
Lightweight Kernel Isolation with Virtualization and
VM Functions

Vikram Narayanan
University of California, Irvine

Yongzhe Huang
Pennsylvania State University

Gang Tan
Pennsylvania State University

Trent Jaeger
Pennsylvania State University

Anton Burtsev
University of California, Irvine

Abstract
Commodity operating systems execute core kernel subsys-
tems in a single address space along with hundreds of dynam-
ically loaded extensions and device drivers. Lack of isolation
within the kernel implies that a vulnerability in any of the
kernel subsystems or device drivers opens a way to mount a
successful attack on the entire kernel.

Historically, isolation within the kernel remained prohib-
itive due to the high cost of hardware isolation primitives.
Recent CPUs, however, bring a new set of mechanisms. Ex-
tended page-table (EPT) switching with VM functions and
memory protection keys (MPKs) provide memory isolation
and invocations across boundaries of protection domains
with overheads comparable to system calls. Unfortunately,
neither MPKs nor EPT switching provide architectural sup-
port for isolation of privileged ring 0 kernel code, i.e., control
of privileged instructions and well-defined entry points to
securely restore state of the system on transition between
isolated domains.
Our work develops a collection of techniques for light-

weight isolation of privileged kernel code. To control ex-
ecution of privileged instructions, we rely on a minimal
hypervisor that transparently deprivileges the system into
a non-root VT-x guest. We develop a new isolation bound-
ary that leverages extended page table (EPT) switching with
the VMFUNC instruction. We define a set of invariants that
allows us to isolate kernel components in the face of an in-
tricate execution model of the kernel, e.g., provide isolation
of preemptable, concurrent interrupt handlers. To minimize
overheads of virtualization, we develop support for exitless
interrupt delivery across isolated domains. We evaluate our

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
VEE ’20, March 17, 2020, Lausanne, Switzerland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7554-2/20/03. . . $15.00
https://doi.org/10.1145/3381052.3381328

approach by developing isolated versions of several device
drivers in the Linux kernel.

ACM Reference Format:
VikramNarayanan, YongzheHuang, Gang Tan, Trent Jaeger, andAn-
ton Burtsev. 2020. Lightweight Kernel Isolation with Virtualization
and VM Functions. In Proceedings of (VEE ’20). ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3381052.3381328

1 Introduction
Despite many arguments for running kernel subsystems in
separate protection domains over the years, commodity oper-
ating systems remain monolithic. Today, the lack of isolation
within the operating system kernel is one of the main factors
undermining its security. While the core kernel is relatively
stable, the number of kernel extensions and device drivers is
growing with every hardware generation (a modern Linux
kernel contains around 8,867 device drivers [3], with around
80-130 drivers running on a typical system). Developed by
third party vendors that often have an incomplete under-
standing of the kernel programming and security idioms,
kernel extensions and device drivers are a primary source of
vulnerabilities in the kernel [7, 17]. While modern kernels
deploy a number of security mechanisms to protect their
execution, e.g., stack canaries [20], address space random-
ization (ASLR) [49], data execution prevention (DEP) [88],
superuser-mode execution and access prevention [19, 28],
a large fraction of vulnerabilities remains exploitable. Even
advanced defense mechanisms like code pointer integrity
(CPI) [2, 57] and safe stacks [16] that are starting to make
their way into the mainstream kernels remain subject to
data-only attacks that become practical when combined with
automated attack generation tools [54, 93]. Lack of isolation
within the kernel implies that a vulnerability in any of the
kernel subsystems creates an opportunity for an attack on
the entire kernel.
Unfortunately, introducing isolation in a modern kernel

is hard. The emergence of sub-microsecond 40-100Gbps
network interfaces [66], and low-latency non-volatile PCIe-
attached storage pushed modern kernels to support I/O sys-
tem calls and device drivers capable of operating with laten-
cies of low thousands of cycles. Minimal cycle budgets put
strict requirements on the overheads of isolation solutions.
For decades the only two isolation mechanisms exposed

https://doi.org/10.1145/3381052.3381328
https://doi.org/10.1145/3381052.3381328


VEE ’20, March 17, 2020, Lausanne, Switzerland Narayanan et al.

by commodity x86 CPUs were segmentation and paging.
Segmentation was deprecated when the x86 architecture
moved from 32bit to 64bit addressing mode. On modern
machines with recently introduced tagged TLBs, a carefully-
optimized page-based inter-process communication mecha-
nism requires 952 cycles for a cross-domain invocation [4].
With two domain crossings on the network transmission
path, traditional page-based isolation solutions [83, 84] re-
sult in prohibitive overheads on modern systems.
Today, the landscape of isolation solutions is starting to

change with the emergence of new hardware isolation primi-
tives. VM function extended page-table (EPT) switching and
memory protection keys (MPKs) provide support for mem-
ory isolation and cross-domain invocations with overheads
comparable to system calls [45, 51, 62, 68]. Unfortunately,
neither MPKs nor EPT switching implement architectural
support for isolation of privileged ring 0 kernel code, the
code that runs with superuser privileges and can easily es-
cape such isolation by accessing a wide range of privileged
CPU instructions. Traditionally, to control execution of privi-
leged instructions, isolation of kernel subsystems requires an
exit into ring 3 [6, 13, 22, 24, 29, 35, 36, 44, 55, 76, 85, 89, 92].
The change of the privilege level, however, can incur 0.35-
6.3x overhead for relatively lightweight VMFUNC and MPK
based isolation techniques.
Our work on Lightweight Virtualized Domains (LVDs)

develops new mechanisms for isolation of privileged kernel
code through a combination of hardware-assisted virtual-
ization and EPT switching. First, to control execution of
privileged instructions without requiring a change of the
privilege level, we execute the system under control of a min-
imal late-launch hypervisor. When the isolated subsystem
is loaded into the kernel we transparently deprivilege the
system into a non-root VT-x guest. Effectively, we trade the
cost of changing the privilege level on cross-domain invoca-
tions for exits into the hypervisor on execution of privileged
instructions. We demonstrate that for I/O intensive work-
loads that pose the most demanding requirements on the
cost of the isolation mechanisms this tradeoff is justified:
the exits caused by privileged instructions are much less
frequent compared to the number of crossings of isolation
boundaries (Section 5).
Second, to protect the state of the system, we develop a

new isolation boundary that leverages extended page tables
(EPTs) and EPT switching with the VMFUNC instruction.
VMFUNC allows the VT-x guest to change EPT mappings,
and hence change the view of all accessible memory with
a single instruction that takes 109-147 cycles [45, 56, 68].
Several projects explore the use of VMFUNC for isolation
of code within user programs [45, 63], implementation of
microkernel processes [68], and protecting legacy systems
against the Meltdown speculative execution attack [51]. In
contrast to previous work, we develop techniques for enforc-
ing isolation of kernel subsystems. Kernel subsystems, e.g.,

device drivers, adhere to a complex execution model of the
kernel, i.e., they run in the context of user and kernel threads,
interrupts, and bottom-half software IRQs. Most driver code
(including interrupt handlers) runs on multiple CPUs and is
fully reentrant, i.e., it runs with interrupts enabled, calls back
into the kernel, and can yield execution. VMFUNC does not
provide architectural support for protecting the state of the
system upon crossing boundaries of isolated domains. We
define a set of security invariants and develop a collection
of mechanisms that allow us to retain isolation in a complex
execution environment of the kernel.

Finally, to minimize overheads introduced by running the
system as a non-root VT-x guest, we develop support for
exitless interrupt delivery. Even though modern device dri-
vers use interrupt coalescing and polling, interrupt exits
can be a major source of overhead in virtualized environ-
ments [39, 86]. We develop a collection of new mechanisms
that allow us re-establish correct state of the system while
handling an interrupt in a potentially untrusted state inside
an isolated domain and without exiting into the hypervisor.

To evaluate practicality of our approach, we isolate several
performance-critical device drivers of the Linux kernel. In
general, irrespective of isolation boundary, isolation of kernel
code is challenging as it cuts through a network of data
and control flow dependencies in a complex, feature-rich
system [72, 84]. To isolate device drivers, we leverage an
existing device driver isolation framework, LXDs [72]. We
evaluate overheads of LVDs on software-only network and
NVMe block drivers, and on the 10Gbps Intel Ixgbe network
driver.
We argue that our work—a practical, lightweight isola-

tion boundary that supports isolation of kernel code without
breaking its execution model—makes another step towards
enabling isolation as a first-class abstraction in modern op-
erating system kernels. Our isolation mechanisms can be
implemented either as a loadable late-launch hypervisor that
transparently provides isolation for a native non-virtualized
system, or as a set of hypervisor extensions that enable iso-
lation of kernel code in a virtualized environment. While
we utilize EPTs for memory isolation, we argue that our
techniques—control over privileged instructions, secure state
saving, and exitless interrupts—are general and can be ap-
plied to other isolation mechanisms, for examplee MPK.

2 Background and Motivation
Historically, two factors shape the landscape of in-kernel
isolation: the availability of hardware isolation mechanisms,
and the complexity of decomposing existing shared-memory
kernel code.

2.1 Isolation Mechanisms and Overheads
Segmentation and paging For decades the only two iso-
lation mechanisms exposed by commodity x86 CPUs were



Lightweight Kernel Isolation with Virtualization and VM Functions VEE ’20, March 17, 2020, Lausanne, Switzerland

segmentation and paging. Segmentation was demonstrated
as a low-overhead isolation mechanism by the pioneering
work on L4 microkernel [60]. Unfortunately, segmentation
was deprecated when the x86 architecture moved from 32bit
to 64bit addressingmode. Onmodernmachines with recently
introduced tagged TLBs, a carefully-optimized page-based
isolation mechanism requires 952 cycles for a minimal cross-
domain invocation [4] (ironically, the cost of the context
switch is growing over the years [25]). With two domain
crossings on the network transmission path, page-based iso-
lation solutions like Nooks [84] would introduce an overhead
of more than 72%. Less optimized approaches like SIDE [83]
that rely on a pagefault to detect cross-domain access in ad-
dition to a page table switch would result in a 2x slowdown.

