5.2).
Our approach automatically creates a device-attribute map, i.e., a
comprehensive mapping between device types (e.g., cameras, door
locks) and the attributes they possess, and defines trusted endorse-
ment attributes to be used for tamperproof endorsement. We then
use open coding for identifying the observations and inferences that
can be made from the endorsement attributes to generate templates
using our policy model (see Sec. 5.1).
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1. Generating the Device-AttributeMap: We construct a compre-
hensive device-attribute map from several sources selected based
on popularity, and the potential of obtaining realistic mappings: (1)
a device-resource specification from the Open Connectivity Foun-
dation (OCF) [43], used by the platform IoTivity [26], (2) the NEST
data store [41], (3) the SmartThings capability map [53], and (4)
SmartThings device handlers [46]. As each of these sources exhibits
a unique representation of devices and attributes, we develop cus-
tomized, automated methods for extracting device-attributes from
each source (details in online appendix [21]).

2. Endorsement Attributes for Tamperproofness: For tam-
perproof endorsement, HomeEndorser must be able to trust the
information received from the participating endorsers i.e., device-
attribute pairs (G3). We achieve this goal by defining a trusted sub-
set of device-attributes to be used for our checks, i.e., endorsement
attributes. We propose two categories of endorsement attributes:
(1) read-only attributes, i.e., which are only writable by devices, and
not via API calls, rendering them read-only from the third-party
API caller’s perspective (e.g., motion sensor reading), and (2) desig-
nated attributes, which are writeable in theory, but are considered
high-integrity by platforms and prior security research [10, 56]
alike (e.g., locking the door lock), and hence, heavily restricted. For
example, NEST only allows its platform app to unlock locks, but not
third-party services. Both read-only and designated device attributes
would have a higher integrity level than an AHO such as home as
they are not modifiable by a third-party service, and hence, would
be trusted to endorse it.

3. Generating Policy Templates from Inferences: We now ad-
dress the question of how the endorsement attributes are used to
endorse a specific AHO, by designing a holistic inference-based tem-
plate generation process that is a one-time, expert-driven effort. We
begin by identifying 5 additional AHOs from prior work [13, 29] and
AHOs which we encountered when building our device-attribute
map (e.g., the security_state fromNEST). Then, we consider each
device-attribute, and identify the type of information sensed or ob-
served by that device-attribute, which we then translate to an infer-
ence that could be used for endorsing an integrity-sensitive change
in one or more of the AHOs. For example, the device-attribute pair
<security-panel, disarmed> indicates that the security panel/keypad
was recently disarmed, which may provide an inference to endorse
the home AHO’s proposed change to “home”. We combine infer-
ences identified for each AHO to construct policy templates as
defined in Sec. 5.1. That is, each inference becomes a part of the
AHO’s endorsement policy, which is then instantiated in a user’s
home. Sec. 7.4 provides example policies under different scenarios
(complete table in the online appendix [21]).

HomeEndorser’s policy instantiation approach is also resistant
to conflicts, as it instantiates only a single policy for a specific
deployment context using a quantitative criteria. The instantiation
criteria for the most restrictive but feasible policy is governed by
the number of device-attributes used in predicates (larger number
indicating more restrictions) that are feasible given the devices at
specific locations, and not the actual values/states of the device-
attributes in the predicates. Since only a single policy is instantiated
in this way, the issue of policy conflict does not arise.

Finally, HomeEndorser’s expert-driven template generation ap-
proach has several advantages over automatically-generated cor-
relations in systems that learn from IoT app source code, event
logs, and user activities [17]. First, as we do not trust apps, our
policy templates are not susceptible to the problem of false learn-
ing, unlike correlations influenced by untrusted app code. Second,
learning from app code is becoming infeasible (see Sec 2). Third,
our approach is not privacy invasive as it does not involve large-
scale collection of real user data/behavior. Fourth, HomeEndorser’s
endorsement outcomes are independent of the number of users in
a home, in contrast with systems that learn correlations specific to
users available during training, which may change at enforcement.

6 IMPLEMENTATION
This section describes our policy template generation study, as well
as the reference monitor implemented in HomeAssistant. We plan
to release all the code and data upon publication.

