USENIX Association

Proceedings of the
13th USENIX Security Symposium

San Diego, CA, USA
August 9-13, 2004

THE ADVANCED COMPUTING §YSTEMS ASSOCIATION

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Design and Implementation of a TCG-based
Integrity Measurement Architecture

Reiner Sailer and Xiaolan Zhang and Trent Jaeger and Leendert van Doorn
IBM T. J. Watson Research Center
19 Skyline Drive, Hawthorne, NY 10532
{sailer,cxzhang,jaegert,leendé@watson.ibm.com

Abstract cause is could be modified to give you wrong answers. For
We present the design and implementation of a secure irthe same reason we cannot trust the kernel or the BIOS on
tegrity measurement system for Linux. All executable con-which these programs are running since they may be tam-
tent that is loaded onto the Linux system is measured bepered with too. Instead we need to go back to an immutable
fore execution and these measurements are protected by theot to provide that answer. This is essentially the secure boot
Trusted Platform Module (TPM) that is part of the Trusted problem [1], although for our scenarios we are interested in
Computing Group (TCG) standards. Our system is the firsan integrity statement of the software stack rather than ensur-
to extend the TCG trust measurement concepts to dynamiag compliance with respect to a digital signature.
executable content from the BIOS all the way up into the ap- The Trusted Computing Group (TCG) has defined a set
plication layer. In effect, we show that many of the Microsoft of standards [2] that describe how to take integrity measure-
NGSCB guarantees can be obtained on today’s hardware amgents of a system and store the result in a separate trusted
today’s software and that these guarantees do not requireg@processor (Trusted Platform Module) whose state cannot
new CPU mode or operating system but merely depend obe compromised by a potentially malicious host system. This
the availability of an independent trusted entity, a TPM formechanism is called trusted boot. Unlike secure boot, this
example. We apply our trust measurement architecture to gystem only takes measurements and leaves it up to the re-
web server application where we show how our system camote party to determine the system’s trustworthiness. The
detect undesirable invocations, such as rootkit programs, anglay this works is that when the system is powered on it trans-
that our measurement architecture is practical in terms of théers control to an immutable base. This base will measure the
number of measurements taken and the performance impagéxt part of BIOS by computing a SHA1 secure hash over its

of making them. contents and protect the result by using the TPM. This pro-
cedure is then applied recursively to the next portion of code
1 Introduction until the OS has been bootstrapped.

The TCG trusted boot process is composed of a set of or-

With the introduction of autonomic computing, grid comput- dered sequential steps and is only defined up to the bootstrap
ing and on demand computing there is an increasing need teader. Conceptually, we would like to maintain the chain of
be able to securely identify the software stack that is runnindgrust measurements up to the application layer, but unlike the
on remote systems. For autonomic computing, you want t@ootstrap process, an operating system handles a large vari-
determine that the correct patches have been installed onedy of executable content (kernel, kernel modules, binaries.
given system. For grid computing, you are concerned thaghared libraries, scripts, plugins, etc.) and the order in which
the services advertised really exist and that the system is ngte content is loaded is seemingly random. Furthermore, an
compromised. For on demand computing, you may be conoperating system almost continuously loads executable con-
cerned that your outsourcing partner is providing the softwaréent and measuring the content at each load time incurs a con-
facilities and performance that have been stipulated in the sesiderable performance overhead.
vice level agreement. Yet another scenario is where you are The system that we describe in this paper addresses these
interacting with your home banking or bookselling webser-concerns. We have modified the Linux kernel and the runtime
vices application and you want to make sure it has not beerystem to take integrity measurements as soon as executable
tampered with. content is loaded into the system, but before it is executed.

The problem with the scenarios above is, who do you trustWe keep an ordered list of measurements inside the kernel.
to give you that answer? It cannot be the program itself beWe change the role of the TPM slightly and use it to pro-

tect the integrity of the in-kernel list rather than holding mea-web server example system to identify the types of problems
surements directly. To prove to a remote party what softwar¢hat must be solved to prove integrity to a remote system with
stack is loaded, the system needs to present the TPM state wshigh degree of confidence. We show that the operating sys-
ing the TCG attestation mechanisms and this ordered list. Theem lacks the context to provide the level of integrity mea-
remote party can then determine whether the ordered list hasirement necessary, but with a hardware root of trust, the op-
been tampered with and, once the list is validated, what kin@rating system can be a foundation of integrity measurement.
of trust it associates with the measurements. To minimize&Currently, we surmise that it is more appropriate for finding
the performance overhead, we cache the measurement resutigegrity bugs than full verification, but we aim to define an
and eliminate future measurement computations as long aachitecture that can eventually be extended to meet our mea-
the executable content has not been altered. The amount sfirement requirements.

modifications we made to the Linux system were minimal,

about 4000 lines of code. 21 Intearity Back d
Our enhancement keeps track of all the software compo=" ntegrity Backgroun

nents that are executed by a system. The number of uniqugy, goal is to enable a remote system (tallenge) to
components is surprisingly small and the system quickly Selprove that a program on another system (étesting sys-
tles into a steady state. For example, the workstation used Bgm owned by theattesto) is of sufficient integrity to use.
this author which runs RedHat 9 and whose workload CONTheintegrity of a program is a binary property that indicates
sists of writing this paper, compiling programs, and browsingyhether the program and/or its environment have been mod-
the web does not accumulate more than 500 measurement gfjad in an unauthorized manner. Such an unauthorized mod-
tries. On a typical web server the accumulated measuremengcation may result in incorrect or malicious behavior by the
are about 250. Thus, the notion of completely fingerprintingpmgram, such that it would be unwise for a challenger to rely
the running software stack is surprisingly tractable. onit.

~ Contributions: This paper makes the following contribu- \yhile integrity is a binary property, integrity is a relative
tions: property that depends on the verifier's view of the ability of a

e A non-intrusive and verifiable remote software stackProgram to protect itself. Biba defines that integrity is com-

attestation mechanism that uses standard (commodityromised when a program depends on (i.e., reads or executes)
hardware. low integrity data [3]. In practice, programs often process low

- _ integrity data without being compromised (but not all pro-
* An efficient measurement system for dynamic exe-grams; all the time), so this definition is too restricted. Clark-

cutable content. Wilson define a model in whichtegrity verification proce-
e A tractable software stack attestation mechanism thafluresverify integrity at system startup and high integrity data

does not require new CPU modes or a new operatin%;s only modified bytransformation procedurethat are certi-
system. ied to maintain integrity even when their inputs include low

integrity data [4]. Unfortunately, the certification of applica-
Outline: NeXt, we introduce the structure of a typ|Ca.| tions is too expensive to be practica'_

run-time system, for which we will establish an integrity- npore recent efforts focus on measuring code and associ-
measurement architecture throughout this paper. In Section 3¢ing integrity semantics with the code. The IBM 4758 ex-
we present related work in the area of integrity protecting sySpjicitly defines that the integrity of a program is determined
tems and attestation. In Sections 4 and 5, we describe thg; the code of the program and its ancestors [5]. In prac-
design of our approach and its implementation in a standargce, this assumption is practical because the program and its
Linux operating environment. Section 6 describes experizonfiguration are installed in a trusted manner, it is isolated
ments that highlight how integrity breaches are made visiblgrom using files that can be modified by other programs, and
by our solution when validating measurement-lists. It alsGit js assumed to be capable of handling low integrity requests
summarizes run-time overhead. Finally, Section 7 sketchegom the external system. To make this guarantee plausible,
enhancements to our architecture that are being implementgde |BM 4758 environment is restricted to a single program
or planned. Our results show and validate that our architecyith 5 well-defined input state and the integrity is enforced
ture is efficient, scales with regard to the number of elementsyjth secure boot. However, even these assumptions have not
successfully recognizes integrity breaches, and offers a valyseen sufficient to prevent compromise of applications running

able platform for extensions and future experiments. on the 4758 which cannot handle low integrity inputs prop-
erly [6]. Thus, further measurement of low integrity inputs
2 Problem Statement and their impact appear to be likely.

The key differences in this paper are that: (1) we endeavor
To provide integrity verification services, we first examine theto define practical integrity for a flexible, traditional sys-
meaning of system integrity, in general. We then describe é&ems environment under the control of a potentially untrusted

party and (2) the only special hardware that we leverage is
the root of trust provided by the Trusted Computing Group’s
Trusted Platform Module (TCG/TPM). In the first case, we
may not assume that all programs are loaded correctly simply
by examining the hash because the untrusted party may try
to change the input data that the program uses. For example,
many programs enable configuration files to be specified in
the command line. Ultimately, applications define the seman-
tics of the inputs that they use, so it is difficult for an oper-
ating system to detect whether all inputs have been used in

/ Static Data:

Executables

| - httpd.conf |
| - java.security/policy |
\ - Javaclasses J

apachectrl, httpd
catalina.sh, java

Z startup.sh
, - - - - - - - = = ~
Unstructured / Dynamic Data: | r
I ~File / Network /User o Libraries/
Modules

|- Inter Process Communication |

Kernel

Modules

,,,,,,,,

‘ Linux 2.6.5 System Kernel

‘ Linux GRUB Bootstrap Loader

User Space

Kernel Space

an appropriate manner by an application if its environment is
controlled by an untrusted party. However, a number of vul-

nerabilities can be found by the operating system alone, and
itis fundamental that the operating system collect and protect
measurements.