Cache-coherent cross-core invocations With the commod-
itization of multi-core CPUs, multiple systems suggested
cross-core invocations for acceleration of system calls [82]
and cross-domain invocations [8, 50, 72]. Faster than address
space switches, the cross-core invocations are still expen-
sive. Aminimal call/reply invocation requires four cache-line
transactions [72] each taking 109-400 cycles [21, 70, 71] de-
pending on whether the line is transferred between the cores
of the same socket or over a cross-socket link. Hence the
whole call/reply call takes 448-1988 cycles [72]. More impor-
tantly, during the cross-core invocation, the caller core has
to wait for the reply from the callee core. At this point, two
cores are involved in the cross-domain invocation, but the
caller core is wasting time constantly checking for the reply
in a tight loop. Asynchronous runtimes like LXDs [72] and
AC [43] provide a way to utilize the caller core by perform-
ing a lightweight context switch to another asynchronous
thread. Unfortunately, exploiting asynchrony is hard: kernel
queues are often short and overheads of creating and joining
asynchronous threads add up quickly. Overall, cross-core
isolation achieves acceptable overhead (12-18% overheads
for an isolated 10Gbps network drivers) but at the cost of
additional cores [72].

Memory Protection Keys (MPKs) Recent Intel CPUs in-
troduced memory protection keys (MPKs) to provide fine-
grained isolation within a single address space by tagging
each page with a 4-bit protection key in the page table en-
try. A special register, pkru, holds the current protection
key. The read or write access to a page is allowed only if
the value of the pkru register matches the tag of the page.
Crossing between protection domains is performed by writ-
ing a new tag value into the pkru, which is a fast operation
taking 20-26 cycles [45, 74]. However, several challenges
complicate the use of MPKs for isolating kernel code. First,
the 4-bit protection keys are interpreted by the CPU only
for user-accessible pages, i.e., the page table entries with the
“user” bit set. It is possible to map the kernel pages of an iso-
lated subsystem as user-accessible, but additional measures
have to be taken to protect the isolated kernel code from

user accesses through either a page table switch [40] (which
is expensive), or MPKs themselves. The reliance on MPKs
requires either binary rewriting of all user applications [87]
(which in general is undecidable [45]), or dynamic validation
of all wrpkru instructions with hardware breakpoints [45]
(which can also accumulate significant overhead). Second,
the isolation of the kernel code requires careful handling of
privileged instructions, e.g., updates of control and segment
registers, etc. In turn, this requires either exiting into privi-
lege level 3 (which can be done with an overhead of a system
call), through compile-time or load-time binary rewriting
of all privileged instructions (which becomes challenging
in light of possible control-flow attacks), or executing the
system as a non-root VT-x guest, which requires techniques
developed in this work.

Extended Page Table switchingwithVMfunctions The
EPTP switching via the vmfunc instruction is yet another
new hardware mechanism appearing in Intel CPUs that en-
ables a virtual machine guest to change the root of the ex-
tended page table (EPT) by re-loading it with one of a set of
values preconfigured by the hypervisor. VMFUNC allows the
guest to change EPT mappings, and hence change the bound-
aries of a protection domain, with a single instruction that
takes 109-147 cycles [45, 56, 68]. Compared with MPKs, EPT
switching does not require exits into ring 3, binary rewriting,
or validation of VMFUNC instructions for isolation of privi-
leged kernel code—all sensitive state can be protected by the
hypervisor through construction of non-overlapping address
spaces [62] (we describe details of isolating privileged ring
0 code in Section 3.3). Several projects explore the use of
VMFUNC for isolation of user programs [45, 63], addressing
speculative execution attacks [51], and implementing fast
microkernel IPC [68]. LVDs extend VMFUNC-based solu-
tions with support for isolation of privileged kernel code and
isolation invariants in the face of fast exitless interrupts.

Software fault isolation (SFI) and MPX Software fault
isolation (SFI) allows enforcing isolation boundaries in soft-
ware without relying on hardware protection [91]. XFI [26],
BGI [14], and LXFI [64] apply SFI for isolation of kernel mod-
ules in Windows [14, 26] and Linux [64] kernels. LXFI [64]
saturates a 1Gbps network adapter for TCP connections, but
results in a 2.2-3.7x higher CPU utilization (UDP throughput
drops by 30%). On modern network and storage interfaces
increase in CPU utilization will likely result in a propor-
tional drop in performance. Recent implementations of SFI,
e.g., MemSentry [56] rely on Intel Memory Protection Ex-
tensions (MPX)—a set of architectural extensions that pro-
vide support for bounds checking in hardware—to accelerate
bounds checks. Nevertheless, the overhead of MPX-based
SFI remains high: on a CPU-bound workload, the NGINX ex-
periences a 30% slowdown [87]. Moreover, additional control



VEE ’20, March 17, 2020, Lausanne, Switzerland Narayanan et al.

flow enforcement mechanisms [65, 81, 94] are required to se-
cure SFI in the face of control-flow attacks (such mechanisms
will result in additional overhead).

2.2 Complexity of decomposition
Clean slate designs Representing one side of the isolation
spectrum, microkernel projects develop kernel subsystems
and device drivers from scratch [8–10, 27, 30, 37, 46–48, 52,
53, 61]. Engineered to run in isolation, microkernel drivers
synchronize their state via explicit messages or cross-domain
invocations. To assist isolated development, microkernels
typically rely on interface definition languages (IDLs) [23, 38,
42] to generate caller and callee stubs and message dispatch
loops. Unfortunately, clean slate device driver development
requires a large engineering effort that also negates decades
of work aimed at improving reliability and security of the
kernel code.

Device driver frameworks andVMs More practical strate-
gies for isolating parts of the kernel are device driver frame-
works and virtualized environments that provide a back-
ward compatible execution environment for the isolated
code [6, 13, 22, 24, 29, 35, 36, 44, 55, 76, 85, 89, 92]. While
requiring less effort compared to re-writing device drivers
from scratch, development of a backward compatible dri-
ver execution environment is still a large effort. Outside of
several self-contained device driver frameworks, e.g., IOKit
in MacOS [59], device drivers rely on a broad collection of
kernel functions that range from memory allocation to spe-
cialized subsystem-specific helpers.

Alternatively, an unmodified device driver can execute in-
side a complete copy of the kernel running on top of a virtual
machine monitor [11, 12, 31, 33, 58, 73, 79]. Unfortunately, a
virtualized kernel extends the driver execution environment
with multiple software layers, e.g., interrupt handling, thread
scheduling, context-switching, memory management, etc.
These layers introduce overheads of tens of thousands of
cycles on the critical data-path of the isolated driver, and
provide a large attack surface.

Backward compatible code isolation SawMill [34] was
probably the first system aiming at development of in-kernel
isolation mechanisms for isolation of unmodified kernel
code. SawMill relied on the Flick IDL [23] for communi-
cation with isolated subsystems, hence, isolation required
re-implementation of all interfaces. Nooks developed a frame-
work for isolating Linux kernel device drivers into separate
protection domains [84]. Nooks maintained and synchro-
nized private copies of kernel objects between the kernel and
the isolated driver, however, the synchronization code had
to be developed manually. Nooks’ successors, Decaf [77] and
Microdrivers [32] developed static analysis techniques [77]
to generate synchronization glue code directly from the ker-
nel source. Wahbe et al. [91] and later XFI [26] and BGI [14]
relied on SFI to isolate kernel extensions but were not capable

of handling semantically-rich boundary between the isolated
subsystem and the kernel. LXFI [64] extended previous SFI
approaches with support for explicit, fine-grained policies
that control access to all data structures shared between the
isolated subsystem and the kernel. Conceptually, LXFI’s poli-
cies serve the same goal as projections in LXDs [72] (that we
use in this work)—they are designed to control the access of
an isolated subsystem to a specific subset of kernel objects.

3 LVDs Architecture
LVDs are designed to block an adversary who discovers an
exploitable vulnerability in one of the kernel subsystems
from attacking the rest of the kernel, i.e., gaining additional
privileges by reading kernel data structures or code, hijack-
ing control flow, or overwriting sensitive kernel objects.
Similar to prior work, LXFI [64], LVDs aim to enforce

1) data structure safety, i.e., the isolated driver can only read
and write a well-defined subset of objects and their fields
that are required for the driver to function (effectively we
enforce least privilege [80]), 2) data structure integrity [64],
i.e., the isolated driver cannot change pointers used by the
kernel or the types of objects referenced by those pointers,
and 3) function call integrity [64], i.e., the isolated code a) can
only invoke a well-defined subset of kernel functions and
pass legitimate pointers to objects they “own” as arguments,
and b) cannot trick the kernel into invocation of an unsafe
function pointer registered as part of the driver interface.

Ensuring that an isolation mechanism achieves these goals
for complex kernel subsystems like device drivers is chal-
lenging. Despite many advances in the modularity of modern
kernels, device drivers interact with the kernel through aweb
of functions and data structures. While the device drivers
themselves expose a well-defined interface to the kernel—a
collection of function pointers that implement the driver’s
interface—the driver itself relies on thousands of helper func-
tions exported by the kernel (a typical driver imports over
110-200 functions) that often have deep call graphs.