1. Policy Template Generation Study: We automatically gen-
erated a combined device-attribute map from all the data sources
consisting of 100 device-types and 510 device-attribute pairs, of
which were 41 endorsement attributes, i.e., read-only or designated
device-attributes. Two authors independently identified the infer-
ences that could be drawn from these endorsement attributes to
endorse changes to one or more of our 6 AHOs. The coders dis-
agreed on 12/510 device-attribute pairs (2.4% disagreement rate),
which were resolved via discussion (see details on disagreements
in online appendix [21]). The inferences led to 10 endorsement
attributes for home alone, which can feasibly instantiate several
policies (see Sec. 7.1).

2. Implementation on HomeAssistant: We implemented Home-
Endorser in HomeAssistant, a popular open-source platform. We
set the default time threshold as 1 minute, which we found to be
sufficient in our trials for a user to enter home, platform state ma-
chine to be updated, and user’s service to set home AHO (details in
online appendix [21]). HomeEndorser uses HomeAssistant’s state
machine to track most recent state changes and their timestamps,
and also to intercept the incoming state change requests to medi-
ate all API accesses. Furthermore, HomeEndorser uses callbacks in
HomeAssistant’s Event Bus to track the addition/removal of devices
for re-instantiating policies as the home evolves. Finally, HomeEn-
dorser keeps track of device-connectivity using the state machine,
and falls back to the next most restrictive policy in case a device
becomes unavailable at runtime. We provide log screenshots from
the deployed HomeEndorser in our online appendix [21].

3. Policy Instantiation Using Platform Metadata: HomeEn-
dorser extracts device-metadata from HomeAssistant, including
device types (e.g., door lock), and locations within the home (e.g.,
front door). To instantiate the most restrictive but feasible policy for
an AHO, for each location-specific predicate in the policy, HomeEn-
dorser attempts to find the constituent devices in the same location,
and selects the largest predicate that matches entirely for each
location, i.e., where all required devices are present.

7 EVALUATION
We evaluate HomeEndorser along 7 research questions:
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Figure 4: Layout of the physical device placement

Table 1: Sample policies for endorsing home (“away”→“home”)

Policy
𝑃1 <security-panel, disarmed> ∧ <motion-sensor, active>
𝑃2 <Doorlock, unlocked> ∧ <presence-sensor, active> ∧ <beacon, active>
𝑃3 <Garage-doorlock,unlocked> ∧ <beacon,active>

• RQ1: (Feasibility of policy model) Is it feasible to generate en-
dorsement policies using a small subset of endorsement attributes?
• RQ2: (Generalizability of policy model) Do policies exist for en-
dorsing AHOs other than home?
• RQ3: (False Denials) What is the rate of false denials in typical
benign usage, i.e., when users intentionally cause AHO changes,
and over a period of home automation usage?
• RQ4: (Security) Does HomeEndorser prevent an attacker from
escalating privilege to a high-integrity device using AHOs?
• RQ5: (Runtime Performance) What is the performance overhead
introduced by HomeEndorser?
• RQ6: (Cost) How much effort is required to integrate and deploy
HomeEndorser?

Experimental Setup: We installed HomeEndorser (HomeAssistant
v0.112.0) on a Macbook Pro with 16GB RAM, connected 7 real and
4 virtual devices (full list in the online appendix [21]) in a room as
shown in Figure 4, guided by deployment from prior work [28].

7.1 Feasibility of the Policy Model (RQ1)
We identified 10 endorsement attributes for endorsing the home
AHO-change from away to home using the approach in Section 5.3.
However, HomeEndorser’s policy instantiation automatically adapts
to cases where any subset of the 10 attributes are present and en-
forces the most restrictive policy for that subset, allowing flexible
device combinations in the user’s home. For instance, a total of
1023 combination of devices at a single location are possible to
enable HomeEndorser to endorse home AHO (full list in online
appendix [21]). In fact, having one device-attribute at any loca-
tion (e.g., front door, garage) is enough to enable endorsement, as
HomeEndorser instantiates devices in different location asmutually-
exclusive, thus increasing the number of combinations.

For instance, as Table 1 shows, a user with a door lock and a
motion sensor, or another with a security panel, or another with
a garage doorlock and a presence sensor, are all able to endorse
home. For stronger validation, the user may consider combination of
device-attributes, up to all 10. This demonstrates that our approach
is feasible, i.e., we can define a large number of diverse policies for
an AHO (i.e., home), using a limited set of endorsement attributes,
and hence, increase the possibility of finding a policy that contains
the limited set of devices a particular user possess (RQ1).