Second, the specialized hardware environment of the IBM
4758 enables secure boot and memory lockdown, but such
features are either not available or not practical for current The boot process results in a particular kernel being run.
PC systems. Secure boot is not practical because integrifyhere are a variety of different types of kernels, kernel ver-
requirements are not fixed, but defined by the remote chakions, and kernel configurations that determine the actual
lengers. If remote parties could determine the secure boadystem being booted. For example, we load Linux 2.6.5-
properties of a system, systems would be vulnerable to a sideg from/boot/vmlinuz-2.6.5-tcg which includes a
nificant denial-of-service threat. Instead the TCG/TPM sup-TPM driver and our measurement hooks. Further, the kernel
ports trusted boot, where the attesting system is measured anthy be extended by loadable kernel modules. The measure-
the measurements are used by the challengers to verify theinent infrastructure must be able to measure the kernel and
integrity requirements. Since trusted boot does not terminatany modules that are loaded. The challenger must be able
a boot when a low integrity process is loaded, all data couldo determine whether this specific kernel booted and the dy-
be subject to attack during the “untrusted” boot. Since multi-namically loaded modules meet the desired integrity require-
ple applications can run in a discretionary access control erments.
vironment concurrently, it is difficult to determine whether Once the kernel is booted, then user-level services and ap-
the dynamic data of a system (e.g., a database) is still aglications may be run. In Linux, a program execution starts
ceptable. Discretionary integrity mechanisms, sucbeaded by loading an appropriate interpreter (i.e., a dynamic loader,
storage[7], do not solve this problem in general. such add.so) based on the format of the executable file.
Loads of the target executable’s code and supporting libraries
are done by the dynamic loader. Executables include the fol-
lowing files on our experimental system:

We use as an example a server machine running an Apache
Webserver and Tomcat Web Containers that serve static and ® Apache server (apachect, httpd, ...))
dynamic content to sell books to clients running on remote
systems. The system is running a RedHat 9.0 Linux environ-
ment. Figure 1illustrates the runtime environment that affects
the Web server.

The system is initiated by booting the operating system.
The boot process is determined by the BIOS, grub bootloader, ¢ Dynamic libraries (libjvm.so, libcore.so, libjava.so, libc-
and kernel configuration file/tjoot/grub.conf). The 2.3.2.50, libssl.s0.4, ...)
first two can alter the system in arbitrary ways, so they must
be measured. An interesting point is that measurement AAll of this code impacts system integrity, So we need to mea-
configuration files, such agrub.conf , is not necessary sure them. The kernel knows when executable code is loaded
as long as they do not: (1) modify code already loaded antbecause the related file is memory-mapped by using the ex-
(2) all subsequent file loads can be seen by the measuremesttutable flag. However, the kernel cannot recognize kernel
infrastructure. Since the BIOS and grub bootloader are unmodules when they are loaded from the file system because
affected, we only need to ensure that the kernel and othahey are loaded by applications such as modprobe or ins-
programs whose loads are triggered by the configuration ammod and are memory-mapped as executable only after they
measured. have been loaded into in memory. Finally, the kernel does

‘ Basic Input Output System (BIOS) ‘

Figure 1: Runtime System Components

2.2 Example

e Apache modules maduth.so,

mod.cgi.so, ...)

(madccess.so,

e Tomcat servlet machine (startup.sh, catalina.sh, java, ...)

not know when executable scripts are loaded into interpreter2.3 Measuring Systems

such as bash because they are read as normal files. Based on the analysis of the web server example, we list the
Some other files loaded by the application itself also de- y p'e,

fine its execution behavior. For example, the Java class fil fypes of tasks that must be accomplished to achieve a Clark-

that define servlets and web services must be measured be—I Ison level of integrity verification.

cause they are loaded by the Tomcat server to create dynamic 4 \serification Scope Unless information flows among
content, such as shopping cart or payment pages. Applica-
tion configuration files, such as the startup files for Apache
(httpd.conf) and Tomcat (startup scripts) may also alter the
behavior of the Web server. These files in our example sys-
tem include:

processes are under a mandatory restriction, the integrity
of all processes must be measured. Otherwise, the scope
of integrity impacting a process may be reduced to only
those processes upon which it depends for high integrity
code and data.

e Apache configuration file (httpd.conf) e Executable Content For each process, all code ex-
ecuted must be of sufficient integrity regardless of
whether it is loaded by the operating system, dynamic
loader, or application.

e Java virtual machine security configuration
(java.security, java.policy)

e Servlets and web services libraries (axis.jar, servlet.jar, o Structured Data: For each process, data whose content

wsdl4j.jar, ...) has an identifiable integrity semantics may be treated in
the same manner as executable content above. How-
ever, we must be sure to capture the data that is actually
loaded by the operating system, dynamic loaders, and
applications.

While each of these files may have standard contents that
can be identified by the challenger, it is difficult to determine
which files are actually being used by an application and for
what purpose. Even fifittp.conf has the expected con-
tents, it may not be loaded as expected. For example, Apache e Unstructured Data: For each process, the data whose
has a command line option to load a different file, links in content does not have an identifiable integrity semantics,
the file system may result in a different file being loaded, the integrity of the data is dependent on the integrity of
and races are possible between when the file is measured and the processes that have modified it or the integrity may
when it is loaded. Thus, a Tripwire-like [8] measurement of be upgraded by explicit upgrade processes or this pro-
the key system files is not sufficient because the users of the cess (if it is qualified to be a transformation procedure in
attesting system (attestors) may change the files that actually the Clark-Wilson sense).
determine its integrity, and these users are not necessarily
trusted by the challengers. As in the dynamic loader case, The first statement indicates that for systems that use dis-
the integrity impact of opening a file is only known to the re- cretionary policy (e.g., NGSCB), the integrity of all processes
questing program. However, unlike the case for the dynamiénust be measured because all can impact each other. Second
loader, the problem of determining the integrity impact of ap-We must measure all code including modules, libraries, and
plication loads involves instrumentation of many more pro-code loaded in an ad hoc fashion by applications to verify the
grams, and these may be of varying trust levels. integrity of an individual process. Third, some data may have
The integrity of the Web server environment also dependdtegrity semantics similar to code, such that it may be treated
on dynamic, unstructured data that is consumed by runnin%‘at way. Fourth, dynamic data cannot be verified as code, so
executables. The key issue is that even if the applicatioffata history, security policy, etc. are necessary to determine
knows that this data can impact its integrity, its measuremerifS integrity. The challengers may assume that some code can
is useless because the challenger cannot predict values ti¥gndle low integrity data as input. The lack of correct under-
would preserve integrity. In the web server example, the ke?tand.mg about particular code’s ability to handle low integrity
dynamic data are: (1) the various kinds of requests from redata is the source of many current security problems, so we
mote clients, administrators, and other servlets and (2) th@ould ultimately prefer a clear identification of how low in-
database of book orders. The sorts of things that need to J&9rity data is used.
determined are whether the order data or administrator com- Further, an essential part of our architecture is the ability
mands can be modified only by high integrity programs (i.e.,Of challengers to ensure that the measurement list is:
Biba) and whether the low integrity requests can be converted
to high integrity data or rejected (i.e., Clark-Wilson). Sealed
storage is insufficient to ensure the first property, informa-
tion flow based on mandatory policy is necessary in general, e unchanged, i.e., the fingerprints are truly from the loaded
and enforcement of the second property requires trusted up- executable and static data files and have not been tam-
graders or trust in the application itself. pered with.

¢ fresh and complete, i.e., includes all measurements up to
the point in time when the attestation is executed,