Threat model We assume a powerful adversary that has
full control over the isolated subsystem (its memory, CPU
register state, and control flow). Specifically, an attacker
can make up cross-domain invocations with any arguments,
attempt to read and write CPU registers, try accessing hard-
ware interface, and trigger interrupts. We trust that attacks
will not originate from the kernel domain. While LVDs can
detect denial of service attacks, we leave efficient handling
of driver restart for future work. Also, while LVDs provide
a least-privileged isolation boundary and block trivial Iago-
style attacks [15], e.g., an isolated driver cannot return a
rogue pointer to the kernel, we leave complete analysis of
the feasibility to construct an arbitrary computation (e.g., to
overwrite sensitive kernel data structures like page tables) in
the kernel by modifying shared objects, passing or returning
values to and from cross-domain invocations, etc., as future



Lightweight Kernel Isolation with Virtualization and VM Functions VEE ’20, March 17, 2020, Lausanne, Switzerland

vmfunc_dispatch(*msg){
    ...
    case XMIT_FRAME: 
         ixgbe_xmit_frame(...);
}; 
 

ixgbe_xmit_frame(struct sk_buff *skb,
                       struct net_device *netdev) 

{
    ...
}

 

6

ndo_start_xmit(...) {
     ... 
     vmfunc_send(channel, msg);
     ... 
}
 VMFUNC

Trampoline

vmfunc
...

vmfunc

Isolated Ixgbe Driver

LXD Microkernel

Unmodified driver code

Memcpy, memory management, 
microkernel interface, etc.)

Linux Kernel

send();
 

User Process

2

3

5

4

Glue Code

Hypervisor

EPTK EPTI

1

7

Glue Code

Figure 1. LVDs architecture.

work. Finally, speculative execution and side channel attacks
are out of scope of this work as well.

3.1 Overview of the LVDs Architecture
LVDs utilize hardware-assisted virtualization for isolation
and control of privileged instructions inside isolated domains
(Section 4). We execute the system under control of a mini-
mal late-launch hypervisor that transparently demotes the
system into a non-root VT-x guest right before it loads the
first isolated subsystem (Figure 1, 4 ). Specifically, we lever-
age a modified version of the Bareflank [1] hypervisor that
is loaded as a kernel module that pushes the system into a
VT-x non-root mode by creating a virtual-machine control
structure (VMCS) and a hierarchy of per-CPU extended page
tables. The hypervisor remains transparent to the mono-
lithic kernel, i.e., all exceptions and interrupts are delivered
directly to the demoted kernel through the original kernel in-
terrupt descriptor table (IDT). The demoted kernel can access
entire physical memory and I/O regions via the one-to-one
mappings in EPT.

LVDs run as a collection of isolated domains managed by
a small kernel module that exposes an interface of a micro-
kernel to the isolated domains (Figure 1, 3 ). When a new
isolated driver is created, the microkernel module creates
a new EPT (EPTI ) that maps physical addresses of the dri-
ver domain. Upon cross-domain invocation the VMFUNC
instruction switches between EPTK and EPTI (we discuss
details of our implementation below in Section 3.3).

3.2 Device Driver Isolation
Isolation of kernel code requires analyzing all driver depen-
dencies, deciding the cut between the driver and the kernel,
and providing mechanisms for cross-domain calls and secure

synchronization of data structures that are no longer shared
between the isolated subsystems. LVDs rely on the LXDs
decomposition framework [72] that includes an interface def-
inition language (IDL) for specifying the interface between
kernel modules and generating code for synchronizing the
hierarchies of data structures across isolated subsystems.
In LXDs, isolated subsystems do not share any state that

might break isolation guarantees, e.g., pointers, indexes into
memory buffers, etc. Each isolated subsystem maintains a
private copy of each kernel object. To support synchroniza-
tion of object hierarchies across domains, the IDL provides
the mechanism of projections that describe how objects are
marshaled across domains. A projection explicitly defines a
subset of fields of a data structure that is synchronized upon
domain invocation (hence, defining how a data structure is
projected into another domain).
Definitions of cross-domain invocations can take projec-

tions as arguments. Passed as an argument, a projection
grants another domain a right to access a specific object, i.e.,
synchronize a subset of object’s fields described by the pro-
jection. LXDs rely on the idea of capabilities that is similar to
object capability languages [67, 69], where capabilities are
unforgeable cross-domain object references. The IDL gen-
erates the code to reflect the capability “grant” operation
by inserting an entry in a capability address space, CSpace,
the data structure that links capabilities to actual data struc-
tures. The capability itself is an opaque number that has no
meaning outside of a specific CSpace. Projections, therefore,
define the minimal set of objects and their fields accessible to
another domain. As projections may define pointers to other
projections, LXDs provide a way to synchronize hierarchies
of objects. Finally, the IDL provides a way to define remote



VEE ’20, March 17, 2020, Lausanne, Switzerland Narayanan et al.

GPA

HPA

Read-only mappingGuest 
CR3

gPL4 ...

gPL1gPL3

Read-write
EPT mapping

A

A

Figure 2. Enforcement of read-only access for guest pagetable
pages. The page table entry in gPL1 maps one of the pages of the
page table (gPL3) as read-only.

procedure calls specifying all functions accessible across the
isolation boundary.

LXDs provide a backward-compatible execution environ-
ment capable of executing unmodified device drivers (Fig-
ure 1, 5 ). Inside the isolated driver, LXDs provide: 1) the
glue code generated by the IDL compiler that implements
marshaling and synchronization of objects (Figure 1, 6 ), and
2) a minimal library that provides common utility functions
compatible with the non-isolated kernel (Figure 1, 7 ), i.e.,
memory management, common utilities like memcpy(), and
a collection of functions to interface with the microkernel,
e.g., capability management, debugging, etc. To ensure that
the legacy, non-decomposed kernel can communicate with
an isolated driver, a layer of synchronization glue code is
used on the kernel side (Figure 1, 1 ).

3.3 Lightweight Isolation with VMFUNC
VMFUNC is a machine instruction available in recent In-
tel CPUs that allows a non-root VT-x guest to switch the
root of the extended page table (EPT) to one of a set of pre-
configured EPT pointers, thus changing the entire view of
accessible memory. To enable EPT switching, the hypervisor
configures a table of possible EPT pointers. A non-root guest
can freely invoke VMFUNC at any privilege level and select
the active EPT by choosing it from the EPT table. Immedi-
ately after the switch, all guest physical addresses (GPAs)
are translated to host-physical addresses (HPAs) through the
new EPT. As EPTs support TLB tagging (virtual processor
identifiers (VPIDs)), the VMFUNC instruction is fast (Sec-
tion 5).

Isolation with EPTs Lightweight EPT switching allows
for a conceptually simple isolation approach. We create two
EPTs that map disjoint subsets of machine pages isolating
the address spaces of mistrusting domains. To switch be-
tween the address spaces, a call-gate page with the VMFUNC
instruction is mapped in both EPTs. This straightforward ap-
proach however requires a range of careful design decisions
to ensure security of the isolation boundary.

4 Enforcing Isolation
In contrast to traditional privilege transition mechanisms,
e.g., interrupts, system call instructions, and VT-x entry/exit

transitions, VMFUNC provides no support for entering an
isolated domain at a predefined entry point. The next instruc-
tion after the VMFUNC executes with the memory rights of
another domain. The cross-domain invocation mechanisms,
however, must ensure that transition is safe, i.e., all possi-
ble VMFUNC invocations lead to a set of well defined entry
points in the kernel, and the kernel can securely restore its
state.

Safety of the VMFUNC instructions By subverting the
control flow inside an isolated domain, an attacker can po-
tentially find executable byte sequences that form a valid
VMFUNC instruction. If the virtual address next after the
VMFUNC instruction is mapped in the address space of an-
other domain, an attacker can escape the isolation boundary.

Two possible approaches to prevent such attacks are to: 1) en-
sure that virtual address spaces across isolated domains are
not overlapping [62], or 2) ensure that no sequences of exe-
cutable bytes can form a valid VMFUNC instruction [56, 68,
90]. Inspired by ERIM [87], SkyBridge [68] relies on scan-
ning and rewriting executable space of the program to ensure
that no byte sequences form valid VMFUNC instructions. In
the case of LVDs, the attack surface for preventing unsafe
VMFUNC instructions expands into user applications, i.e.,
any user program in the system can invoke a VMFUNC in-
struction triggering a switch into the isolated device driver.
In the face of dynamic code compilation, program rewrit-
ing [87] requires a large TCB with a large attack surface. We
therefore choose the memory isolation approach similar to
SeCage [62]. Specifically, we enforce the following invariant:

Inv 1. Virtual address spaces of isolated domains,
kernel, and user processes do not overlap.

This invariant ensures that if an isolated domain or a user
process invokes a self-prepared VMFUNC instruction any-
where in its address space, the next instruction after the
VMFUNC causes a page fault.

Locking the LVD’s address space To maintain Inv 1, we
have to ensure that isolated domains cannot modify the
layout of their address space, or specifically:

Inv 2. Isolated domains have read-only access to
their page table.

This is challenging: isolated subsystems run in ring 0 and
have privileges to change their page tables. It is possible to
map all pages of the page table as read-only in the EPT of the
isolated domain. While this ensures that domain’s page table
hierarchy cannot be modified, it also causes a prohibitive
number of VT-x exits when the CPU tries to update the dirty
and accessed bits in the page table of the isolated driver [51].
We therefore, employ a technique similar to EPTI [51] and
map all the physical pages of the page table as read-only
in the leaf entries of the guest page table (Figure 2). I.e.,
all virtual addresses that point into the pages of the page
table have only the read permission. At the same time, the



Lightweight Kernel Isolation with Virtualization and VM Functions VEE ’20, March 17, 2020, Lausanne, Switzerland

GPA

HPA

CR3P2

gPL4

LVD's gPL4

CR3P1

Figure 3. Cr3 remapping inside an LVD. The HPA page that con-
tains the root of the LVD’s page table (gPL4) is mapped at two GPA
locations making it possible for two processes P1 and P2 to enter
the LVD.

pages that contain the page itself are mapped with write
permissions in the EPTI . This way the CPU can access pages
of the page table and update accessed and dirty bits without
causing an exit.
The following design allows us to avoid modifications

to the read-only page table inside the LVD. We create a
large virtual address space when the LVD starts, i.e., create
a page table that maps guest virtual pages to guest physical.
The physical pages are not backed up by real host physical
pages.We then never update the LVD’s page table. Insteadwe
allocate host physical pages and update the EPT mappings
to map these pages into guest physical addresses already
mapped by the read-only page table.

