
Using CQUAL for Static Analysis of Authorization Hook
Placement

Xiaolan Zhang Antony Edwards Trent Jaeger
IBM T. J. Watson Research Center

Hawthorne, NY 10532 USA
Email:

�
cxzhang,jaegert � @us.ibm.com

June 10, 2002

Abstract

The Linux Security Modules (LSM) framework is a set
of authorization hooks for implementing flexible access
control in the Linux kernel. While much effort has been
devoted to defining the module interfaces, little atten-
tion has been paid to verifying the correctness of hook
placement. This paper presents a novel approach to the
verification of LSM authorization hook placement using
CQUAL, a type-based static analysis tool. With a sim-
ple CQUAL lattice configuration and some GCC-based
analyses, we are able to verify complete mediation of
operations on key kernel data structures. Our results re-
veal some potential security vulnerabilities of the current
LSM framework, one of which we demonstrate to be ex-
ploitable. Our experiences demonstrate that combina-
tions of conceptually simple tools can be used to perform
fairly complex analyses.

1 Introduction

Linux Security Modules (LSM) is a framework for im-
plementing flexible access control in the Linux ker-
nel [3]. LSM consists of a set of generic authorization
hooks that are inserted into the kernel source that enable
kernel modules to enforce system access control policy
for the kernel. Thus, the Linux kernel is not hard-coded
with a single access control policy. Module writers can
define different access control policies, and the commu-
nity can choose the policies that are most effective for
their goals.

The code segment in Figure 1 shows an example of how
LSM hooks are inserted in the kernel. The function
sys_lseek() implements the system call lseek.

/* Code from fs/read write.c */

sys lseek(unsigned int fd, ...)�
struct file * file;

...

file = fget(fd);

retval = security ops->file ops

->llseek(file);

if (retval)
�

/* failed check, exit */

goto bad;�
/* passed check, perform operation */

retval = llseek(file, ...);

...�

Figure 1: An example of LSM hook.

The security hook, security_ops->file_ops-
>llseek(file), is inserted before the actual work
(call to function llseek()) takes place.

System administrators can provide an implemen-
tation of the corresponding hook functions (e.g.
security_ops->file_ops->llseek()) by se-
lecting a kernel module that implements their desired
policy. Examples of LSM modules under development
include SubDomain [4], Security-enhanced Linux [13],
and OpenWALL.

While much effort has been devoted to placing hooks
in the kernel, this has been a manual process, so it is
subject to errors. Even though the LSM developers are
highly-skilled kernel programmers, errors are unavoid-
able when dealing with complicated software. Thus far,
little work has been done to verify that the hooks indeed
provide complete mediation over access to security-

sensitive kernel objects and enforce the desired autho-
rization requirements. Such verification would help gain
acceptance for the LSM approach and enable mainte-
nance of the authorization hooks as the kernel evolves.
The verification task for LSM is not a simple one be-
cause LSM authorization hooks are embedded within the
kernel source, rather than at a well-defined interface like
the system call boundary. While this improves both per-
formance and security, it makes it impractical to verify
the hook placements manually [6].

As a first step, we began the development of runtime
analysis tools for verifying LSM authorization hook
placement [6]. These tools are easy to run, have helped
us identify the requirements of a verification system, and
have enabled us to find some hook placement errors.
However, runtime analysis is limited by the coverage of
its benchmarks and requires some manual investigation
of results to verify errors. Given the recent spate of ef-
forts in static analysis tools [7, 11, 14], we were curious
whether any of these tools could be applied effectively
to authorization hook verification. Given a brief evalua-
tion of tools, we chose to use CQUAL [9], a type-based
static analysis tool. It was chosen mainly because it was
conceptually simple (type-based and flow-insensitive),
available to use without significant modification, and
was supported by formal foundations.

This paper presents a novel approach to the verification
of LSM authorization hook placement using CQUAL.
We have found that with a simple CQUAL lattice and
some additional analyses using GCC we can verify com-
plete mediation of operations on key kernel data struc-
tures. Complete mediation means that an LSM autho-
rization occurs before any controlled operation is exe-
cuted. Further, we have found that using the authoriza-
tion requirements found by our runtime analysis tools,
we can build a manageable lattice that enables verifica-
tion of complete authorization. Complete authorization
means that each controlled operation is completely me-
diated by hooks that enforce its required authorizations.
Our results reveal some potential security vulnerabilities
of the current LSM framework, one of which we demon-
strate to be exploitable. The findings and a code patch
were posted to the LSM mailing list [5], and the fix was
incorporated in later kernel releases. The resultant con-
tribution is that through the use of a small number of
conceptually simple tools, we can perform a fairly com-
plex analysis.

The rest of the paper is organized as follows. Section 2
defines the verification problem. Section 3 describes our
approach in detail. Section 4 presents the potential vul-
nerabilities discovered through our static analysis. Sec-

tion 5 discusses effectiveness of our approach and pos-
sible extensions to CQUAL. Section 6 describes related
work, and Section 7 concludes the paper.

2 Problem

We aim to enable two kinds of verification: (1) verifica-
tion of complete mediation and (2) verification of com-
plete authorization.