An attestor that has been corrupted can try to cheat by ei- The IBM 4758 secure coprocessor [10] implements both
ther truncating measurements or delivering changed measursecure boot and authenticated boot, albeit in a restricted en-
ments to hide the programs that have corrupted its state. R@ironment. It promises secure boot guarantees by verify-
playing old measurement lists is equivalent to hiding newing (flash) partitions before activating them and by enforcing
measurements. valid signatures before loading executables into the system.
This analysis indicates that integrity verification for a flex- A mechanism calledutgoing authenticatiof] enables at-
ible systems environment is a difficult problem that requiregestation that links each subsequent layer to its predecessor.
several coordinated tasks. Rather than tackle all problems dthe predecessor attests to the subsequent layer by generating
once, a more practical approach is to provide an extensibla signed message that includes the cryptographic hash and the
approach that can identify some integrity bugs now and fornpublic key of the subsequent layer. To protect an application
a basis for constructing reasonable integrity verification in thérom flaws in other applications, only one application is al-
future. This approach is motivated by the approach adoptelbwed to run at a time. Thus, the integrity of the application
by static analysis researchers in recent work [9]. Rather thadepends on hashes of the code and manual verification of the
proving the integrity of a program, these tools are designe@pplication’s installation data. This data is only accessible to
to find bugs and be extensible to finding other, more comitrusted code after installation. Our web server example runs
plex bugs in the future. Finding integrity bugs is also usefulin a much more dynamic environment where multiple pro-
for identifying that code needs to be patched, illegal informa-cesses may access the same data and may interact. Furthel
tion flows, or cases where low integrity data is used withouthe security requirements of the challenging party and the at-
proper safeguards. For example, a challenger can verify thagsting party may differ such that secure boot based on the
an attesting system is using high integrity code for its currenthallenging party’s requirements is impractical.
applications. The Trusted Computing Group [11] is a consortium of
In this paper, we define operating systems support for meazompanies that together have developed an open interface for
suring the integrity of code and structured data. The operata Trusted Platform Module, a hardware extension to systems
ing system ensures that the code loaded into every individthat provides cryptographic functionality and protected stor-
ual user-level process is measured, and this is used as a basife. By default, the TPM enables the verification of static
for applications to measure other code and data for which inplatform configurations, both in terms of content and order,
tegrity semantics may be defined. Thus, our architecture erby collecting a sequence of hashes over target code. For ex-
sures that the breadth of the system is measured (i.e., all usetmple, researchers have examined how a TPM can be used to
level processes), but the depth of measurement (i.e., whicprove that a system has booted a valid operating system [12].
things are subsequently loaded into the processes) is not corihe integrity of applications running on the operating system
plete, but it is extensible, such that further measurements g outside the scope of this work and is exactly where we look
increase confidence in integrity are possible. At present, weo expand the application of the TPM.
do not measure mandatory access control policy, but the ar- Marchesini et al. [13] describe an approach that uses signed
chitecture supports extensions to include such measuremenigstworthy configurations to protect a system’s integrity.

and we are working on how to effectively use them. Such a configuration stores signatures of sensitive configura-
tion files. A so-called Enforcer checks the integrity of signed
3 Related Work files in the configuration against the real file every time the

real file is opened. The approach enforces integrity through

Related work includes previous efforts to measure a systefhPM- sealing of long-lived server certificates and binding
to improve its integrity and/or enable remote integrity verifi- Of the unsealing to a correct configuration. In this respect
cation. The key issues in prior work are: (1) the distinctionthe work is related to the platform configurations described
betweensecure booandauthenticated booand (2) the se- in [12]. None of the known existing work extends the mea-
mantic value of previous integrity measurement approachessurement of a software stack from the static boot configura-
Secure boot enables a system to measure its own integrif§on seamlessly into the application level.

and terminate the boot process if an action compromises this Terra [14] and Microsoft's Next Generation Secure Com-
integrity. The AEGIS system by Arbaugh [1] provides a prac-puting Base (NGSCB [7]) are based on the same hardware
tical architecture for implementing secure boot on a PC syssecurity architecture (TCG/TPM) and are similar in provid-
tem. It uses signed hash values to identify and validate eadng a “whole system solution” to authenticated boot. NGSCB
layer in the boot process. It will abort booting the systempartitions a platform into a trusted and untrusted part each of
if the hashes cannot be validated. Secure boot does not ewhich runs its own operating system. Only the trusted por-
able a challenging party to verify the integrity of a boot pro-tion is measured which limits the flexibility of the approach
cess (i.e., authenticated boot) because it simply measures afitbt all programs of interest should be fully trusted) and it
checks the boot process, but does not generate attestationsdsfpends on hardware and base software not yet available.
the integrity of the process. Terra is a trusted computing architecture that is built

Attesting System Platform

around a trusted virtual machine monitor that —among other [e runrme « rie systoms

. . . . (|1 integrityChallenge N

things— authenticates the software running in a VM for chal- e (vesaton | cnatencer
. . . . o \\\\ Q\zﬁ ~— 3 5. IntegrityResponse g /

lenging parties. Terra tries to resolve the conflict between | (vy, K e

. AN ore /
building trusted customized closed-box run-time environ- ‘\\”/\%@ Weasurement &a&fa‘e
ments (e.g., IBM 4758) and open systems that offer rich func- = S Response
. ruste atform
tionality and significant economies of scale that, however, are om

difficult to trust because of their flexibility. As such, Terra — .

tries to solve the same problem as we do, however in a very | \wesweens /-
different way. Terra measures the trusted virtual machine o
monitor on the partition block level. Thus, on the one hand,

Terra produces about 20 Megabyte of measurement values Figure 2: TPM-based Integrity Measurement

(i.e., hashes) when attesting an exemplary 4 Gigabyte VM

partition. On the other hand, because those measurements

are representative of blocks, it is difficult to interpret varying

measurement values. Thus, our system measures selectivéwd reason about the trustworthiness of the attesting system’s
those parts of the system that contribute to the dynamic runUn-time integrity in step 6.

time system; it does so on a high level that is rich in semantics

and e_nables remote parties to interpret varying measuremenjs Assumptions

on a file level.

Before we describe these three components of our architec-
4 Design of an Integrity ture, we establish assumptions about the attacker model be-
. cause without such restrictions, there would always be attack-
Measurement Architecture ers that are able to fool a remote client.
Our integrity Measurement architecture consists of three ma- V& US€ services and protection offered by the TCG stan-
jor components: dards [11] in order to: (1) enable challenging parties to
establish trust into the platform configuration of the attest-

e TheMeasurement Mechanisom the attested system de- ing system (measurement environment) and (2) ensure chal-
termines what parts of the run-time environment to mealengers that the measurement list compiled by the measure-
sure, when to measure, and how to securely maintain th&ent environment has not been tampered with. We assume
measurements. that the TPM hardware works according to the TPM speci-

fications [11] and that the TPM is embedded correctly into

e An Integrity Challenge Mechanistthat allows autho- the platform, ensuring the proper measurement of the BIOS,
rized challengers to retrieve measurement lists of a compgotioader, and following system environment parts.
puting platform and verify their freshness and complete- The TPM cannot prevent direct hardware attacks against
ness. the system, so we assume that these are not part of the threa

e An Integrity Validation Mechanispvalidating that the ~Model. o
measurement list is complete, non-tampered, and fresh We assume that code measurements are sufficient to de-

as well as validating that all individual measurement en-SCTibe its behavior. Thus, self-changing code can be evalu-

tries of runtime components describe trustworthy codeted because the intended ability of code to change itself is
or configuration files. reflected in the measurement and can be taken into account

in verification. The same holds for the kernel code that is

Figure 2 shows how these mechanisms interact to enabl&@ought to be changed only through loading and unloading
remote attestation. Measurements are initiated by so-calleghodules. Kernel changes based on malicious DMA transfers
measurement agents, which induce a measurement of a fileyerwriting kernel code are not addressed; however, the code
(a) store the measurement in an ordered list in the kernel, argetting up the DMA is measured and thus subject to evalua-
(b) report the extension of the measurement list to the TPM.tion.

The integrity challenge mechanism allows remote chal- We also assume that the challenging party holds a valid and
lenger to request the measurement list together with the TPM¥usted certificate binding a public RSA identity kay /.,
signed aggregate of the measurement list (step 1 in Fig 2pf the attesting system’s TPMAI K., will be used by the
Receiving such a challenge, the attesting system first retrieveshallenging party to validate the quoted register contents of
the signed aggregate from the TPM (steps 2 and 3 in Fig 2bhe attesting system’s TPM before using those registers to val-
and afterwards the measurement list from the kernel (step #late the measurement list.
in Fig 2). Both are then returned to the attesting party in step We assume that there are no confidentiality requirements
5. Finally, the attesting party can validate the informationon measurement data that cannot be satisfied by controlling

the access to the attestation service. ing the platform, which clears all PCRs (value 0). The sec-

Finally, for the interpretation of system integrity measure-ond function is thél' P M _extend function, which takes one
ments, we rely on the challenger’s run-time because the valt60bit numbem and the numbei of a PCR register as ar-
idation results must be securely computed, interpreted, anguments and then aggregatesand the current contents of
acted upon. We assume that the challenger can safely deci®C R[] by computing a SHAL(PCRJ || n). This new value
which measurements to trust either by comparing them to & stored in PCR]. There is no other way for the system to
list of trusted measurements or by off-loading the decision ta&change the value of any PCR register, based on our assump-
trusted parties that sign trusted measurements according tdians that the TPM hardware behaves according to the TCG
common policy (i.e., common evaluation criteria). specification and no direct physical attacks occur.