CR3 remapping for EPT switch While by itself the VM-
FUNC instruction does not change the root of the page table
hierarchy, i.e., the CR3 register on x86 CPUs, the ability to
switch EPTs, i.e., the GPA to HPA mappings, opens the pos-
sibility to change the guest page table too. The advantage
of such design is the ability to execute non-isolated kernel
and isolated drivers on independent virtual address spaces
and page table hierarchies. Since individual processes and
kernel threads execute on different page tables, we need to
ensure that for each new process that tries to enter an LVD
the physical address of the process’ root of the page table,
i.e., the physical address pointed by the CR3, is mapped to
the HPA page that contains the root of the page table of the
LVD’s address space (Figure 3). We enforce the following
invariant:

Inv 3. Physical address spaces of isolated do-
mains and the kernel must not overlap.

This guarantees that the physical address that is used for
the root of the page table inside the kernel is not occupied
inside the isolated domain, and hence can be remapped into
the HPA page that contains the root of the page table inside
the isolated domain.

Protecting sensitive state Isolated subsystems execute
with ring 0 privileges. Hence they can read and alter sensitive
hardware registers, e.g., re-load the root of the page table

hierarchy by changing the cr3 register. To ensure isolation,
we enforce the following invariant:

Inv 4. Access to sensitive state is mediated by
the hypervisor.

To implement Inv 4, we configure the guest VM to exit into
the hypervisor on the following instructions that access the
sensitive state: 1) stores to control registers (cr0, cr3, cr4),
2) stores to extended control register (xcr0), 3) reads and
writes of model specific registers (MSRs), 4) reads and writes
of I/O ports, 5) access to debug registers, and 6) loads and
stores of GDT, LDT, IDT, and TR registers. Inside the hyper-
visor we validate if the exit happens from the non-isolated
kernel and emulate the exit-causing instruction.

Restoring kernel state When the execution re-enters the
kernel from the isolated domain, e.g., either returning form
the domain invocation, or entering the kernel with a call
from an isolated subsystem, the kernel cannot trust any of
the general, segment, or floating-point registers.

Inv 5. General, segment, and extended state (x87
FPU, SSE, AVX, etc.), registers are saved and
restored on domain crossings.

As we cannot trust any general registers, upon entering the
kernel we restore the kernel’s stack pointer from a trusted
location in memory and then use the stack to restore other
registers. We rely on the fact that the isolated driver cannot
modify kernel’s address space (ensured by Inv 2 and Inv 4).
We create a special page, vmfunc_state_page, which stores the
pointer to the kernel stack of the current thread right before
it enters the LVD. The entry-exit trampoline code uses the
stack to save and restore the state of the thread.
LVDs are multi-threaded and re-entrant. While we do

not allow context switches inside LVDs, the same LVD can
run simultaneously on multiple CPUs. We therefore create
a private copy of vmfunc_state_page on each CPU. Linux uses
the gs register to implement per-CPU data-structures (on
each CPU gs specifies a different base for the segment that
stores local CPU variables). As we cannot trust the value of
gs on entry into the kernel from an LVD, we create a per-
CPU mapping for the vmfunc_state_page in EPTK . This ensures
that on different CPUs, the vmfunc_state_page is mapped by a
different machine page and hence holds local CPU state.

Stacks and multi-threading Any thread in the system
can enter an isolated domain either as part of the system call
that invokes a function of an isolated subsystem, or as part
of an interrupt handler implemented inside an LVD. Every
time the thread enters an isolated domain we allocate a new
stack for execution of the thread inside the LVD. We use
a lock-free allocator that relies on a per-CPU pool of pre-
allocated stacks inside each LVD. From inside the LVD the
thread can invoke a kernel function that in turn can re-enter
the isolated domain. To prevent allocation of a new stack,



VEE ’20, March 17, 2020, Lausanne, Switzerland Narayanan et al.

we maintain a counter to count nested invocations of the
isolated subsystem.

4.1 Exitless Interrupt Handling
Historically, lack of hardware support for fine-grained assign-
ment of interrupts across VMs and hypervisor required mul-
tiple exits into the hypervisor on the interrupt path [39, 86].
ELI [39] and DID [86] developed mechanisms for exitless de-
livery of interrupts for hardware-assisted VMs. We develop
an exitless scheme that allows LVDs to handle interrupts
even when execution is preempted inside an isolated domain.

At a high level, LVDs allow delivery of interrupts through
the interrupt descriptor table (IDT) of the non-isolated kernel.
The IDT is mapped inside both kernel and isolated domains.
When interrupt is delivered we switch back to the kernel
EPT early in the interrupt handler. To ensure that interrupt
delivery is possible, we map the IDT, global descriptor table
(GDT), task-state segment (TSS), and interrupt handler tram-
polines on both EPTK and EPTI . Upon interrupt transition
the hardware takes the normal interrupt delivery path, i.e.,
saves the state of the currently executing thread on the stack,
locates the interrupt handler through the IDT, and jumps to
it. The interrupt handler trampoline checks if the execution
is still inside the LVD, and performs a VMFUNC transition
back to the kernel if it’s required.
While conceptually simple, the exitless interrupt deliv-

ery scheme requires careful design in the face of possible
isolation attacks.

Interrupt Stack Table (IST) Both non-isolated kernel and
LVDs execute with the privileges of ring 0. As privilege
level does not change during the interrupt transition, the
traditional interrupt path does not require change of the
stack, i.e., the hardware saves the trap frame on the stack
pointed by the current stack pointer. This opens a possibility
for a straightforward attack: an LVD can configure the stack
to point to a writable kernel memory in the kernel domain,
and perform a VMFUNC transition back into the kernel
through one of the trampoline pages. VMFUNC is a long-
running instruction, and often interrupts are delivered right
after the VMFUNC instruction completes1. The interrupt
will be delivered inside the kernel domain and hence will
overwrite the kernel memory pointed by the stack pointer
register configured by the isolated domain.

To prevent this attack, and to make sure that an interrupt
is always executed on a valid stack, we rely on Interrupt
Stack Table (IST) [5]. The IST allows one to configure the
interrupt handler to always switch to a preconfigured new
stack even if the privilege level remains unchanged. Each
IDT entry has 8 bits to specify one of the seven available
IST stacks. Linux already uses ISTs for NMIs, double-fault,
debug, and machine-check exceptions.
1We empirically confirmed this with perf, a profiler tool that relies on
frequent interrupts from the hardware performance counter interface.

EPTK = true
gs_base
kernel_esp

EPTK = true
gs_base
kernel_esp

EPTK = false
gs_base
kernel_esp

EPTK = false

 

int_handler
   if(!in_kernel())
       VMFUNC
   ...
   switch_stack()
   do_IRQ()
   ...
   if(...) 
       switch_stack()
       VMFUNC
   iret

EPTI

and EPTK

EPTK

EPTI

IST
Stacks

(per-CPU)

TSS
(per-CPU)

do_IRQ(){
 
   ...
}

Kernel 
Stack

EPTK = true
gs_base
kernel_esp

VMFUNC 
State Page
(Read-only)

VMFUNC 
State Page
(per-CPU)

IDT

IST#1

IST#6

IST#1

IST#6

IST#1

IST#6

Figure 4. Data-structures involved in interrupt transition

To protect the kernel from a rogue stack interrupt attack,
we configure two additional IST stacks for execution of syn-
chronous exceptions and asynchronous interrupts (Figure 4).
Upon an interrupt the hardware switches to a fresh IST stack.
We use the IST stack inside a small interrupt handler tram-
poline that is mapped in both kernel and isolated domains.
The trampoline checks whether the system is running inside
the kernel or in one of the isolated domains. It switches to
EPTK if needed, securely restores the system’s state by using
the information from the vmfunc_state_page page (we restore
the gs register used by the kernel to maintain per-CPU data
structures, and the stack pointer register that points to the
kernel stack). After that we copy the saved interrupt frame
to the normal kernel stack and continue execution of the
interrupt handler through the normal kernel path. Note that
the kernel can re-enable interrupts at this point, as the IST
stack is no longer used for the current interrupt. Upon exit
we check whether the switch back to LVD is required. If
yes the handler copies the exception frame back to the IST
stack (since only the IST stack is mapped inside the LVD),
switches back to EPTI , and returns from the interrupt with
the regular iret instruction.

We configure all interrupt handlers to disable subsequent
interrupts upon interrupt transition—this ensures that IST
stack will not be overwritten until we copy out the interrupt
frame onto the normal kernel stack. Anytime during pro-
cessing of the interrupt a non-maskable interrupt (NMI) can
be delivered. We configure a separate IST stack for the NMI
to prevent overwriting the state of the previous interrupt
frame on the IST.
To reliably detect whether the interrupt handler is run-

ning inside the kernel or inside an LVD we rely on the
vmfunc_state_page that is mapped by both EPTK and EPTI . In-
side the kernel the state page has a flag set to true. This flag
is false in the page mapped by EPTI .



Lightweight Kernel Isolation with Virtualization and VM Functions VEE ’20, March 17, 2020, Lausanne, Switzerland

4.2 VMFUNC Isolation Attacks and Defenses
Due to its unusual semantics, VMFUNC opens possibility for
a series of non-traditional attacks that we discuss below.

Rogue VMFUNC transitions A compromised LVD can
use one of the available VMFUNC instruction instances to
perform a rogue transition into the kernel, e.g., try to enter
the kernel via the kernel exit trampoline. We insert a check
right after each VMFUNC instruction to see that ECX register
that is used as an index to choose the active EPT is set to
the correct value, i.e., zero or one based on the direction. If
we detect a violation we abort execution by exiting into the
hypervisor that upcalls into the kernel triggering termination
of the LVD.

Asynchronous write into the IST stack from another
CPU An LVD can try to write into the IST stack of an-
other core that executes an interrupt handler at the same
time, hence crashing or confusing the kernel. We ensure that
all IST stacks are private to a core, i.e., are allocated for each
core and are mapped only on the core that uses them.