7.2 Generalizability of the Policy Model (RQ2)
To demonstrate the generalizability of our policy model, we con-
sider 5 additional AHOs (security_state, fire, water leak,
illuminance, safety_state). For each AHO, we identified en-
dorsement attributes from the device-attribute map and generated
inferences using the process from Section 5.3. Our process resulted
in 41 inferences (cumulatively) useful for endorsement, with each
AHO being endorsed using at least 3 device-attributes (examples in
the online appendix [21]). This demonstrates the generalizability
of our approach, i.e., similar policies are feasible for 5 other AHOs
(RQ2).

7.3 Operation under Realistic Home
Automation Usage (RQ3)

To test whether HomeEndorser reliably enforces endorsement poli-
cies in expected cases, we perform 2 analysis with HomeEndorser
enabled: 1) Evaluating HomeEndorser’s operation automatically
under realistic event sequences generated by Helion [35], and
2) Executing realistic user behavior scenarios derived from prior
work [28].

1. Evaluation with Event Sequences: To test that HomeEndorser
performs endorsement according to its policies in regular usage,
we used Helion [35] to generate event sequences that are likely to
occur next in the home given an initial home event. We provided
Helion with 400 randomly chosen starting events and generated
8191 events, consisting of 64 unique devices. We created 51 virtual
devices in addition to the 13 in our setup, and automatically tested
HomeEndorser’s endorsement accuracy by running the event se-
quences with HomeEndorser enabled, comparing HomeEndorser’s
decision with the expected behavior based on the device states, and
restarting the system in between the execution of successive event
sequences.

The analysis consisted of an effective policy with 6 devices at
the ‘front door’: 4 sensors (motion, presence, beacon, door), and 2
devices (door lock, security panel). To assess accuracy, we assume
that the user is away and save snapshots of device states at the time
of check to automatically compare with the effective policy.

Result: HomeEndorser was invoked in 605 home AHO state change
requests, correctly allowing in 562 cases and denying in 43. Without
HomeEndorser’s interception, all 43 cases would have incorrectly
allowed the AHO change from away to home, leading the home to an
unsafe state. To answer the question how many sensors were needed
to deny the 43 unsafe AHO change requests correctly, we found that
in each denial there were no cases where two or more sensors were
triggered at the time of AHO change request, while in 9/43 cases,
at least one sensor (either motion or presence) was triggered. The
door lock stayed ‘locked’ in all cases. Hence, either having the door
lock or at least 2 sensors in the user’s setup can be a viable strategy
to enable correct endorsement using HomeEndorser.

2. Evaluating Accuracy with Intentional AHO Changes: To
further evaluate HomeEndorser’s performance in specific benign
cases of intentional AHO changes made by the user (e.g., automat-
ically setting home using a third-party service after the user gets
home), we derive a set of 10 realistic user behavior scenarios from
prior work [28], and enact those scenarios in our apartment testbed.
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Due to space constraints, we summarize 3/10 exemplary scenarios
to discuss HomeEndorser’s decisions in response to benign user
behavior, with the rest in the online appendix [21]).

Scenario 1 – Unlocking the house, and then leaving: Alice
returns home and opens the front door after unlocking the door
lock. However, she gets a call from her office and leaves immedi-
ately without entering, accidentally also leaving the door open in
the process. Regardless, Alice’s home/away service accidentally
requests the home AHO to change to “home” (i.e., even when Al-
ice has actually left). In response to the request, HomeEndorser
gathers the recent states of the devices to check against the policy
𝑃home2 (home).

𝑃home2 (home) = (door-lock_lock == UNLOCKED ∧
motion_sensor == ACTIVE ∧ door_sensor == ACTIVE)𝑓 𝑟𝑜𝑛𝑡−𝑑𝑜𝑜𝑟

The policy constraints are partially satisfied, as the door lock was
unlocked and the door sensor was opened recently. However, as Al-
ice did not enter, the motion sensor did not detect any motion, and
the policy results in a correct denial, preventing an unsafe situation
in which the camera is turned off while the home is vulnerable (i.e.,
the door is unlocked). Thus, HomeEndorser’s composite policy de-
sign comprising of multiple devices provides stronger endorsement,
preventing accidental but unsafe changes.