We use the Platform Configuration Registers to maintain
an integrity verification value over all measurements taken by
our architecture. Any measurement that is taken is also ag-

Our measurements mechanism consists of a base measugéegated into a TPM PCR (usifigP M _extend) before the
ment when a new executable is loaded and the ability to medl@asured component can affect and potentially corrupt the
sure other executable content and sensitive data files. THYStem. Thus, any measured software is recorded before tak-
idea is that BIOS and bootloader measure the initial kerneing control directly (executable) or indirectly (static data file
code and then enable the kernel to measure changes to its€fthe configuration). For example,iifneasurements., ..imn;
(e.g., module loads) and the creation of user-level processelave been taken, the aggregate in the chosen PCR contains
The kernel uses the same approach with respect to use?-HAl(.SHAL(SHA1(0[|my)||ms2)..[[m;). The protected
level processes, where it measures the executable code load@@rage of the TPM prevents modification by devices or sys-
into processes (e.g., dynamic loader dmgpd loaded via €M software. While it can be extended with other chosen
mmay). Then, this code can measure subsequent security sekalues by a corrupted system, the way that the extension is
sitive inputs it loads (e.g., configuration files or scripts mea-computed (properties of SHA1) prevents a malicious system
sured byhttpd). The challenger’s trust is dependent on its from adjusting the aggregate in the PCR to represent a pre-
trust in the measured code to measure its security sensitive i§¢fibed system. Once a malicious component gains control,
puts, protect itself from unmeasured inputs, and protect datt is too late to hide this component’s existence and fingerprint
it is dependent upon across reboots. The operating systeffPm attesting parties.
can provide further protection of applications through manda- Thus, corrupted systems can manipulate the measurement
tory access control policy which can limit the sources of mali-list: but this is detected by re-computing the aggregate of the
cious, unmeasured inputs and protect data from modificatiodist and comparing it with the aggregate stored securely inside
However, the use of such policy is future work. the TPM.

In this section, we discuss how measurements are made.
The application of these measurements to a complete me4-.3 Integrity Challenge Mechanism

surement system is described in Section 5.) . .
To uniquely identify any particular executable content, we I he Integrity Challenge protocol describes how challenging

compute a SHA1 hash over the complete contents of the ﬁlé)arties securely retrieve measurements and validation infor-
The resulting 160bit hash value unambiguously identifies thanation from the attesting system. The protocol must protect
file's contents. Different file types, versions, and extension&dainst the following major threats when retrieving attesta-

can be distinguished by their unique fingerprints. tion information:

The individual hashes are collected inttmaasurement list ° Rep|ay attacks: a malicious attesting system can rep|ay

that represents the integrity history of the attesting system. jattestation information (measurement list + TPM aggre-
Modifications to the measurement list are not permissible as gate) from before the system was corrupted.

that would enable an attacker to hide integrity-relevant ac-
tions. As our architecture is non-intrusive, it does not prevent ® Tampering: a malicious attesting system or intermedi-
systems from being corrupted, nor does it prevent the mea- ate attacker can tamper with the measurement list and
surement list from being tampered with afterwards. How- TPM aggregate before or when it is transmitted to the
ever, to prevent such malicious behavior from going unno- challenging party.
ticed (preventing corrupted systems from cheating), we use a .
hardware extension on the attesting system, known as Trusted
Platform Module, to make modifications of the measurement
list visible to challenging parties.

The TPM [11] provides some protected data registers,
called Platform Configuration Registers, which can be We assume that this mechanism is used over a secure (e.qg.,
changed only by two functions: The first function is reboot- SSL-authenticated and protected) connection to guarantee au-

4.2 Measurement Mechanism

Masquerading: a malicious attesting system or interme-
diate attacker can replace the original measurement list
and TPM aggregate with the measurement list and TPM
aggregate of another (non-compromised) system.

thenticity and confidentiality requirements. Fig. 3 depicts thesecurity, then the validity of the signature keys can be re-
integrity challenge protocol used by the challenging péfty stricted, because the replay window for signed aggregates is
to securely validate integrity claims of the attesting systemalso bound to using a valid signature key.

AS. In steps 1 and 2C' creates a non-predictable 160bit Validating the signature in step 56,can detectampering
randomnonce and sends it in a challenge request messageith the TPM aggregate, because it will invalidate the sig-
ChReg to AS. In step 3, the attesting system loads a pro-nature (assuming cryptographic properties of a digital 2048-
tected RSA keyAI K into the TPM. ThisAI K is encrypted bit signature today, assuming the secret key is known only
with the so-called Storage Root Key (SRK), a key known onlyto the TPM, and assuming no hardware tampering of the
to the TPM. The TPM specification [11] describes, how aTPM). Tampering with the measurement list is made visible
2048-bit AIK is created securely inside the TPM and how thein step 5¢ by walking through the measurementist. and
corresponding public keylI K, can be securely certified re-computing the TPM aggregate (simulating the TPM ex-
by a trusted party. This trusted party certificate links the sigtend operations as described in Section 4.2) and comparing
nature of the PCR to a specific TPM chip in a specific systemthe result with the TPM aggregafeC R that is included in
Then, theAS requests &uote from the TPM chip that now the signedluote received in step 4. If the computed aggre-
signs the selectedC'R (or multiple PCRs) and theonce gate matches the signed aggregate, then the measurement lis
originally provided byC' with the private keyAIK,;,. To isvalid and untampered, otherwise it is invalid.

complete step 3, thd.S retrieves the ordered list of all mea-
surements (in our case from the kernel). Théis, responds
with a challenge response mess&geRes in step 4, includ-

ing the signed aggregate and noncélnote, together with The challenging party must validate the individual measure-

4.4 Integrity Validation Mechanism

the claimed complete measurement N£f.. ments of the attesting party’s platform configuration and the
1. C : create non-predictable 160bibnce dynamic measurements that have taken place on the attest-
2. < _} 35 ChRogoncs) ing system since it has been rebooted. The aggregate for the

3a. AS : load protectedd K., into TPM configuration and the measurement list has already been val-
. . priv

3b. AS : retrieveQuote = sig{ POR, nonce} ars idated throughout the integrity challengg protocol and is as-
3c. AS : retrieve Measurement List/ sumed here. The same holds for the validity of the TPM ag-

priv

4. AS — C: ChResQuote, ML) gregate. _ _

5a.C : determine trustedert(AIK ;) anclud|ng Wheth_er to trust or distrust an attesting sys-
5b. C : validatesig{ PCR, nonce} asx, .., tem is based on te_stmg each measurement. list gntry indepen-
5c. C : validatenonce and M L using PCR dently, comparing its measurement value with a list of trusted

measurement values. More sophisticated validation models
can relate multiple measurements to reach an evaluation re-
Figure 3: Integrity Challenge Protocol sult. Testing measurement entries is logically the same re-
gardless of whether the entry is code or data. The idea is that
In step 5a, C first retrieves a trusted certificate the entry matches some predefined value that has known in-
cert(AIK,). This AIK certificate binds the verification tegrity semantics. Unknown fingerprints can result from new
key AI K, of the QUOTE to a specific system and states program versions, unknown programs, or otherwise manipu-
that the related secret key is known only to this TPM andlated code. As such, fingerprints of program updates can be
never exported unprotected. Thoasqueradingan be dis- measured by the challenging party and added to the database;
covered by the challenging party by comparing the uniquen turn, old program versions with known vulnerabilities [15]
identification of AS with the system identification given in might be reclassified to distrusted.
cert(AIK,.;). This certificate must be verified to be valid, ~The challenging party must have a policy in place that
e.g., by checking the certificate revocation list at the trustedgtates how to classify the fingerprints and how to proceed
issuing partyC then verifies the signature in step 5b. with unknown or distrusted fingerprints. Usually, a distrusted
In step 5¢,C validates thdreshnes®f the QUOTE and fingerprint leads to distrusting the integrity of the whole at-
thus the freshness of tieC R (the measurement aggregate). testing system if no additional policy enforcement mecha-
Freshness is guaranteed if the nonces match as lomgthe nisms guarantee isolation of the distrusted executable. Al-
in step 2 is unique and not predictable. As soomdasre- ternatively, trustworthy fingerprints can be signed by trusted
ceives a nonce twice or can predict the nonce (or predict evethird parties, e.g., regarding their suitability to enforce certain
a small enough set into which the nonce will fall), it can security targets (Common Criteria Evaluation) related to their
decide to replay old measurements or request TPM-signegurpose.
guotes early using predicted nonces. In both cases, the quotedTransaction Integrity Usually, the integrity of the attest-
integrity measurement®/ L might not reflect the actual sys- ing system is of interest when it processes a transaction that
tem status, but a past one. If the nonce offers insufficienis important to a challenging party. To verify the integrity

of a transaction that is taking place between the challengingurance of the integrity state of a system.
and the attesting party (e.g., a Web request), the challenging

party can challenge the integrity of the attesting system befor .
and after the transaction was processed, e.g., before sendisg Implementation

the Web request and after receiving the Web response. Then, . tion d ibes th h N h de t
the attestation and the transaction can be bound to the sarr.i_‘ IS seclion describes the enhancements we have made 1o
dhe Linux system to implement the measurement function-

system by securely linking the certificate used to validate th itV Bef ¢ d . i initiated
TPM quote and the certificate used to authenticate the serve) Ity. BEIore any of our dyhamic measurements are initiate
.e., before linuxrc or init are started), our kernel pre-loads its

during the SSL connection setup as part of the Web request.