Interrupt injection attack As LVDs run in ring 0, they
can invoke INT instruction injecting an interrupt into the
kernel. We disable synchronous interrupts 0-31 originating
from isolated domains, i.e., in the interrupt handler we check
if the handler is executing on EPTI and if so terminate the
LVD. Note, legit asynchronous interrupts can preempt the
LVD and hence it is impossible to say whether interrupt
injection is happening without inspecting the instruction
that was executed right when interrupt happened. While we
do not implement this defense at the moment, we suggest a
periodic inspection of the LVD’s instruction if the frequency
of a specific interrupt exceeds an expected threshold.

Interrupt IPI from another core running LVD An LVD
running on another core can try to inject an inter-processor
interrupt (IPI) implementing a flavor of interrupt injection
attack. We protect against this attack by making sure that
the APIC I/O pages used to send inter-processor interrupts
are not mapped inside LVDs.

VMFUNC to a non-existent EPT entry An LVD can try
to VMFUNC into a non-existent EPT list entry. We configure
the EPTP list page to have an invalid pointer to make sure
that such transition causes an exit into the hypervisor. The
hypervisor then delivers an upcall exception to the kernel
which terminates the LVD.

VMFUNC from one LVD into another One LVD can try
to VMFUNC into another LVD. We configure the EPTP list
page to have only two entries at every moment of time: an
EPT of the kernel (entry zero), and EPT of the LVD that is
about to be invoked. Since, EPTP list is mapped inside the
kernel, we re-load the first entry when the kernel is about
to invoke a specific LVD.

Kernel stack exhaustion attack An LVD might try to
arrange a valid control flow to force the kernel to call the
LVD over and over again until the kernel stack is exhausted.
To prevent this loop we check that the kernel stack is above
the threshold every time we enter the LVD.

LVD never exits LVDs can disable interrupts by clearing
the interrupt flag in the EFLAGS register. An LVD then never
returns control to the kernel. We configure a non-conditional
VM preemption timer that passes control to the hypervisor
periodically. The hypervisor checks if the kernel is making
progress by checking an entry in the vmfunc_state_page entry.

LVD re-enables interrupts An LVDs can re-enable inter-
rupts by setting the interrupt flag in the EFLAGS register.
The kernel might then receive an interrupt in an interrupt-
disabled state and as a result crash or corrupt sensitive kernel
state. We make a practical assumption that under normal
conditions the isolated subsystem should not re-enable inter-
rupts. We save the interrupt flag when we enter into an LVD
and check the state of the flag in the interrupt handler. If the
interrupt originates while inside the LVD and the interrupts
were disabled before entering the isolated domain we signal
the attack. We also check the state of the saved interrupt flag
every time we exit from LVD, and signal the attack if it does
not match the saved value.

5 Evaluation
We conduct all experiments in the openly-available CloudLab
cloud infrastructure testbed [18] (we make all experiments
available via an open CloudLab [78] profile2 that automat-
ically instantiates software environment used in this sec-
tion).3 Our experiments utilize two CloudLab c220g2 servers
configured with two Intel E5-2660 v3 10-core Haswell CPUs
running at 2.60 GHz, 160 GB RAM, and a dual-port Intel X520
10Gb NIC. All machines run 64-bit Ubuntu 18.04 Linux with
kernel version 4.8.4. In all experiments we disable hyper-
threading, turbo boost, and frequency scaling to reduce the
variance in benchmarking.

5.1 VMFUNC Domain-Crossings
To understand the overheads of the VMFUNC-based isola-
tion we conduct a series of experiments aimed at measuring
overheads of VMFUNC instructions, and VMFUNC-based
cross-domain invocations (Table 1). In all tests we run 10
million iterations and measure the latency in cycles with
the RDTSC and RDTSCP instructions. Further, to avoid flushing
the cached EPT translations, we enable support for virtual
processor identifiers (VPIDs). On our hardware, a single in-
vocation of the VMFUNC instruction takes 169 cycles. To
put this number in perspective, we measure the overhead of
a null system call to be 140 cycles.

2CloudLab profile is available at https://www.cloudlab.us/p/lvds/lvd-linux
3LVDs source code is available at https://mars-research.github.io/lvds

https://www.cloudlab.us/p/lvds/lvd-linux
https://mars-research.github.io/lvds


VEE ’20, March 17, 2020, Lausanne, Switzerland Narayanan et al.

Operation Cycles
VMFUNC instruction 169
System call 140
seL4’s call/reply invocation 834
VMFUNC-based call/reply invocation 396

Table 1. Cost of VMFUNC-based cross-domain invocations.

Operation Cycles
Native Virtualized

write MSR 127 1367
out instruction 4213 5384
write cr3 130 143
Table 2. Cost of hypervisor exits.

To understand the benefits of VMFUNC-based cross-domain
invocations over traditional page-based address-space switches,
we compare LVDs’ cross-domain calls with the synchronous
IPC mechanism implemented by the seL4 microkernel [25].
We choose seL4 as it implements the fastest synchronous IPC
across several modern microkernels [68]. To defend against
Meltdown attacks, seL4 provides support for a page-table-
based kernel isolation mechanism similar to KPTI [41]. How-
ever, this mechanism negatively affects IPC performance due
to an additional reload of the page table root pointer. Since
recent Intel CPUs address Meltdown attacks in hardware,
we configure seL4 without these mitigations. With tagged
TLBs seL4’s call/reply IPC takes 834 cycles (Table 1). LVDs’s
VMFUNC-based call/reply invocation requires 396 cycles.

5.1.1 Overheads of Running Under a Hypervisor
LVDs execute the system under control of a hypervisor re-
sulting in two kinds of overheads: 1) overheads due to vir-
tualization, i.e., EPT translation layer, and 2) exits to the
hypervisor caused by the need to protect sensitive instruc-
tions that can potentially break isolation if executed by an
LVD.

Sensitive instructions We first conduct a collection of
experiments aimed at measuring the cost of individual VM-
exits that are required to mediate execution of sensitive in-
structions (Table 2). On average an exit into the hypervisor
takes 1171-1240 cycles. To reduce the number of exits due to
updates of the cr3 register, we implement an LRU cache and
maintain the list of three target cr3 values.

Whole-system benchmarks We evaluate the impact of
virtualization and LVD-specific kernel modifications by run-
ning a collection of Phoronix benchmarks [75]. The Phoronix
suite provides a large library of whole-system benchmarks;
we use a set of benchmarks that characterize both whole-
system performance and stress specific subsystems. The
whole-system benchmarks include apache (measures sustained
requests/second; 100 concurrent requests); nginx (measures
sustained requests/second; 500 concurrent requests); pybench
(tests basic, low-level functions of Python); phpbench (large

0

0.2

0.4

0.6

0.8

1

1.2

apache

nginx

pybench

phpbench

dbench-1

dbench-6

dbench-12

dbench-48

dbench-128

dbench-256

postm
ark

povray

sysbench-m
em

sysbench-cpu

gnupg

N
o

rm
a

liz
e

d
 p

e
rf

o
rm

a
n

c
e

Figure 5. Phoronix benchmarks.

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

2 4 6 8 10 12 14 16 18 20

IO
P

S
 (

K
)

Number of threads

native
nullnet-1
nullnet-2

nullnet-2-nofpu

Figure 6. Null net Tx IOPS (K)

numbers of simple tests against the PHP interpreter). Subsystem-
specific benchmarks include dbench (file system calls to test
disk performance, varying the number of clients); postmark

(transactions on 500 small files (5–512 KB) simultaneously);
povray (3D ray tracing); sysbench (performs CPU and memory
tests); gnupg (encryption time with GnuPG).
Figure 5 shows the performance of the virtualized LVD

kernel relative to the performance of an unmodified Linux
running on bare metal. Apache, nginx, dbench (with more than
12 clients), and sysbench incur 2–5% slowdown relative to the
unmodified Linux system. All other benchmarks stay within
1% of the performance of the bare-metal system.

Breakdown of VM exits To better understand the reasons
of possible performance degradation due to virtualization, we
collect the number and the nature of VM-exits for Phoronix
benchmarks. In our tests Phoronix benchmarks experience
from 465 (phpbench) to 155862 (nginx) VM-exits per second.
Two most frequent exit reasons are 1) access to MSRs re-
quired for programming the APIC timer (IA32_TSC_DEADLINE)
and updating the base address of the FS segment during a
context switch (IA32_FS_BASE), and 2) access to control regis-
ters.

5.2 Overheads of isolation
To evaluate the overheads of isolation we developed sev-
eral isolated device drivers in the Linux kernel. Specifically,
we developed isolated versions of 1) a software-only “null”
network driver (nullnet), 2) an Intel 82599 10Gbps Ethernet dri-
ver (ixgbe), and 3) a software-only “null” block NVMe driver
(nullblock). Neither null net nor null block are connected to a
real hardware device. Instead they emulate infinitely fast de-
vices in software. The software-only drivers allow us to stress
overheads of isolation without any artificial hardware limits.
Both network and storage layers are kernel subsystems with
the tightest performance budgets; hence we choose them for
evaluating overheads of our isolation mechanisms.



Lightweight Kernel Isolation with Virtualization and VM Functions VEE ’20, March 17, 2020, Lausanne, Switzerland

0

2

4

6

8

10

2 4 6 8 10 12 14 16 18 20

T
x
 B

W
 (

G
b

p
s
)

Number of threads

native
isolated

Figure 7. Ixgbe Tx Bandwidth (Gbps)

0

2

4

6

8

10

2 4 6 8 10 12 14 16 18 20

R
x
 B

W
 (

G
b

p
s
)

Number of threads

native
isolated

Figure 8. Ixgbe Rx Bandwidth (Gbps)

5.2.1 Nullnet Device Driver
We utilize the nullnet driver as a use-case for several bench-
marks that highlight overheads of isolation in the context of
a “fast” device driver (nullnet is a good, representative exam-
ple of such device driver as it serves an infinitely fast device
and is accessed through a well-optimized I/O submission
path of the kernel network stack). To evaluate the isolated
nullnet and ixgbe drivers, we use the iperf2 benchmark that
measures the transmit bandwidth for the MTU sized packets
and by varying the number of threads from 1 to 20 (Figure 6).
We report total packet transmission I/O requests per-second
(IOPS) across all CPUs (Figure 6).