Scenario 2 – Disarming the security panel and entering: Alice
returns home and disarms the home by entering the key-code in
the security panel near the door. She then enters the home trigger-
ing the motion sensor. At the same time, a home security service
requests change to the security_state AHO on Alice’s behalf,
from “deter” to “ok”, which if allowed, would disable the security
camera, as well as any other security devices (e.g., alarms).

HomeEndorser gathers the recent states of the devices to check
against the policy 𝑃security_state1 (ok) (provided previously in Sec-
tion 7.4). Since the security panel was manually disarmed and the
motion sensor was recently active, the policy is satisfied and the
state change is correctly allowed.

Scenario 3 –Direct state change request: Alicemanually changes
the home AHO to “home” using the HomeAssistant UI. HomeEn-
dorser identifies that the request was not made through the REST
API, and allows it without checking the policy.

To summarize, our evaluation demonstrates that HomeEndorser
correctly endorses AHO-changes, and does not cause false denials
under benign behavior. In scenario 1, its denials prevents an acci-
dental and harmful state change by users (RQ3). In some cases, at
the time of endorsement check (i.e., time of API call), some devices
had reverted to their default states (e.g., motion sensor to “inactive”
state). Thus, HomeEndorser’s approach of checking the most recent
state changes rather than only the states at the time of endorsement
prevents such potential false denials.

7.4 Preventing Privilege Escalation (RQ4)
An attacker (e.g., Bob)’s goal during privilege escalation is to modify
a high-integrity device (e.g., a security camera) that they cannot
directly access or compromise by maliciously introducing changes
to any AHO that the device depends on. As Bob already has access
to modify the AHOs (e.g., via a service he controls, see motivating
example in Sec. 2), the access control model without HomeEndorser

is unable to prevent Bob from changing the AHO value arbitrarily.
However, with HomeEndorser enabled, Bob needs endorsement
from the devices associated with the endorsement attributes (see
Sec. 5.2), which he is unable to gain, and the attack is prevented.

To demonstrate, we assume the threat described in the moti-
vation (see Sec. 2), where the camera depends on both the home
and security_state AHOs, and experimentally validate Home-
Endorser’s effectiveness with two attack scenarios.

Malicious Scenario 1 – Bob modifies home: We deploy a mali-
cious third-party service controlled by the attacker, Bob. We assume
that Alice has granted to the service the permission (i.e., a REST
API token) to write to the home AHO. When Alice is out of the
home, Bob writes to the value “home” to home, to disable the cam-
era. Without HomeEndorser, the home AHO will change, allowing
Bob to remotely disable the security camera; however, we consider
that Alice uses HomeEndorser with the policy 𝑃home1 (home):

𝑃home1 (home) = (door-lock_lock == UNLOCKED ∧
motion_sensor == ACTIVE)𝑓 𝑟𝑜𝑛𝑡−𝑑𝑜𝑜𝑟

Thus, when Bob writes to home, the policy 𝑃home1 (home) is checked
as follows: HomeEndorser queries the state machine, and obtains
the most recent change to the door lock and the motion detector
at the front door. Since the door lock was not unlocked, and the
motion detector was not active recently, the policy returns a DENY
decision, preventing the attack. It is also important to note that Bob
could attempt to circumvent HomeEndorser’s policy by satisfying
one of the two conditions in it, e.g., by sliding a thin object (e.g., a
card) through the door to trigger the motion sensor; however, the
conjunction among device-attributes prevents this variant.

Malicious Scenario 2 – Bob modifies security_state: We de-
ploy a malicious third-party service controlled by Bob, to which
Alice has granted the permission to write to the security_state
AHO. Bob will attempt to set the security_state to “ok” (as op-
posed to “deter”), which will trigger a routine that turns off the
camera. Just like the prior scenario, without HomeEndorser Bob
will succeed; however, Alice uses HomeEndorser with the policy
𝑃security_state1 (ok):

𝑃security_state1 (ok) = (security-panel == DISARMED ∧
motion_sensor == ACTIVE)𝑓 𝑟𝑜𝑛𝑡−𝑑𝑜𝑜𝑟

WhenBobwrites to security_state, 𝑃security_state1 (ok) is checked.
Since the security panel was not disarmed and the motion sensor
was not active recently, the policy returns a DENY decision.

Thus, HomeEndorser successfully prevents the AHO modifica-
tion, which would have been allowed by default access control.