If the attesting system is trusted both times, then—so it SeenLgeasurement list with th(_e gxpe_cted measurements for BIOS,
—_the transaction can be trusted. to0o. ootloader, kernel, and initrd (if applies), and uses the ag-

o . . regate of the real boot process, found in a pre-defined TPM
This is, however, not entirely true because it assumes th 9 P b

both m rements have taken ol in th m h CR, as the starting point for our own measurement aggre-
0 easurements have taken place e same epoch (ate. If the actual boot process differs from the expected one,
lidity period), i.e., that any system change throughout th h

transaction would have been recorded in the second measur, € validation of the measurement list will fail. We focus on
. ffie stages measuring dynamic run-time content following the
ment. However, the attesting system could have been COM-:21 OS boot

promised just after the first challenge and before the trans- . o
. . Our prototype implementation is done on a RedHat 9.0
action took place. Then, the attesting system could have re-. T . _
inux distribution as a Linux Security Module (LSM) of a
booted before the second challenge took place. Thus, thou . LA .
A : .6.5 kerneP. The prototype implementation is divided into
trusted at two points in time, the reboot covered the distruste . e ! o
our major components: inserting measurement points into

attesting system state against the challenger. Even if the pos- ' :
o e system to measure files or memory (Section 5.1), mea-
sibility seems small, systems can reboot very fast and actually ~. =7~ . X .

) X I uring files or memory (Section 5.2), protecting against by-
come up into an exactly pre-defined state (thus exhibiting the : S

. . . passing the measurements (Section 5.3), and validating the

same measurement list as in earlier measureménts) : .
measurements to ensure that an implementation of our ar-

_ Fortunately, there is a way to discover if an epoch changegitecture is actually in place on the attesting system (Sec-
i.e., whether the system rebooted between two attestationg, 5.4).

For this purpose, we can use so-called TPM counters. As op-
posed to the PCRs, these counters are never cleared or de- _ _
creased but can only increase throughout the lifetime of .1 Inserting Measurement Points

TPM. Increases of one of these counters could be triggere Section 4.2 tined th ht i
by the BIOS each time the system reboots. The BIOS i h Section =.2, we outlined the approach to measurement, in-

also responsible to disable the TPM as soon as the countgl'umng measurement in the kemel and also by user-level pro-

has reached its maximum value. Typical TPM have multi-gr?/\r/ns,' H(lare wetdgskcrlbelthe |mplementtat|bon. donthe Li
ple counters that can be combined and thus are sufficient for € iImpiemented kernel measurements based on the Linux

normal platform lifetimes’. Thus, a trusted kernel includ- ernel LSM interface. Using théle_mmap LSM hook,

ing such a counter into the measurement list ensures that 1 induce a measurement on any file before it is mapped ex-

prefixes of two measurement lists differ at least in this singleecm"’}bIe into virtual memory. .
Using the sysfs file system, we allow user-space appli-

counter measurement once the system is rebooted. X - "
. . : .. cations to issue measure requests by writing requests to
Consequently, in this enhanced version, transaction in; . . . : .
tegrity can be validated by ensuring that the measurement Iigys/se.cunty/measure Lo including the file descriptor
of the file to measure. Using the kertehd _module rou-

validated at the first challenge before the transaction is a pre: .
. . . ine, we induce aneasure call on the memory area of a
fix of the measurement list validated at the second challeng . o
. . 0ading module before it is relocated.
after the transaction. Then, the system did not reboot and thus . .
In Section 4.2, we outline the approach to measurement,

iven our assumptions) any distrust stem component po- . .
(given o sump) any dis ed system compone p(\3vhere measured executable code itself (e.g., shell) can induce

tentially impacting the transaction on the attesting system, '
would show in the measurement list of the second challengeadd't'onal measurements on loaded _flle contents its behavior
. . - depends on (e.g., shell command files). If that executable
In effect, our architecture does not offer predictable security . 2 S -
o ; . . . code is not of high integrity, it will be detected (because it is
as long as it is non-intrusive, yet it can offer retrospective as- . X o o .
already in the measurement list). If it is of high-integrity, then

it may be trusted to measure its loaded data.

1This is used in another TPM mechanism allowing to seal a secret to a d ibe bel h d . .
platform configuration, though originally this did not include any dynamic We describe below how we measure dynamic run-time

measurements. loads and how we protect measured files throughout their use.

2The TPM specification [11] demands that the externally accessible coun-
ters must allow for 7 years of increments every 5 seconds without causing a 3The mechanisms presented here are sufficiently generic that porting to a
hardware failure. Unix-like system should be straightforward.

User-level ExecutablesUser-level executables are loaded in our experiments booting Redhat 9.0 Linux and running a
through the user-levébader. When a binary executable isin- Gnome Desktop system. Instrumenting other programs (Perl,
voked via the system cadixecve , the kernel calls the binary Java) is straightforward, but we anticipate the need for more
handler routine, which then interprets the binary and locatesupport from application programmers.
the appropriate loader for the executable. The kernel then
mapsthe loader into memory and sets up the environmen
such that when thexecve call returns, execution resumes

with the loader. The loader in turn performs further loadingThjs section describes the implementation of the kernel level
operations and finally passes control to thain function of measure call used at the measurement points to initiate the
the target executable. In the case of a statically linked binaryeasurement of a file or a memory area (in case of kernel
the only file being loaded is the target binary itself, which Wemodules). Theneasure call takes one argument, namely, a
measure in the‘-jlg_mmap LSM hook, called by the kernel pointer to the file structure containing the file to be measured.
before mapping it. From the file structure one can look up the corresponding in-
Dynamically Loadable Libraries: A dynamically linked ode and data blocks, and take a SHA1 over the data blocks.
binary typlcally requires Ioading of additional libraries that There are three p|aces from whichhmeeasure call is is-
it depends on. This process is done by the user-level load&jied: (1) the implementation of the write/store routine to the
and is transparent to the kernel. However, the linker mapshe pseudo file systersys/security/measure used
shared libraries (flagged executable) into virtual memoryby user level applications, (2) tfile_mmap security LSM
by using themmapsystem call, which always invokes the hook measuring files that are being memory-mapped as ex-
fle_mmap LSM hook. Thus, the mediation provided by ecutable code, and (3) thead_module routine measur-
thefile_mmap LSM hook instrumentation yields measure- ing kernel module code in memory before it is relocated.
ments of all statically and dynamically linked executables in-The file_ mmap hook receives the file pointer as argu-
cluding shared libraries. ment, and the write routine of the sysfs entry receives the
Kernel Modules: Kernel modules are extensions to the file descriptor, from which the file pointer is retrieved using
kernel that can be dynamically loaded after the system ishefget routine. We ignordile_mmap calls where the
booted. Module loading can be explicit (vissmodor mod- PROT_EX EC bit is not set in the properties parameter, as
probg or implicit if automatic module loading is enabled. those files are not mapped executable.
In the latter case, when the kernel detects that a module is The consistency between file-measurements and what is
needed, it automatically finds and loads the appropriate modactually loaded depends on: (1) accurate identification of the
ule by invokingmodprobein the context of a user process. inode loaded and (2) detection of any subsequent writes to
With a 2.6 kernel, both programs load kernel modules intathe file described by the inode. Both cases are handled by the
memory and then call thgys_init_module system call kernel in the case of memory-mapped executables. Protec-
to inform the kernel about the new module that is then copiedive locks that the kernel holds at measurement time ensure
into kernel memory and relocated. Thus, kernel modules cathat the file cannot be written to by others as long as it is
either be measured biypsmod or modproben user level mapped executable. This lock is held by the mapping func-
when they are loaded from the file system, or they can be&on at the time of measurement. Modules are measured when
measured in the kernel when they reside in kernel memoryhey are already in kernel memory, thus they are not suscep-
and before they are relocated. We implemented both versiongible to such inconsistencies. For files measured from user
However, we prefer the latter version because it preventspace, we assume that the measuring application keeps the
exploits of (possibly unknown) vulnerabilities in the kernel file descriptor —used to initiate the measurement— open until
loader applicationgasmod or modprob&om tampering the it is done reading the contents or to issue a new measure-
measurement of kernel level code. Because there is no suitaent call when the file is re-opened. This ensures that the
able LSM hook available, we addedreeasure callintothe file measured is the file actually read. Second, there could
load_module routine that is called by thi@it_module be a race between thmeasure andread user level calls
system call to relocate a module that is in memory. and anothewrite call that modifies the data. We call this
Scripts: Script interpreters are loaded and measured asase aTime-of-Measure-Time-of-UggoM-ToU) race con-
binary executables. However, interpreters load additionatlition and describe in Section 5.3 how we handle this case.
code that determines their behavior, so we would prefer thatiowever, remote NFS files cannot be measured dependably
the script interpreters also be capable of measuring theinless the file’'s complete contents are cached and protected
integrity-relevant input. At present, we have instrumented then the local system. We do not implement such caching at
bashshell to measure any interpreted script and configuratiopresent.
files before loading and interpreting them. This includes all A naive measurement implementation would be to take a
service startup scripts into the measurement list. We obsenfingerprint for everymeasure call. This approach would,
about 60-70 measurements of bash scripts and source filé®wever, incur significant performance overhead (see Sec-

.2 Taking Measurements

tion 6.2) for executable files and libraries that are loaded quitéash table, then it was measured before. If the dirty flag of the
often. found measurement entry @_EAN(clean-hit), then nothing

Instead, we use caching to reduce performance overheadeeds to be done, and the system call returns. If the dirty flag
The idea is to keep a cache of measurements that have alreally is DIRTY (dirty-hit), then we compute the SHAL value
been performed, and take a new measurement only if the filef the file. If the measured fingerprint is identical to the one
has not been seen before (cache-miss) or the file might hawtored in the measurement list, then we re-set the dirty flag.
changed since last measurement. For the latter case, we onlye do not extend the PCR or record this measurement as it is
record a new file measurement if the file has actually changedknown already.