In our first experiment we change nullnet to perform only
one crossing between the kernel and the driver for sending
each packet (nullnet−1, Figure 6). This synthetic configuration
allows us to analyze overheads of isolation in the ideal sce-
nario of a device driver that requires only one crossing on the
device I/O path.With one application thread the non-isolated
driver achieves 968K IOPS (i.e., on average, a well-optimized
network send path takes only 2680 cycles to submit an MTU-
sized packet from the user process to the network interface).
The isolated driver (nullnet−1) achieves 876K IOPS (91% of
the non-isolated performance), and on average requires 2960
cycles to submit one packet. Since, iperf application uses
floating point operations, we incur additional overhead due
to saving and restoring of FPU regs when we jump between
the kernel and isolated domain. On 20 threads the isolated
driver achieves 91% of the performance of the non-isolated
driver.

In our second experiment, we run the isolated nullnet driver
in its default configuration (i.e., perform two domain cross-
ings per packet transmission). In a single threaded test, the
isolated driver achieves 65% performance of the non-isolated
driver.

Finally, we measure the overhead of saving and restoring
the processor extended state, i.e., floating-point, SSE, and

AVX registers. Not all programs use extended state registers
and thus can benefit from faster domain crossings. The Linux
kernel dynamically tracks if extended state was used, hence
we save and restore it only when needed. We disable saving
and restoring extended state for the iperf nullnet benchmarks
((nullnet−2−nofpu, Figure 6).Without extended state on a single
core the isolated driver achieves 72% performance of the non-
isolated driver.

5.2.2 Ixgbe Device Driver
To measure performance of the isolated ixgbe driver, we con-
figure an iperf2 test with a varying number of iperf threads
ranging from 1 to 20 (Figure 7). On our system, even two
application threads saturate a 10Gbps network adapter. Con-
figured with one iperf thread, on the transmission path using
an MTU sized packet, the isolated ixgbe achieves 95.7% of
the performance of the non-isolated driver. This difference
disappears as we add more iperf clients. For two or more
threads, both drivers saturate the network interface and
show a nearly identicall throughput. On the receive path,
the isolated driver is 10% faster for one application thread.
With a higher number of application threads, the isolated
driver is within 1% to 11% of the performance of the native
driver (Figure 8).
To measure the end-to-end latency, we rely on the UDP

request-response test implemented by the netperf bench-
marking tool. The UDP_RR measures the number of round-
trip request-response transactions per second, i.e., the client
sends a 64 byte UDP packet and waits for the response from
the server. The native driver achieves 29633 transactions per
second (which equals the round-trip latency of 33.7µs), the
isolated driver is 8% (1.2µs) slower with 27333 transactions
per second (round-trip latency of 36.5µs).

5.2.3 Multi-queue block device driver
In our block device experiments, we use the fio benchmark to
generate I/O requests. To set an optimal baseline for our eval-
uation, we chose the configuration parameters that can give
us the lowest latency path to the driver, so that overheads
of isolation are more profound. We use fio’s libaio engine
to overlap I/O submissions, and bypass the page cache by
setting direct I/O flag to ensure raw device performance. We
vary the number of fio threads involved in the test from 1 to
20 and use the block size of 512B, and I/O submission queue
length of 1 and 16 (Figure 9). We submit a set of requests at
once, i.e., either 1 or 16 and also poll for the same number
of completions. Since the nullblock driver does not interact
with an actual storage medium, reads and writes perform
the same, so we use read I/O requests in all experiments.
For 512 byte requests on a single thread and submission

queue length of one the isolated driver achieves 337K IOPS
compared to the 559K IOPS for the native (Figure 9). The iso-
lated nullblock driver goes through three cross-domain calls on
the I/O path and hence it incurs higher overhead compared



VEE ’20, March 17, 2020, Lausanne, Switzerland Narayanan et al.

0
500

1000
1500
2000
2500
3000
3500
4000
4500

2 4 6 8 10 12 14 16 18 20

IO
P

S
 (

K
)

native-512-q1
isolated-512-q1

0

2000

4000

6000

8000

10000

12000

14000

16000

2 4 6 8 10 12 14 16 18 20

IO
P

S
 (

K
)

native-512-q16
isolated-512-q16

Figure 9. Performance of the nullblock driver

Kernel/hypervisor setup Cycles
Vanilla kernel 607
Vanilla kernel (virtualized) 620
LVD kernel 666
LVD kernel (virtualized) inside kernel 680
LVD kernel (virtualized, inside isolated domain) 1060

Table 3. Overhead of interrupt delivery.
to nullnet. As the number of threads grows both isolated and
native drivers bottleneck on the access to a shared variable
involved in collection of I/O statistics. This bottleneck al-
lows isolated driver to catch up with the performance of the
native driver when the number of threads is twelve or more
(at eleven threads the access to the shared variable crosses
the socket boundary and hence becomes more expensive).

In contrast, the gap between the native and isolated driver
shortens as the length of the submission queue increases to
16. For 512 byte requests on a single thread with submission
queue length of 16, the isolated driver achieves 760K IOPS
compared to 837K IOPS for the non-isolated driver. With 20
threads, the isolated driver achieves 9,030K IOPS compared
to 15,138K IOPS for the native driver.

5.2.4 Exitless Interrupt Delivery
To understand the overheads of exitless interrupt delivery,
we measure latencies introduced on the interrupt path by
virtualization, and LVDs’ isolation mechanisms; specifically
execution on IST stacks, and VMFUNC domain crossings
when interrupt is delivered while inside an isolated domain.
To eliminate the overheads introduced by general layers
of interrupt processing in the Linux kernel, we register a
minimal interrupt handler that acknowledges the interrupt
right above the machine-specific interrupt processing layer.
Our tests invoke the int instruction in the following system
configurations which we run on bare metal and on top of
the hypervisor (Table 3): 1) in a kernel module loaded in-
side an unmodified vanilla Linux kernel, 2) inside a kernel
module in the LVD kernel, and 3) inside an LVD. In both

Transitions/exits Experiments
nullnet ixgbe nullb

VMFUNC 41 x 106 27 x 106 33 x 106
VM-Exit 14074 13235 25789
Table 4. VMFUNC crossings vs number of exits

vanilla and LVD kernels virtualization itself introduces only
a minimal overhead to the interrupt processing path (13 and
14 cycles respectively). The LVD kernel executes all inter-
rupts and exceptions on IST stacks, and thus pays additional
price of switching to an IST stack while entering the inter-
rupt handler (59-60 cycles). An interrupt inside an isolated
domain introduces the overhead of 380 cycles due to two
VMFUNC transitions required to exit and re-enter the LVD.
In all three tests (nullnet, nullblock, and ixgbe) 11% of interrupts
are delivered while inside an LVD.
LVDs trade the cost of changing the privilege level on

cross-domain invocations for exits into the hypervisor on
execution of privileged instructions. To justify this choice,
we measure the number of VM exits and compare it with the
number of VMFUNC transitions for I/O intensive workloads
(nullnet, nullblock, and ixgbe tests) (Table 4). For the iperf test
that stresses performance of the isolated ixgbe driver, we
recorded a total of 13235 VM exits, a number that is three
orders of magnitude smaller compared to the number of
cross-domain transitions (27 x 106).

6 Conclusions
Over the last four decades operating systems gravitated to-
wards a monolithic kernel architecture. However, the avail-
ability of new low-overhead hardware isolation mechanisms
in recent CPUs brings a promise to enable kernels that em-
ploy fine-grained isolation of kernel subsystems and device
drivers. Our work on LVDs develops new mechanisms for
isolation of kernel code. We demonstrate how hardware-
assisted virtualization can be used for controlling execution
of privileged instructions and define a set of invariants that
allows us to isolate kernel subsystems in the face of an in-
tricate execution model of the kernel, e.g., provide isolation
of preemptable, concurrent interrupt handlers. While our
work utilizes EPTs for memory isolation, we argue that our
techniques can be combined with other architectural mecha-
nisms, e.g., MPK, a direction we plan to explore in the future.

Acknowledgments
We would like to thank OSDI 2019, ASPLOS 2019, and VEE
2020 reviewers for numerous insights helping us to improve
this work. We are further grateful to the Utah CloudLab
team for the patience with accommodating our countless
requests and outstanding technical support. This research is
supported in part by the National Science Foundation under
Grant Number 1840197.



Lightweight Kernel Isolation with Virtualization and VM Functions VEE ’20, March 17, 2020, Lausanne, Switzerland

References
[1] Bareflank Hypervisor SDK. http://bareflank.github.io/hypervisor/.
[2] Code-Pointer Integrity in Clang/LLVM. https://github.com/cpi-llvm/

compiler-rt.
[3] LKDDb: Linux Kernel Driver DataBase. https://cateee.net/lkddb/.

Accessed on 04.23.2019.
[4] seL4 performance. https://sel4.systems/About/Performance/.
[5] Intel 64 and IA-32 Architectures Software Developer’s Manual,

2017. https://software.intel.com/sites/default/files/managed/39/c5/
325462-sdm-vol-1-2abcd-3abcd.pdf.

[6] Jonathan Appavoo, Marc Auslander, Dilma DaSilva, David Edelsohn,
Orran Krieger, Michal Ostrowski, Bryan Rosenburg, R Wisniewski,
and Jimi Xenidis. Utilizing Linux kernel components in K42. Technical
report, Technical report, IBM Watson Research, 2002.

[7] Scott Bauer. Please stop naming vulnerabilities: Exploring 6 previ-
ously unknown remote kernel bugs affecting android phones. https:
//pleasestopnamingvulnerabilities.com, 2017.