2.1 Complete Mediation

For complete mediation, we must verify that each con-
trolled operation in the Linux kernel is mediated by
some LSM authorization hook. A controlled operation
consists of an object to which we want to control ac-
cess, the controlled object, and an operation that we exe-
cute upon that object. An LSM authorization hook con-
sists of a hook function identifier (i.e., the policy-level
operation for which authorization is checked, such as
security_ops->file_ops->permission) and
a set of arguments to the LSM module’s hook function.
At least one of these arguments refers to a controlled
object for which access is permitted by successful au-
thorization (sometimes these objects are referred to in-
directly).

The first problem is to find the controlled objects in the
Linux kernel. In general, there are a large number of
kernel objects to which access must be controlled in or-
der to ensure the system behaves properly. Based on the
background work done for the runtime analysis tool [6],
we have found that effective mediation of access to ker-
nel objects is provided through user-level abstractions
identified by particular controlled data types and global
variables. Operations on these objects define a media-
tion interface to the kernel objects at large. Of course,
there may be a bug that enables circumvention of this
interface, but this is a separate verification problem be-
yond the scope of this paper.

We identify the following data types as controlled data
types: files, inodes, superblocks, tasks, modules, net-
work devices, sockets, skbuffs, IPC messages, IPC mes-
sage queue, semaphores, and shared memory. There-
fore, operations on objects of these data types and user-
level globals compose our set of controlled operations.
In this paper, we focus on the verification of controlled
operations on controlled data types only. Now we

Controlled Operation

Security Check

Controlled Object

Controlled Object

Controlled Object

Figure 2: The complete mediation problem.

can define our complete mediation verification problem:
verify that an LSM authorization hook is executed on an
object of a controlled data type before it is used in any
controlled operation. For example, because the variable
file in Figure 1’s function sys_lseek is of a con-
trolled data type, any operations on this variable must be
preceded by a security check on file. Figure 2 shows
the problem graphically.

In order to solve the complete mediation verification
problem, there are a few important subproblems to solve.
First, we must be able to associate the authorized object
with those used in controlled operations. In a runtime
analysis, this is easily done by using the identifiers of the
actual objects used in the security checks and controlled
operations. In a static analysis, we only know about the
variables and the operations performed upon them. Sim-
ply following the variable’s paths is insufficient because
the variable may be reassigned to a new object after the
check.

Next, we need to identify all the possible paths to the
controlled operation. While the kernel source can take
basically arbitrary paths, in practice typical C function
call semantics are used. Thus, we assume that each con-
trolled operation belongs to a function and can only be
accessed by executing that function.

Thus, all inter-procedural paths are defined by a call
graph, but we must also identify which intra-procedural
paths require analysis. Note that the only intra-
procedural paths that require analysis are those where
authorization is performed or those where the variable
is (re-)assigned. These are the only operations that can
change the authorization status of a variable. Since vari-
ables to controlled objects are typically assigned in the
functions where their use is authorized and are rarely re-
assigned, this often limits our intra-procedural analysis

to the functions containing the security checks. Further,
security checks should be unconditional with respect to
the scope for which the check applies, so such analyses
should be straightforward.

Thus, we envision that the complete mediation problem
will be solved by following this sequence of steps for
each controlled object variable:

1. Determine the function in which this variable is ini-
tialized (initializing function).

2. Identify its controlled operations and their func-
tions (controlling functions).

3. Determine the function in which this variable is au-
thorized (authorizing function).

4. Verify that all controlled operations in an authoriz-
ing function are performed after the security check.

5. Verify that there is no re-assignment of the variable
after the security check.

6. Determine the inter-procedural paths between the
initializing function and the controlling functions.

7. Verify that all inter-procedural paths from an ini-
tializing function to a controlling function contain
a security check.

If a re-assignment is found in step #5, then the verifica-
tion is restarted from the location of the new assignment.

2.2 Complete Authorization

Given a solution to complete mediation, the problem of
verifying complete authorization is straightforward, but
finding the requirements is difficult. Each controlled op-
eration requires prior mediation for a set of authoriza-
tion requirements. The verification problem is to ensure
that those requirements have been satisfied for all paths
to that controlled operation. In this case, multiple secu-
rity checks may be required (and thus, multiple autho-
rizing functions), but the overall mechanism is basically
the same. We need to ensure that the set of authoriz-
ing functions that provide the necessary security checks
must occur between the initializing function and the con-
trolling function.

Collection of the authorization requirements for the con-
trolled operations is the more complex task. Our runtime

analysis tool [6] enables determination of the authoriza-
tion requirements of controlled operations, so rather than
developing a new analysis tool, we use our runtime re-
sults to find the authorization requirements.

2.3 Summary

When we first examined this problem, it appeared that an
extensive static analysis tool with inter-procedural data-
flow analysis capability was needed. Such tools either
are not available to the public, do not work on Linux ker-
nel (due to scalability issues or C coding style issues),
or are too complicated to customize for our problem.
A closer look at the nature of the verification problem,
however, reveals that a less-powerful static analysis tool
might be sufficient. For verification purposes, we do not
care about the exact value of the controlled object. We
only care about its authorization state (i.e., authorized or
non-authorized) and that its variable is not re-assigned.
Some limited source analysis may be necessary to ver-
ify that the expected conditions apply, but this should be
quite simple in most cases.