7.5 Runtime Performance (RQ5)
We compute microbenchmarks to capture each aspect of the plat-
form that HomeEndorser affects, in particular, the time taken for
(1) policy instantiation (i.e., delay at boot time), (2) policy update
during runtime (3) the endorsement hook invocation overhead of
an API call to a state not being endorsed), and, (4) the endorsement
check overhead of an API call to a state being endorsed. Further,
we perform 2 macrobenchmarks to assess HomeEndorser’s impact
on the execution times of remote IoT services that execute an au-
tomation using the REST API (5) involving an AHO being endorsed,
and (6) involving an AHO not being endorsed. We perform each
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Table 2: Performance overhead of HomeEndorser (in comparison with the unmodified HomeAssistant baseline)

No. Operation HomeAssistant Baseline (ms) HomeEndorser (ms) Overhead(ms) Overhead(%)
1. Policy Instantiation (Boot up time) 23.851 ± 1.738 33.669 ± 5.042 9.818 41.16
2. Policy update during runtime - 4.350 ± 0.515 - -
3. Changing non-endorsed AHO (Hook invocation cost) 9.854 ± 0.723 9.916 ± 0.814 0.062 0.63
4. Changing endorsed AHO (Endorsement check cost) 9.451 ± 0.605 10.367 ± 0.482 0.916 9.69
5. Automation execution with endorsed AHO 16.582 ± 2.388 18.598 ± 0.669 2.016 12.16
6. Automation execution with non-endorsed AHO 14.609 ± 1.026 14.311 ± 0.477 -0.298 -2.04

experiment 50 times, using the largest (worst-case) policy (𝑃109,
online appendix [21]), and use vanilla HomeAssistant as a baseline.

Results: Table 2 shows the mean results with 95% confidence in-
tervals. As seen in the table, HomeEndorser has negligible perfor-
mance overhead for operations that do not involve the AHO being
endorsed (i.e., #3 and #6). For endorsed AHOs, HomeEndorser adds
only 0.916ms (9.69% overhead) to an AHO-change invoked via an
API call (microbenchmark), and adds 2.016ms (12.16% overhead) to
the overall execution time of an automation execution that changes
an endorsed AHO (macrobenchmark). In fact, the maximum over-
head of 9.818ms (41.16%) that HomeEndorser adds is to the overall
bootup time of HomeAssistant, which is not that frequent, and not
perceivable by the user. After the bootup, the overhead to update
policies when devices get added or removed is only 4.350 ms. Finally,
we note that the endorsement check overhead is not dependent on
the policy size, as HomeAssistant’s (and hence HomeEndorser’s)
state machine obtains device state changes in parallel.

7.6 Effort to Integrate and Configure (RQ6)
We now describe the effort to deploy and integrate HomeEndorser,
from the perspective of experts, platform designers, and end-users.

1. Effort by experts: HomeEndorser’s process for generating pol-
icy templates is a one-time effort, and templates only need to be
updated when new functionality emerges for a device category, or
when an entirely new category of device is introduced to the market
(i.e., not new brands). The only manual effort involves the identifica-
tion of the endorsement attributes (as described in Sec. 5.3). It took
2 authors 4 workdays to identify the 10 endorsement attributes for
the home AHO (as described in Sec. 6).

2. Deployment in the User’s Home: As HomeEndorser is inte-
gratedwith the platform (here, HomeAssistant) and is pre-configured
to include all endorsement policy templates, it requires minimal
effort from the user. We describe the ease of use in an end-to-end
manner as follows: (1) The user connects and configures their de-
vices to the platform as usual (e.g., setting names, location). (2)
The user selects an AHO-change they want to endorse. This is the
only additional configuration step introduced by HomeEndorser. (3)
HomeEndorser automatically instantiates location specific policies
(see Sec. 5.2) for each AHO without incurring any additional user
input. This also occurs automatically on boot, or as devices are
added/removed. (4) When HomeEndorser’s decision results in an
AHO-change denial, the user is notified. The user can override
this by changing the AHO-state through the native app, which
HomeEndorser allows by default. However, we expect this to be
rare given HomeEndorser’s negligible false positives (see Sec. 7.3).