Recording identical measurements each time an application If the measured fingerprint differs from the one stored in

runs would have severe impact on the management (storag{ﬁe found measurement entry for the inode, then we look up

retrieval, validation) of the list. Kernel modules are always_the new fingerprint in the hash table using the SHAL value as

mdedasc;Jrec: ch memory at'lor;d—nme but their rpeasurement the key. If the SHAL value exists, then the same file contents
added only it itis notyetin t e.meas_urem_ent Ist. . were measured before (copy of the current file). We return
We store all measurements in a singly-linked, ordered I'Stwithout recording the measurement, as above. If the SHAL

The order of measurements is essential to detect any modifiz| e does not exist in the hash table, then the current file has

cation to the measurement list. If the measurements are ”%anged. A new measurement entry is created and added to

checked in order, then the aggregate hash will not match thge (apje, and the PCR is extended before the measure call
TPM aggregate that results from the TRMtend operations. atums.

Additionally, we gather meta information related to the mea-
sured file —such as the file name, user ID, group ID or security Dirty flagging: We set the dirty flag bit tddIRTY when-
labels of the loading entity, or the file system type—, whichever the target file (a) was opened with write, create, truncate,
might be useful for evaluating the impact of loading this file ©F append permission, (b) was located on a file system we
or matching it with local security policies. At this time, our can't control access to (e.g., NFS), or (c) belongs to a file
implementation gathers this additional data informally in theSystem which was unmounted. This seems a bit conservative,
measurement list, but does not include it in the measuremergince an open for write (or unmounting a file) does not nec-
For efficiency reasons, we overlay the linked list with two €Ssarily result in modifications to the file. The SHA1-keyed
hash tables, one keyed with the inode number and devicgash table enables us to clear the dirty flag if a file did not
number of the measured file, the second keyed with the resultange after an open with write permission. If we control
ing fingerprint (SHA1 value) of the measured file. Thus, eactccess to the file, then we clear the dirty flag in such cases.
measurement entry can be reached by traversing the measufexPeriments show that on a non-development system using
ment list, by its inode (for file measurements only), or by itslocal file systems, the percentage of dirty-hits on the cache is
fingerprint. Themeasure call uses the inode corresponding far less than 1%.

to the file descriptor of the target file to quickly look up the Measuring kernel modules: We issue aneasure calls
file in the hash table and see if it has been measured beforeywhenever a kernel module is being prepared for integration
Each measurement entry contains a dirty flag bit, indicatingnto the kernel. We calculate the SHA1 value of the memory
whether the file iICLEAN(not modified), oDIRTY (possibly area where the not-yet relocated kernel module resides in the
modified). We describe the semantics of measurement belowoad_module kernel function and thus we yield a single
Measuring new files: If the file is not found in the inode- representative measurement for each kernel module indepen-
keyed hash table, then we measure the file by computing dently of its final memory location. Then, we check whether
SHA1 hash over its complete content. At this point, we usethis SHAL1 fingerprint is already in the measurement list using
the computed fingerprint to check whether it is present in thehe SHA1-keyed hash table over all existing measurements.
hash table keyed by the SHAL hash value of existing mea¥ it is known, then we return form theneasure call. If
surements. If the measured fingerprint is not found, then weot, then we extract the module name from its ELF headers,
create a new measurement entry, and add it to the list and adsich are located at the beginning of the memory area, add
just the hash table structures. We finally extend the relevarthe measurement as a new measurement to the measuremer
Platform Configuration Register in the protected TPM hard-ist, and finally extend the TPM register to reflect the updated
ware by the SHA1 hash before returning from the call andmeasurement list. Kernel modules must always be measured
allowing the loading of the executable content. If the finger-because we do not have any information easily available to
print was already measured before, then we return from théndicate a dirty flag state. However, there are usually only a
system call without extending the TPM or the measuremenfew kernel modules loaded. Alternatively, the user level ap-
list. This can happen if executable files are copied and thuplications insmod and modprobe can measure the files when
yield the same fingerprint. In this case, we assume for ouloading kernel modules into memory. In this case, their mea-
purpose that both executables are equivalent. surement follows the file measurement procedures described
Remeasuring files:If the file is found in the inode-keyed before.

5.3 Measurement Bypass-Protection ment list is to prevent the system from mounting the sysfs file
system in the first place or to unmount it after it is mounted
Whenever we encounter a situation in which our measureby using unsuspicious programs (commands). We prevent the
ment architecture cannot provide correct measurements or figst by ensuring that the sysfs is mounted before init is started
potentially being bypassed, we invalidate the TPM aggregatéin the kernel startup) and the second by keeping the sysfs in
by extending it with random values without extending thea busy state (lock it) so it can’t be unmounted by root.
measurement list and deleting the random value to protect Bypassing dirty flaggingProcesses running as root could
it from later use. Thus, from this time on, validations of the try to circumvent dirty-flagging and thus change file con-
aggregate will fail against the measurement list. We do notintent between measurement and loading or try to change —
terfere with the system (non-intrusive) but we disable such @therwise non-vulnerable and thus trusted— applications or
system from successful attestation until it reboots. In our exthe kernel in memory by accessing the special storage con-
periments, none of these mechanisms was triggered througkrol interfaces (e.g./dev/hda) or the memory interface
out normal system usage but only by malicious or very unydev/kmem . We catch such special cases and invalidate the
usual behavior. TPM aggregate as described above. This is necessary to pre-

Although we assume there are no hardware attacks againgent the kernel from being changed without this change being
the TPM, we design the system such that a compromisetheasured. Such suspicious cases are rarely necessary or ob
system cannot change the measurement list undetected tserved in normal systems.
cause it cannot manipulate the TPM successfully to cover Unmounting file systemaMNe dirty-flag any measurement
such attacks in software. Thus, supporting our architecturéhat belongs to a file system that is being unmounted because
with TPM hardware is useful and necessary even in the (aswe don't have control over changes on this file system any
sumed) absence of physical attacks in order to discover chedtnger. Hot-pluggable hard-drives could be changed and re-
ing systems. However, anybody withot identitycould tryto inserted with changed files. For this purpose, we keep the su-
change the system through less known interfaces in a way thaerblock pointer of a file in the file’'s measurement structure.
circumvents our measurement hooks and thus breaks the meafalking through the whole measurement list to dirty-flag en-
surements’ validity. Therefore, we implemented some fail-tries related to the mount point imposes overhead, but this
safe mechanisms that catch such efforts and invalidate (pekappens rarely (e.g., on shutdown) on most correctly setup
simistically) the TPM aggregate. We discuss some of themand configured systems and the measurement lists are usually
below. not very large £ <1000 entries).

Time-of-measurement Time-of-use race conditioR#le Run-time Errors among the measurement functiots.
contents could theoretically be changed between the timease of any error throughout the recording of measurements,
they are measured and the time they are actually loade@.g., caused by out-of-memory errors when allocating a new
Linux does protect memory-mapped files, but not files thameasurement structure or other unexpected events preventing
are normally loaded (e.g., script files, configuration files).us from measuring correctly, we invalidate the TPM aggre-
Therefore, we have implemented a countgzasure count gate.
in the inode of a measured file that keeps track of the num- In summary, the measurement functions use the pseudo
ber of open file descriptors pointing to this inode on whichfile system sysfs, the kernel LSM hodike_mmap , and
a measure call was induced. We increase the counter bah insertedneasure call in theload_module kernel rou-
fore calling the measure call (in the sysfs write implemen-tine to instrument the system with measurement points. We

tation of the/sys/security/measure node) and de- use the LSM hooksnode_permission , sh_umount ,
crease the counter when a file descriptor that was measuréabode_free_security , andfile_free_security
is closed (using théile_free_security LSM hook). to implement the dirty flagging and to protect against ToM-

We add a check into th@ode_permission LSM hook ToU race conditions (usually malicious). We use LSM secu-

that catches requests for write or append permission on filetity substructures inthidle andinode kernel structures to

whose related inode hasnaeasure count- 0. In this case, store state information, such dsty flagandmeasure count

we invalidate the TPM aggregate because the measurements

might not reflect the file contents that were actually loaded .

bu?we choose not to interfere with the request. W){a assum§'4 Validating Measurements

any such behavior is malicious. Our architecture uses the TPM'’s protected storage to protect
Bypassing user-level measurementsTo ensure that the integrity of the measurement list. Once a measurement is

measure requests issued by applications actually result itaken, it cannot be changed or deleted without causing the ag-

measurements in the kernel, we must ensure that thgregate hash of the measurement list to differ from the TPM