[8] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Har-
ris, Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach,
and Akhilesh Singhania. The Multikernel: A new os architecture for
scalable multicore systems. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, SOSP’09, pages 29–44,
New York, NY, USA, 2009. ACM.

[9] D. W. Boettner and M. T. Alexander. The Michigan Terminal System.
Proceedings of the IEEE, 63(6):912–918, June 1975.

[10] Allen C. Bomberger, William S. Frantz, Ann C. Hardy, Norman Hardy,
Charles R. Landau, and Jonathan S. Shapiro. The KeyKOS nanokernel
architecture. In Proceedings of the Workshop on Micro-kernels and Other
Kernel Architectures, pages 95–112, Berkeley, CA, USA, 1992.

[11] Silas Boyd-Wickizer and Nickolai Zeldovich. Tolerating malicious
device drivers in Linux. In USENIX ATC, pages 9–9, 2010.

[12] Bromium. Bromium micro-virtualization, 2010. http://www.bromium.
com/misc/BromiumMicrovirtualization.pdf.

[13] Edouard Bugnion, Scott Devine, Kinshuk Govil, and Mendel Rosen-
blum. Disco: Running commodity operating systems on scalable mul-
tiprocessors. ACM Trans. Comput. Syst., 15(4):412–447, November
1997.

[14] Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado,
Periklis Akritidis, Austin Donnelly, Paul Barham, and Richard Black.
Fast byte-granularity software fault isolation. In Proceedings of
the ACM SIGOPS 22nd Symposium on Operating Systems Principles,
SOSP’09, pages 45–58, New York, NY, USA, 2009. ACM.

[15] Stephen Checkoway and Hovav Shacham. Iago Attacks: Why the
system call API is a bad untrusted RPC interface. In ASPLOS XVIII,
pages 253–264. ACM, April 2013.

[16] Gang Chen, Hai Jin, Deqing Zou, Bing Bing Zhou, Zhenkai Liang,
Weide Zheng, and Xuanhua Shi. Safestack: Automatically patching
stack-based buffer overflow vulnerabilities. IEEE Transactions on De-
pendable and Secure Computing, 10(6):368–379, 2013.

[17] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zel-
dovich, and M. Frans Kaashoek. Linux kernel vulnerabilities: state-of-
the-art defenses and open problems. In APSys, pages 5:1–5:5, 2011.

[18] CloudLab testbed. http://cloudlab.us/.
[19] Jonathan Corbet. Supervisor mode access prevention. https://lwn.net/

Articles/517475/, 2012.
[20] Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton, and Jonathan

Walpole. StackGuard: Automatic Adaptive Detection and Prevention
of Buffer-Overflow Attacks. In USENIX Security Symposium, 1998.

[21] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Everything
you always wanted to know about synchronization but were afraid to
ask. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pages 33–48. ACM, 2013.

[22] DDEKit and DDE for linux. http://os.inf.tu-dresden.de/ddekit/.

[23] Eric Eide, Kevin Frei, Bryan Ford, Jay Lepreau, and Gary Lindstrom.
Flick: A flexible, optimizing IDL compiler. In ACM SIGPLAN Notices,
volume 32, pages 44–56. ACM, 1997.

[24] Kevin Elphinstone and Stefan Götz. Initial evaluation of a user-level
device driver framework. In Asia-Pacific Conference on Advances in
Computer Systems Architecture, pages 256–269. Springer, 2004.

[25] Kevin Elphinstone and Gernot Heiser. From L3 to seL4 what have we
learnt in 20 years of L4 microkernels? In Proceedings of the Twenty-
Fourth ACM Symposium onOperating Systems Principles, pages 133–150.
ACM, 2013.

[26] Úlfar Erlingsson, Martín Abadi, Michael Vrable, Mihai Budiu, and
George C. Necula. Xfi: Software guards for system address spaces.
In Proceedings of the 7th Symposium on Operating Systems Design
and Implementation, OSDI ’06, pages 75–88, Berkeley, CA, USA, 2006.
USENIX Association.

[27] Feske, N. and Helmuth, C. Design of the Bastei OS architecture. Techn.
Univ., Fakultät Informatik, 2007.

[28] Stephen Fischer. Supervisor mode execution protection. NSA Trusted
Computing Conference, 2011.

[29] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Albert Lin, and
Olin Shivers. The flux OSKit: A substrate for kernel and language
research. In Proceedings of the 16th ACM Symposium on Operating
Systems Principles, pages 38–51, 1997.

[30] Alessandro Forin, David Golub, and Brian N Bershad. An I/O system
for Mach 3.0. Carnegie-Mellon University. Department of Computer
Science, 1991.

[31] Keir Fraser, Steven Hand, Rolf Neugebauer, Ian Pratt, AndrewWarfield,
and Mark Williamson. Safe hardware access with the Xen virtual ma-
chine monitor. In 1st Workshop on Operating System and Architectural
Support for the on demand IT InfraStructure (OASIS), 2004.

[32] Vinod Ganapathy, Matthew J Renzelmann, Arini Balakrishnan,
Michael M Swift, and Somesh Jha. The design and implementation
of microdrivers. In ACM SIGARCH Computer Architecture News, vol-
ume 36, pages 168–178. ACM, 2008.

[33] Tal Garfinkel, Ben Pfaff, Jim Chow,Mendel Rosenblum, and Dan Boneh.
Terra: a virtual machine-based platform for trusted computing. In
SOSP, pages 193–206, 2003.

[34] Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen Liedtke, Kevin J
Elphinstone, Volkmar Uhlig, Jonathon E Tidswell, Luke Deller, and
Lars Reuther. The SawMill multiserver approach. In Proceedings of
the 9th workshop on ACM SIGOPS European Workshop: Beyond the PC:
New Challenges for the Operating System, pages 109–114. ACM, 2000.

[35] Shantanu Goel and Dan Duchamp. Linux device driver emulation
in Mach. In Proceedings of the USENIX Annual Technical Conference,
pages 65–74, 1996.

[36] David B Golub, Guy G Sotomayor, and Freeman L Rawson III. An
architecture for device drivers executing as user-level tasks. In USENIX
MACH III Symposium, pages 153–172, 1993.

[37] Google. Fuchsia project. https://fuchsia.dev/fuchsia-src/getting_
started.md.

[38] Google. Protocol buffers. https://developers.google.com/
protocol-buffers/.

[39] Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-Yehuda, Alex Lan-
dau, Assaf Schuster, and Dan Tsafrir. ELI: bare-metal performance for
I/O virtualization. ACM SIGPLAN Notices, 47(4):411–422, 2012.

[40] Spyridoula Gravani, Mohammad Hedayati, John Criswell, and
Michael L Scott. Iskios: Lightweight defense against kernel-level
code-reuse attacks. arXiv preprint arXiv:1903.04654, 2019.

[41] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémen-
tine Maurice, and Stefan Mangard. KASLR is dead: long live KASLR. In
International Symposium on Engineering Secure Software and Systems,
pages 161–176. Springer, 2017.

[42] Andreas Haeberlen, Jochen Liedtke, Yoonho Park, Lars Reuther, and
Volkmar Uhlig. Stub-code performance is becoming important. In

http://bareflank.github.io/hypervisor/
https://github.com/cpi-llvm/compiler-rt
https://github.com/cpi-llvm/compiler-rt
https://cateee.net/lkddb/
https://sel4.systems/About/Performance/
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://pleasestopnamingvulnerabilities.com
https://pleasestopnamingvulnerabilities.com
http://www.bromium.com/misc/BromiumMicrovirtualization.pdf
http://www.bromium.com/misc/BromiumMicrovirtualization.pdf
http://cloudlab.us/
https://lwn.net/Articles/517475/
https://lwn.net/Articles/517475/
http://os.inf.tu-dresden.de/ddekit/
https://fuchsia.dev/fuchsia-src/getting_started.md
https://fuchsia.dev/fuchsia-src/getting_started.md
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/


VEE ’20, March 17, 2020, Lausanne, Switzerland Narayanan et al.

Proceedings of the 1st Workshop on Industrial Experiences with Systems
Software, San Diego, CA, October 22 2000.

[43] Tim Harris, Martin Abadi, Rebecca Isaacs, and Ross McIlroy. AC:
composable asynchronous I/O for native languages. In ACM SIGPLAN
Notices, volume 46, pages 903–920. ACM, 2011.

[44] Hermann Härtig, , Jork Löser, Frank Mehnert, Lars Reuther, Martin
Pohlack, and Alexander Warg. An I/O architecture for microkernel-
based operating systems. Technical report, TU Dresden, Dresden,
Germany, 2003.

[45] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John
Criswell, Michael L. Scott, Kai Shen, and Mike Marty. Hodor: Intra-
process isolation for high-throughput data plane libraries. In 2019
USENIX Annual Technical Conference (USENIX ATC 19), pages 489–504,
Renton, WA, July 2019. USENIX Association.

[46] Heiser, G. and Elphinstone, K. and Kuz, I. and Klein, G. and Petters,
S.M. Towards trustworthy computing systems: taking microkernels
to the next level. ACM SIGOPS Operating Systems Review, 41(4):3–11,
2007.

[47] Jorrit N Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S
Tanenbaum. Minix 3: A highly reliable, self-repairing operating system.
ACM SIGOPS Operating Systems Review, 40(3):80–89, 2006.

[48] Hohmuth, M. and Peter, M. and Härtig, H. and Shapiro, J.S. Reducing
TCB size by using untrusted components: small kernels versus virtual-
machine monitors. In Proceedings of the 11th workshop on ACM SIGOPS
European workshop, page 22. ACM, 2004.

[49] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra
Modadugu, and Dan Boneh. On the effectiveness of address-space
randomization. In Proceedings of the 11th ACM conference on Computer
and Communications Security, pages 298–307, 2004.

[50] Tomas Hruby, Herbert Bos, and Andrew S Tanenbaum. When slower
is faster: On heterogeneous multicores for reliable systems. In Pre-
sented as part of the 2013 USENIX Annual Technical Conference (USENIX
ATC’13), pages 255–266, 2013.