3. Platform integration: The design of HomeEndorser is inde-
pendent of any single platform. That is, while our proof of concept

Table 3: The (minimal) cost of Integrating HomeEndorser with
respect to the properties identified in Section 7.6

H.Assistant IoTivity OpenHAB SmartThings NESTGoogleHome
𝑃𝑟𝑜𝑝1 ✓ ✓ ✓ ✓* ✓* ✓*
𝑃𝑟𝑜𝑝2 ✓ ✓ ✓ ✓ ✓* ✓*
𝑃𝑟𝑜𝑝3 ✓ ✗ ✓ ✓ ✓* ✓*
𝑃𝑟𝑜𝑝4 ✓ ✓ ✓ ✓* ✓* ✓*

✓ = Directly portable, ✓* = Directly portable, but needs confirmation from source
code, ✗= design-level constraint/extension

is implemented as an enhancement of HomeAssistant, we identify
4 key platform properties that would enable HomeEndorser on any
smart home platform. We chose to implement HomeEndorser in
HomeAssistant because of its open-source nature and the ease of
evaluation it allowed (e.g., creating a virtual device).

Property 1 (𝑃𝑟𝑜𝑝1) - Ability to obtain device states: HomeEndorsermust
be able to obtain states from all devices. Ideally, the platform should
have a Platform State Machine that can readily provide recent de-
vice state changes (G4).

Property 2 (𝑃𝑟𝑜𝑝2) - Complete mediation and Tamperproofness: The
platform must have a central component that intercepts all the API
requests (G2), which must be unmodifiable by third parties (G3).

Property 3 (𝑃𝑟𝑜𝑝3) - Timestamp information of device states: Home-
Endorser requires recent device state information to prevent any
false positives that can occur because of devices reporting cached
states or the platform itself reporting the old/last known state be-
cause of an unresponsive device (G4).

Property 4 (𝑃𝑟𝑜𝑝4) - Ability to monitor device-changes: HomeEndorser
needs to dynamically adapt its policies based on the current setup
of the smart home, and hence, the platform needs to monitor the
addition, removal, and change in placement of devices.

Table 3 illustrates how 6 popular smart home platforms exhibit
𝑃𝑟𝑜𝑝1 → 𝑃𝑟𝑜𝑝4, and demonstrates that only IoTivity requires a
design-level extension (i.e., a state machine to track freshness) for in-
tegrating HomeEndorser (in terms of 𝑃𝑟𝑜𝑝3), and all other platforms
may feasibly integrate HomeEndorser with negligible engineering
efforts. For instance, both SmartThings and OpenHAB satisfy the 4
design properties necessary to integrate HomeEndorser with minor
modifications. Both maintain a variant of the state machine, which
enables us to collect all device states at any time, and validate their
timestamps (thus enabling 𝑃𝑟𝑜𝑝1, 𝑃𝑟𝑜𝑝3 and 𝑃𝑟𝑜𝑝4). Similarly, both
enable centralized mediation of AHOs (𝑃𝑟𝑜𝑝2), with SmartThings
enabling it immediately, whereas with OpenHab we would simply
need to hook into the exposed services/bindings, as prior work
has done for Android [20] and Linux [60]. Finally, we mark certain
properties for NEST, SmartThings and Google Home as ✓* as those
properties are exhibited as per the documentation, but source code
would be needed to confirm.
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7.7 Threats to Validity
We now discuss the threats to the validity of the proposed work.

1. Byzantine Fault Tolerance: We rely on devices to not be com-
promised and report correct states, as stated in the threat model
(see Sec. 4), (although HomeEndorser does dynamically adapt to
devices that may be offline/non-responsive). HomeEndorser’s in-
tegrity validation of AHOs complements prior efforts [3] that aim
to validate device states via fingerprinting.

2. Device Availability and Placement: As HomeEndorser auto-
matically chooses the most restrictive policy applicable to a home
based on device availability/placement (see Sec. 5.2), it can adapt to
diverse device combinations. However, we assume optimal device
placement/configuration to be out of scope, and direct the reader
to complementary work that informs on optimal deployment [28].

3. Completeness and Rigor of Policy Generation: The device-
attribute map with 510 pairs (see Sec. 5.3) is an evolving dataset
that is as complete as the information sources used to derive it (e.g.,
capability maps), and which can accommodate new device type-
s/attributes with minimal effort. Furthermore, we used systematic
open-coding to identify endorsement attributes with negligible dis-
agreements (details in online appendix [21]), demonstrating high
confidence and minimal risk of incompleteness due to expert error.