/sys/security/measure node is actually the one that aggregate. However, the challenging party must also ensure

issues measurements on write. The only way to circumvenrthat the attesting system has the measurement architecture

this without leaving a suspicious fingerprint in the measure<correctly in place so that all necessary measurements are ac-

v initiated and carried hi | #000: DBDCO7881A7EFDS8EBSEI184CCAT23AF4212D3DB boot_aggregate
tually initiated and carried out. As our architectural COMPO-4q01: cp5548285123353BDA1794DIABAABDEIB2FTADT3 linuxrc

nents are measured as well when they are executed, challent§o2: 9F860256709F1CD35037563DCDF798054F878705 nash

. " determi hether th hitecture is in ol 03: 84ABD2960414CA4A448E0D2CI364BAELT25BDAAF init
Ing parties can determine wnhetner the architecture 1S In plackyos: 194D956F288B36FB46E46A124E59D466DE7C73B6 1d-2.3.2.50

by inspecting these measurements. #005: 7DF33561E2A467A87CDD4BB8F68880517D3CAECB libc-2.3.2.s0
The major portion of the measurement architecture is in”
the static kernel. Thus, the challenging party trusts only suchi10: F969BD9D27C2CC16BC668374A9FBAIDISBIELAA2 syslogd
kernels that implement the kernel part of our measurement ar-
chitecture. Other kernels will be unacceptable to challenging
parties because they can skip important measurements. @
If instrumentedinsmod and modprobprograms measure
kernel modules before they are loaded into the kernel, the#t10: F969BDID27C2CC16BCE68374A9FBAID35B3ELIAA2 syslogd
only kernel module loaders instrumented with theasure
call are acceptable. If a fingerprint of any other program withgszs: 4ca3918834E48694187F5A4DAB4AEECDS40AASEA2 syslogd
insmod functionality is seen, then it must not be trusted and
thus the validation fails. This does not apply in our case be-’
cause we measure kernel modules in the kernel. If we require (b)
shell programs to measure script and source files before they
are loaded or executed, then discovering a fingerprint of a
shell that is not instrumented with measure calls must not be
trusted. Known fingerprintof any other part of the system
can be trusted according to known vulnerabilities of corre- We first examine the overhead of tie_mmap LSM

s.pondm.g executables as described in Section @rknown security hook, which measures all executable content and dy-
fingerprintscould result from changed user level Programs,amic libraries. This is by far the most frequently called
that are assumed to measure their input (e.g., bash), or unai

.) 3 nd most performance-sensitive measure hook. To deter-
ceptable input files and cannot be trusted as their correspon

) } . o . . i nine the latencies of théle_mmap LSM measurement
ing program'’s functionality is potentially malicious and might hook, we measure the latencies of thenapsystem call from
violate security assumptions.

user level, which calls thi§le_mmap LSM hook. Our la-
tency measurement (including both mapping and unmapping)
considers three different cases, namety SHA1, SHAL

and SHAl+extend . no_SHAL represents the case when

. file_mmap finds the targetin the cache as clean. In the very
6.1 Experiments rarely observedHA1case, the target file is remeasured and

To test our system's ability to detect possible attacks, wé€ SHA1 fingerprint is recalculated. However, the TPM is
construct a small experiment usiig5 , a popular Linux not extended because the fingerprint is found to be already in
rootkit. We start with a perfectly good target system and takdn€ cacheSHAl+extend represents the case when a brand
measurements of this system. Then, we launch a rootkit aflew file is measured and the resulting fingerprint needs to

tack against the target system and take measurements ag&f €xteénded into the TPM chip. This happens more often at

after the attack. Figure 4(a) shows a (partial) list of mea.System start or after system updates, for example. Since the

surements for the good system, and Figure 4(b) shows thgoal is to measure_the Iatency,_ we use a test fi_Ie size of 2
corresponding list of the same system that is compromiseBY€S: Implementation of the micro-benchmarks is based on
by a rootkit. The italicized entries show that after the attack (N€ HBench framework [16]. Table 1 shows the results.

the signature of theyslogd program is different, indicat-

Figure 4: Detecting a Rootkit Attack.

6 Results

ing that the rootkit had replaced the origisgislogd with | mmap type | mmap latency (stdev) file_mmap LSM ||
a Trojan version. This example illustrates how such attack§ no_.SHA1 1.73us (0.0) 0.08us
can be discovered reliably using our system. SHA1L 4.21s (0.0) 2.56us
SHA1l+extend 5430us (1.3) 5430us
6.2 Performance Evaluation | reference | 16545 (0.0)] n/a ||

We examine the performance of measure calls in-Table 1: Latency of the filenmap LSM hook (file size 2
voked through: (i) the kernefile_mmap LSM hook, bytes).

(ii) the kernel load_module function , and (iii)

user space applications writing measure requests into

/sys/security/measure . For reference purposes, we include the running time of an

mmapsystem call without invoking théile_mmap LSM andmodprobeor by inducing a measurement routine before
measurement hook. It is clear from the table that the overrelocating the kernel module in tHead _module func-
head for thefile_mmap LSM hook in the case of a clean tion called by theinit_module system call. Measuring
cache hit fo_SHAZ1) is minimal - it takes 0.08 (1.73 - 1.65) them viainsmodor modprobetransfers kernel module mea-
1S to run. It does little more than reading the dirty-flag infor- surement performance into the domain of user-level measure-
mation from the inode of the file to be mapped. Fortunatelyments with the overhead as described in Table 2. The latency
our experiences indicate that this is the majority case, eveaf measuring kernel modules in th@ad_module kernel
for servers that tend to run for a long time, accounting forfunction is almost the same as the latency of measuring exe-
more than 99.9% of atheasure calls. cutable content in thile_mmap LSM measurement hook.
When the file is remeasure8KlAT), the mmap system call However, because kernel modules are already in memory be-
takes about 4.21is, an overhead of about 25 against the fore they are relocated, there is no dirty flagging informa-
reference value. This case shows the overhead of setting upn and we do not have clean hits but only the c&8E#1
the file for measurement and searching the hash table for @@ SHAl+extend . We consider kernel module loading an
matching fingerprint. Notice that this case does not measurifrequent and less time critical event and thus recommend
the overhead of the fingerprinting itself, since the file size isfrom a security standpoint (see Section 5.1) that they be mea-
only 2 bytes. Fingerprinting performance will be discussedsured in the kernel.
later. Theextend operation is clearly the most expensive, Next, we present the fingerprinting performance as a func-
taking about 5 milliseconds to execute. This is understandtion of file sizes. We measure themapsystem call’s running
able, because the extend operation interacts with the TPMme in theSHA1case, varying the input file sizes. This in-
chip as well as creates a new measurement list entry. Asludes the reference overhead of 185for the puremmap
mentioned before, these two cases together represent less theystem call as shown in Table 1. The results are shown in Ta-
0.1% of allmeasure calls. Thus, we are confident —and our ble 3. When the file size is large, the fingerprinting overhead
experiences confirm— that the performance penalty our sysan be significant. For example, measuring a 128 Kilobytes
tem imposes for measuring executable upon the user will béile takes about 1.5 milliseconds. The running time increases

negligible. close to a linear fashion as the size of file increases. These la-
Invoking a measurement from user-level com-tencies translate to a throughput performance of about 80 MB
prises (i) opening /sys/security/measure , per second.
(i) writing the measure request, and (iii) closing
[/sys/security/measure . This method applies to mea- H File Size (Bytes)\ Overhead (stdev)\
suring configuration files or interpreted script files (e.g., bash 2 4.21.s (0.0)
scripts or source files). As with tHde_mmap LSM hook, 512 10.3.s (0.0)
we distinguish also here the three cases SHA1, SHAL 1K 16.35 (0.0)
andSHA1l+extend . The results are shown in Table 2. The 16K 1§7M5 (0:1)
[Measurements via sysfs || Overhead (stdev] 128K 1550ps (1.1)
1M 12700us (16)
no_SHA1 4.32us (0.0)
measure | SHAL 7.504s (0.0) Table 3: Performance of the SHA1 Fingerprinting Operation
SHA]:1+extend 543045 (1.6) as a Function of File Sizes.
sys fs
reference openiwrite/close 4.324s (0.0)

Measuring in-memory kernel modules, we expect slightly
Table 2: Latency of user level measurements via sysfs (filbetter throughput in computing the SHA1 than measuring
size 2 bytes). files —which fist have to be read from disk into memory- in
thefile_mmap LSM hook as described in Table 1. How-
ever, our measurements yielded only slightly better perfor-
user-level measurement latency is 4/82in theno_SHA1 mance than in théle_mmap case shown in Table 3. We
case. This overhead is mostly file system related overheaexplain this with the Linux file caching effect. The measure-
—open, write, close ofsys/security/measure as ments were done many times with a hot cache on the same
the reference value in Table 2 indicates. The measuremernfite, which makes it very likely, that almost the complete file
related overhead for theo_SHAL case simply disappears was already residing in the file cache when the measurement
in the context switching and file system related overheadstarted. This also suggests that the throughput numbers in Ta-
Interpreting the other measurement values is straightforwardle 1 should be considered a optimistic for file measurements.
Measuring kernel modules can be done in two ways as These experiments were run with a measurement list con-
described in Section 5.1: by user-level applicatior@mod taining about 1000 entries on an IBM Netvista M desktop

workstation, including an Intel Pentium 2.4 GHz proces-any of them, it aborts the load and reports the illegal finger-
sor and 1 GByte of RAM. All non-essential services whereprint. Note that the attesting system’s enforcement require-
stopped. ments may be different than those of the challenger, so the
challenger still needs to perform a validation.