[51] Zhichao Hua, Dong Du, Yubin Xia, Haibo Chen, and Binyu Zang. EPTI:
Efficient defence against meltdown attack for unpatched vms. In 2018
USENIX Annual Technical Conference (USENIX ATC’18), pages 255–266,
2018.

[52] Galen Hunt and Jim Larus. Singularity: Rethinking the software stack.
ACM SIGOPS Operating Systems Review, 41/2:37–49, April 2007.

[53] INTEGRITY Real-Time Operating System. http://www.ghs.com/
products/rtos/integrity.html.

[54] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias
Payer. Block oriented programming: Automating data-only attacks.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’18, pages 1868–1882, New York, NY,
USA, 2018. ACM.

[55] Antti Kantee. Flexible operating system internals: the design and imple-
mentation of the Anykernel and Rump kernels. PhD thesis, 2012.

[56] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias
Athanasopoulos. No need to hide: Protecting safe regions on com-
modity hardware. In Proceedings of the 12th European Conference on
Computer Systems, EuroSys ’17, pages 437–452, New York, NY, USA,
2017. ACM.

[57] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Can-
dea, R. Sekar, and Dawn Song. Code-pointer integrity. In USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
pages 147–163, 2014.

[58] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz. Un-
modified device driver reuse and improved system dependability via
virtual machines. In Proceedings of the 6th Conference on Symposium
on Operating Systems Design & Implementation - Volume 6, OSDI’04,
pages 2–2, Berkeley, CA, USA, 2004. USENIX Association.

[59] Jonathan Levin. Mac OS X and IOS Internals: To the Apple’s Core. John
Wiley & Sons, 2012.

[60] Jochen Liedtke. Improved address-space switching on Pentium pro-
cessors by transparently multiplexing user address spaces. Technical
report, GMD SET-RS, Schlo Birlinghoven, 53754 Sankt Augustin, Ger-
many, 1995.

[61] Jochen Liedtke, Ulrich Bartling, Uwe Beyer, Dietmar Heinrichs, Rudolf
Ruland, and Gyula Szalay. Two years of experience with a µ-kernel
based os. SIGOPS Oper. Syst. Rev., 25(2):51–62, April 1991.

[62] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia.
Thwartingmemory disclosure with efficient hypervisor-enforced intra-
domain isolation. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pages 1607–1619. ACM,
2015.

[63] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia.
Thwartingmemory disclosure with efficient hypervisor-enforced intra-
domain isolation. In 22nd ACM Conference on Computer and Commu-
nications Security (CCS), pages 1607–1619, 2015.

[64] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang, Nickolai Zel-
dovich, and M Frans Kaashoek. Software fault isolation with API
integrity and multi-principal modules. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles, pages 115–128. ACM, 2011.

[65] Stephen McCamant and Greg Morrisett. Efficient, verifiable binary
sandboxing for a CISC architecture. 2005.

[66] Mellanox. Connectx-6 single/dual-port adapter supporting 200gb/s
with vpi. http://www.mellanox.com/page/products_dyn?product_
family=265&mtag=connectx_6_vpi_card, 2019.

[67] Adrian Mettler, David Wagner, and Tyler Close. Joe-E: A security-
oriented subset of Java. In Proc. NDSS, February–March 2010.

[68] Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and Haibo Chen. Sky-
bridge: Fast and secure inter-process communication for microkernels.
In Proceedings of the Fourteenth EuroSys Conference 2019, page 9. ACM,
2019.

[69] Mark Samuel Miller. Robust Composition: Towards a Unified Approach
to Access Control and Concurrency Control. PhD thesis, Johns Hopkins
University, May 2006.

[70] Daniel Molka, Daniel Hackenberg, and Robert Schöne. Main memory
and cache performance of Intel Sandy Bridge and AMD Bulldozer.
InWorkshop on Memory Systems Performance and Correctness, pages
4:1–4:10, 2014.

[71] Daniel Molka, Daniel Hackenberg, Robert Schone, and Matthias S
Muller. Memory performance and cache coherency effects on an Intel
Nehalem multiprocessor system. In PACT, pages 261–270. IEEE, 2009.

[72] Vikram Narayanan, Abhiram Balasubramanian, Charlie Jacobsen,
Sarah Spall, Scott Bauer, Michael Quigley, Aftab Hussain, Abdullah
Younis, Junjie Shen, Moinak Bhattacharyya, and Anton Burtsev. LXDs
: Towards isolation of kernel subsystems. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), 2019.

[73] Ruslan Nikolaev and Godmar Back. VirtuOS: An operating system
with kernel virtualization. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, SOSP ’13, pages 116–132,
New York, NY, USA, 2013. ACM.

[74] Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon, and Taesoo Kim.
libmpk: Software abstraction for Intel Memory Protection Keys (Intel
MPK). In 2019 USENIX Annual Technical Conference (USENIX ATC 19),
pages 241–254, Renton, WA, July 2019. USENIX Association.

[75] Phoronix Test Suite: An automated, open-source testing framework.
http://www.phoronix-test-suite.com/.

[76] Octavian Purdila. Linux kernel library. https://lwn.net/Articles/
662953/.

[77] Matthew J Renzelmann and Michael M Swift. Decaf: Moving device
drivers to a modern language. In USENIX Annual Technical Conference,
2009.

[78] Robert Ricci, Eric Eide, and The CloudLab Team. Introducing Cloud-
Lab: Scientific infrastructure for advancing cloud architectures and
applications. USENIX ;login:, 39(6), December 2014.

http://www.ghs.com/products/rtos/integrity.html
http://www.ghs.com/products/rtos/integrity.html
http://www.mellanox.com/page/products_dyn?product_family=265&mtag=connectx_6_vpi_card
http://www.mellanox.com/page/products_dyn?product_family=265&mtag=connectx_6_vpi_card
http://www.phoronix-test-suite.com/
https://lwn.net/Articles/662953/
https://lwn.net/Articles/662953/


Lightweight Kernel Isolation with Virtualization and VM Functions VEE ’20, March 17, 2020, Lausanne, Switzerland

[79] Rutkowska, J. andWojtczuk, R. Qubes OS architecture. Invisible Things
Lab Technical Report, 2010.

[80] Saltzer, J.H. and Schroeder, M.D. The protection of information in
computer systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.

[81] David Sehr, Robert Muth, Cliff L Biffle, Victor Khimenko, Egor Pasko,
Bennet Yee, Karl Schimpf, and Brad Chen. Adapting software fault
isolation to contemporary CPU architectures. 2010.

[82] Livio Soares and Michael Stumm. FlexSC: flexible system call schedul-
ing with exception-less system calls. In OSDI, pages 1–8, 2010.

[83] Yifeng Sun and Tzi-cker Chiueh. SIDE: Isolated and efficient execution
of unmodified device drivers. In 2013 43rd Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN), pages
1–12. IEEE, 2013.

[84] Michael M Swift, Steven Martin, Henry M Levy, and Susan J Eggers.
Nooks: An architecture for reliable device drivers. In Proceedings of
the 10th workshop on ACM SIGOPS European workshop, pages 102–107.
ACM, 2002.

[85] Hajime Tazaki. An introduction of library operating system for Linux
(LibOS). https://lwn.net/Articles/637658/.

[86] Cheng-Chun Tu, Michael Ferdman, Chao-tung Lee, and Tzi-cker Chi-
ueh. A comprehensive implementation and evaluation of direct inter-
rupt delivery. In Acm Sigplan Notices, volume 50, pages 1–15. ACM,
2015.

[87] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Michael
Sammler, Peter Druschel, and Deepak Garg. ERIM: Secure, efficient in-
process isolation with protection keys (MPK). In 28th USENIX Security
Symposium (USENIX Security 19), pages 1221–1238, 2019.

[88] Arjan van de Ven. New Security Enhancements in Red Hat Enter-
prise Linux v.8, update 3. https://static.redhat.com/legacy/f/pdf/rhel/
WHP0006US_Execshield.pdf.

[89] Kevin Thomas Van Maren. The Fluke device driver framework. Mas-
ter’s thesis, The University of Utah, 1999.

[90] David A. Wagner. Janus: An approach for confinement of untrusted
applications. Technical report, Berkeley, CA, USA, 1999.

[91] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Gra-
ham. Efficient software-based fault isolation. In Proceedings of the
Fourteenth ACM Symposium on Operating Systems Principles, SOSP ’93,
pages 203–216, New York, NY, USA, 1993. ACM.

[92] Dan Williams, Patrick Reynolds, Kevin Walsh, Emin Gün Sirer, and
Fred B. Schneider. Device driver safety through a reference validation
mechanism. In Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, OSDI’08, pages 241–254, Berkeley,
CA, USA, 2008. USENIX Association.

[93] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui Gong, and Wei Zou.
FUZE: Towards facilitating exploit generation for kernel use-after-free
vulnerabilities. In 27th Usenix Security Symposium, 2018.

[94] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen, Robert Muth,
Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar.
Native client: A sandbox for portable, untrusted x86 native code. In
30th IEEE Symposium on Security and Privacy, pages 79–93, 2009.

https://lwn.net/Articles/637658/
https://static.redhat.com/legacy/f/pdf/rhel/WHP0006US_Execshield.pdf
https://static.redhat.com/legacy/f/pdf/rhel/WHP0006US_Execshield.pdf

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Isolation Mechanisms and Overheads
	2.2 Complexity of decomposition

	3 LVDs Architecture
	3.1 Overview of the LVDs Architecture
	3.2 Device Driver Isolation
	3.3 Lightweight Isolation with VMFUNC

	4 Enforcing Isolation
	4.1 Exitless Interrupt Handling
	4.2 VMFUNC Isolation Attacks and Defenses

	5 Evaluation
	5.1 VMFUNC Domain-Crossings
	5.2 Overheads of isolation

	6 Conclusions
	Acknowledgments
	References