8 RELATEDWORK
We now discuss prior related work, particularly in the context of
smart home security, and the problem of AHO integrity.

1. Policy model design: Prior work [7, 49, 61, 62] has explored
policy models with various properties. For instance, ExPAT [62]
captures user expectations as invariants, PatrIoT [61] supports tem-
poral clauses, while Kratos [49] supports multiuser policies. We
design HomeEndorser’s own policy model for the following reason:
unlike prior work, HomeEndorser is designed exclusively for en-
dorsement of AHOs and does not need to accommodate properties
from automations into policy invariants (e.g., temporal). Instead, it
only considers device-attributes and their locations, with different
locations expressed in mutually-exclusive DNF predicates. As other
conditions (e.g., temporal) are decoupled from the policy and are
part of enforcement, the policy specification is simpler and allows
automated, deployment-aware policy instantiation.

2. Policy enforcement: While prior work [6, 7, 14, 36, 42, 61,
62] has explored policy enforcement, they do not focus on AHO
integrity as we discuss in Section 2. Recall that AHOs are platform
objects accessible via direct API calls to the platform. However,
prior work (e.g., PFirewall [7], Maverick [36]) that operate outside
the platform cannot intercept direct cloud-cloud communications
between the platforms and the devices, rendering them ineffective.

Similarly, prior work has supplemented policy enforcement with
static analysis [5, 42], runtime rule-based enforcement [6, 61, 62]
or predicting app interactions via physical channels [14] to prevent
two or more apps from accidentally (or maliciously) triggering one
another to reach an unsafe state (i.e., app chaining). However, the
scenario in the motivation example manifests as an arbitrary/unau-
thorized API call to change AHO, not as app chains, so it cannot be

prevented by instrumenting apps. Additionally, as they analyze in-
stalled IoT apps, they may be incompatible with popular platforms
(see Sec. 2), while HomeEndorser is app agnostic and compatible.

3. Centralized AHO Modifications: Schuster et al. [47] propose
securing shared states (including AHOs) by centralizing them and
allowing only trusted third-parties to modify them using “environ-
mental situation oracles (ESOs)”. However, the ESO model aims
for privacy, not integrity, in allowing one trusted app per AHO to
compute that AHO’s value, which may be hard to scale or maintain
and needs to be accepted by competing stakeholders (e.g., users,
developers). In contrast, HomeEndorser respects user-choice, and
provides endorsement in the presence of untrusted services.

4. Anomaly Detection: HomeEndorser builds upon Biba’s notion
of trusted guards [2] for endorsement, and is inherently orthogo-
nal to anomaly detection systems like HAWatcher [17]. However,
HomeEndorser has some key advantages over HAWatcher. First,
HomeEndorser is app agnostic and learns correlations from trusted
endorsement attributes. This makes it compatible with most plat-
forms (see Sec. 2), and prevents the risk of false learning from
malicious apps. Further, HAWatcher trains separately for every
home, requires private user data and a day of re-training when con-
figurations change while HomeEndorser automatically instantiates
based on device availability/placement information (see Sec. 5.3).

5. Device State Validation: HomeEndorser is complementary to
work that validate device states such as Peeves [3]. Peeves gener-
ates fingerprints of device events based on physical changes they
cause that are sensed by other trusted sensors to attest device states.
However, unlike HomeEndorser, Peeves focuses on the accuracy/-
precision for individual device states rather than AHOs which are
platform objects, while HomeEndorser builds AHO endorsement
policies involving trusted device-attributes. As the device states that
Peeves validates form the building block of HomeEndorser’s en-
dorsement, HomeEndorser will benefit from such complementary
work, although neither promise byzantine fault tolerance.

9 CONCLUSION
We presented the HomeEndorser framework, which uses localized
device state changes to endorse proposed changes to abstract home
objects (AHOs) by compromised/malicious services with API ac-
cess, thereby protecting high integrity devices that rely on the AHO
values. HomeEndorser provides a policy model for specifying en-
dorsement policies in terms of device state changes, and a platform
reference monitor for endorsing all API requests to change AHOs.
We evaluate HomeEndorser on the HomeAssistant platform, find-
ing that we can feasibly derive policy rules to endorse changes to 6
AHOs, preventing malice and accidents with feasible performance
overhead. Finally, we demonstrate that HomeEndorser is backwards
compatible with most popular smart home platforms, and requires
modest human effort to configure and deploy.
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