Our measurement architecture is not restricted to mea-
suring executable code. Adding measurement hooks into
applications, we can includstructured input data such
as configuration files and java classes, into our measure-
ments. Changes are simple—instrumenting applications, such
as Apache or the Java classloader, means adding a measure
ment call before loading relevant files.

6.3 Implementation and Usability Aspects

Our kernel implementation includes LSM hooks for mea-
surement, dirty flagging, and bypass protection and com
prises 4755 lines of code (loc) including comments. This
code resides in its owsecurity/measure kernel direc-

tory and is thus very easy to port to new Linux kernel ver-

sions as long as the LSM interface does not change. We In order to establish confidence in a syst@mvacyis im-
need to add another 2 loc into thead module routine pacted by our approach. The attestation protocol releases de-

of kernel/module.c to measure loading kernel modules. tailed information of the attesting system to allow challengers

To instrument thebashshell, we insert 2 loc at the places or trusted third parties to establish trust. However, the attest-

where source files are loaded or script files are interpreted'?g system has full control over the release of this mformg—
n, and can run code that it trusts not to release such in-

These user level measure calls are based on a header file of H% .)
f%rmatmn. Also, a system agent could be configured to re-

loc that translates the user level measure request macro intc1 ttestafi ¢ thenticated chall dih i

proper write on/sys/security/measure . Porting the ease at esta IOIZS OI au ef‘d'ca € tC ‘::l Etzrr:gters ant € operat

architecture from a 2.6.2 to a 2.6.5 Linux kernel took about 1d"9 Systém could only provide quotes to that agent. -
Inducing frequent changes in loaded executable files can

minutes. Moving from a non-LSM implementation in a 2.4 h list t b d iical
kernel to an LSM-based version of our integrity measuremeny2use the measurement ist to grow beyond practical lim-
ts, resulting in adenial of serviceattack. To prevent this

architecture in the 2.6 kernel reduced the complexity of ouf ttack : lenath of th list b
implementation and increased its portability considerably. attack, a maximum fength of the measurement 1ist can be

: . onfigured. Any additional measurement is aggregated into
We have successfully stacked our integrity MEasUrement o TPM-protected PCR register, but the measurement is not
architecture as an LSM module on top of SELinux, which re- P 9 '

X e . stored in the kernel. Consequently, a system that exceeds this
quired small modifications of SELinux to call our hooks and ; :
. . : maximum number of measurements will not be able to suc-
to share security substructures infite andinode kernel

structures. These changes are minor but they are necess cessfully convince challenging parties of its integrity because

because the current Linux LSM implementation leaves moiFPé measurement list will not validate against the aggregate

of the stacking implementation to the modules themselves. any more.
Our experiences show that a standard RedHat 9.0 Linux
system including the Xwindow server and the Gnome Desk8 Conclusions
top system accumulates about 500-600 measurement entries
after running about one week, including about 60-100 basiVe presented the design and implementation of a secure in-
script and source file measurements. Those bash measutegrity measurement system for Linux. This system extends
ments cover all bash service startup and shutdown scripts 48€ TCG trust concepts from the BIOS all the way up into the
well as local source scripts (e.g\,bashrc). The over- application layer for a general operating system. We extend
head introduced by our measurement architecture is negligihe operating system with hooks to measure when the first
ble even at boot time of the system when most measuremenggde is loaded into a processg_mmap LSM hook), pro-
are recorded and extended into the TPM. Thus we believe oifide ameasure sysfs entry to request subsequent measure-
performance results are representative of a normal Linux ernents, and detect when changes to measured inodes occur
vironment. This mechanism enables the measurement of dynamic load-
ers, shared libraries, and kernel modules in addition to the
executed files. Further, the approach is extensible, such that
7 Discussion applications can measure their specialized loads as shown for
bash . The result is that we show that many of the Microsoft
Our architecture is non-intrusive and does not prevent sysNGSCB guarantees can be obtained on today’s hardware and
tems from running malicious programs. However, we modifytoday’s software and that these guarantees do not require a
our approach tenforce securityas well. In this case, we new CPU mode or operating system but merely depend on
pre-load the measurement cache with a set of expected fithe availability of an independent trusted entity. Such a sys-
gerprints for trusted programs. The measurement call thetem can already detect a variety of integrity issues, such as
fingerprints the file to be measured and compares it to théhe presence of rootkits or vulnerable software. Our measure-
set of expected fingerprints. If the fingerprint does not matchments show that the non-development systems can be practi-

cally measured and that the measurement overhead is reasoii8] G. Kim and E. Spafford, “Experience with Tripwire:

able.

The measurement system is extensible and we believe that
we can ultimately achieve guarantees beyond those of Mi-
crosoft NGSCB. The application of mandatory access control

policy can ensure that dynamic data cannot be modified ex—[

cept

by trusted sources [17]. ldentification of low integrity

data flows can enable the possibility of control over whether
these flows should be allowed, whether effective restriction
can be put on them at the system-level or within applications.

We are currently in the process of making the source codfelo]

of our integrity measurement architecture implementation
publicly available as open-source and pursue efforts to inte-
grate it into the kernel as an optional LSM kernel module.

Acknowledgments

The authors would like to thank the IBM Linux Technology
Center for their continuing and invaluable support and our
colleagues from the IBM Tokyo Research Lab, particularly
Seiji Munetoh and his colleagues, for interesting discussion§l2]
and for their TPM-enhancement of the grub boot loader. Fi-
nally, we would like to thank Ronald Perez, Steve Bade, and
the anonymous referees for their useful comments.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

W. A. Arbaugh, D. J. Farber, and J. M. Smith, “A
Secure and Reliable Bootstrap Architecture,” IHEE
Computer Society Conference on Security and Privacy

|EEE, 1997, pp. 65-71.

“Trusted Computing
http://www.trustedcomputinggroup.org.

Group,”

K. J. Biba, “Integrity considerations for secure com-
puter systems,” Tech. Rep. MTR-3153, Mitre Corpora-
tion, Mitre Corp, Bedford MA, June 1975.

D. D. Clark and D. R. Wilson, “A comparison of com-
mercial and military computer security policies,” in
IEEE Symposium on Security and Privat987.

S. W. Smith, “Outgoing authentication for pro-
grammable secure coprocessors,” BBORICS2002,
pp. 72-89.

M. Bond, “Attacks on cryptoprocessor transaction sets,”
in Proceedings of the 2001 Workshop on Cryptographic
Hardware and Embedded Systemutay 2001.

P. England, B. Lampson, J. Manferdelli, M. Peinado,
and B. Willman, “A Trusted Open Platform,’ |IEEE
Computervol. 36, no. 7, pp. 55-62, 2003.

[11]

[13]

[14]

[15]

[16]

[17]

Using Integrity Checkers for Intrusion Detection,” in
System Administration, Networking, and Security Con-
ference Il USENIX, 1994.

9] D. Engler, B. Chelf, A. Chou, and S. Hallem, “Check-

ing systems rules using system-specific, programmer-
written compiler extensions,” iRroceedings of thé!”
Symposium on Operating Systems Design and Imple-
mentation (OSDI 2000)0ctober 2000.

J. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van
Doorn, S. W. Smith, and S. Weingart, “Building the
IBM 4758 Secure CoprocessorlEEE Computervol.
34, no. 10, pp. 57-66, 2001.

Trusted Computing Group, Trusted Platform Mod-
ule Main Specification, Part 1. Design Princi-
ples, Part 2: TPM Structures, Part 3: Com-
mands October 2003, Version 1.2, Revision 62,
http://lwww.trustedcomputinggroup.org.

H. Maruyama, F. Seliger, N. Nagaratnam, T. Ebringer,
S. Munetho, and S. Yoshihama, “Trusted Platform on
demand (TPod),” inTechnical Report, Submitted for
Publication 2004, In submission.

J. Marchesini, S. Smith, O. Wild, and R. MacDonald,
“Experimenting with TCPA/TCG Hardware, Or: How |
Learned to Stop Worrying and Love the Bear, Tiech-
nical Report TR2003-476, Dartmouth PKI Lab Dart-
mouth College, Hanover, New Hampshire, UJ$re-
cember 2003.

T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh, “Terra: A Virtual Machine-Based Platform
for Trusted Computing,” ilProc. 9th ACM Symposium
on Operating Systems Principle003, pp. 193-206.

CERT Coordinatin Center, “CERT/CC Advisories,”
http://www.cert.org/advisories.

A. B. Brown and M. Seltzer, “Operating System Bench-
marking in the Wake of Lmbench: A Case Study of the
Performance of NetBSD on the Intel x86 Architecture,”
in Proceedings of the 1997 ACM SIGMETRICS Confer-
ence on Measurement and Modeling of Computer Sys-
tems June 1997, pp. 214-224.

T. Jaeger et. al., “Leveraging information flow for in-
tegrity verification,” inSUBMITTED for publication
2004.