3 Approach

3.1 CQUAL Background

CQUAL is a type-based static analysis tool that as-
sists programmers in searching for bugs in C programs.
CQUAL supports user-defined type qualifiers which are
used in the same way as the standard C type qualifiers
such as const.

The following code segment shows an example of a user-
defined type qualifier: unchecked. We use this quali-
fier to denote a controlled object that has not been autho-
rized. This declaration states that the file object (filp)
has not been checked.

struct file * $unchecked filp;

Typically, programmers specify a type qualifier lattice
which defines the sub-type relationships between quali-
fiers and annotate the program with the appropriate type
qualifiers. A lattice is a partially ordered set in which
all nonempty finite subsets have a least upper bound and
a greatest lower bound. For example, Figure 3 shows a

partial order {
$checked < $unchecked

}

Figure 3: A lattice of type qualifiers.

lattice with two elements, checked and unchecked,
and the subtype relation � as the partial order. Here it
means checked is a subtype of unchecked.

CQUAL has a few built-in inference rules that extend the
subtype relation to qualified types. For example, one of
the rules states that if Q1 < Q2 (meaning qualifier Q1
is a subtype of qualifier Q2) then type Q1 T is a sub-
type of Q2 T for any given type T. Replacing Q1 and
Q2 with checked and unchecked respectively, we
have that checked T is a subtype of unchecked T.
From an object-oriented programming point of view,
this means that a checked type can be used wher-
ever an unchecked type is expected, but using an
unchecked type where a checked type is expected
results in a type violation. The following code seg-
ment shows a violation of the type hierarchy. Function
func_a expects a checked file pointer as its parame-
ter, but the parameter passed is of type unchecked file
pointer.

void func_a(struct file * $checked filp);

void func_b(void)
{

struct file * $unchecked filp;
...
func_a(filp);
...

}

Using the extended inference rules, CQUAL performs
qualifier inference to detect violations against the type
relations defined by the lattice. For a more detailed de-
scription of CQUAL, please refer to the original paper
on CQUAL [9].

3.2 Approach

CQUAL is employed to perform the central task of stat-
ically verifying that all inter-procedural paths from any
initializing function to any controlling function, contain
an authorization of the controlled object (steps 6 and 7
from Section 2). This is achieved using the lattice con-
figuration shown in Figure 3. Figure 4 shows a graph-

U UU U

C

C: $checked
U: $unchecked

CC

C <- U
Security Check

Figure 4: Detecting Security Violations via Type Infer-
encing.

ical depiction of our approach. All controlled objects
are initialized with an unchecked qualifier. The pa-
rameters to controlling functions that are used in con-
trolled operations are specified as requiring checked
qualified objects (as func_a was above). Authoriza-
tions change the qualified type of the object they autho-
rize to checked. Using these qualifiers, CQUAL’s type
inference and analysis will report a type violation if there
is any path from an initializing function (where the ob-
ject is unchecked) to a controlling function (where the
object must be checked) that does not contain an au-
thorization (a cast from unchecked to checked).

There are three requirements for this solution (equivalent
to steps 1, 2, and 3, in the previous section):

1. All controlled objects must be initialized to
unchecked.

2. All function parameters that are used in a controlled
operation must be marked as checked.

3. Authorizations must upgrade the authorized ob-
ject’s qualified type to checked.

If the number of controlled objects and controlling func-
tions was small, we could manually annotate the source
(as was done by Wagner et. al. to detect format string
vulnerabilities using CQUAL [14]). Unfortunately, both
are far too numerous for manual specification to be fea-
sible. Therefore, we use a modified version of GCC and
a set of PERL scripts to automate this process.

In the following subsections we detail our approach to
each of the seven steps outlined in the previous section.

3.2.1 Step 1: Initializing Controlled Objects to
Unchecked

We locate the origin (i.e., declaration) of all controlled
objects and qualify them as unchecked. There are
three different kinds of variables that a function can ac-
cess: global variables, local variables, and parameters.
Currently we do not consider global variables, which ac-
count for less than 2% of controlled objects.

All locally declared variables of a controlled type are
qualified as unchecked. A special case of this is
when reference to a structure member of a controlled
data type is passed as a parameter to a function (e.g.
f(dentry->d_inode), where field d_inode
is of controlled type). It should also be qualified as
unchecked, because it is equivalent to declaring a
local variable, initializing it to be a reference to the
structure member, and then passing the variable to the
function. To qualify such cases, we explicitly cast the
parameter to unchecked at the function call (e.g.
f((struct inode * $unchecked)dentry-
> d_inode)).

The task of marking local variables of controlled types
is automated using two tools: one for controlled local
variables and one for the passing of structure member
references to functions. First, we modified GCC to out-
put the location (file and line number) of any local vari-
able declaration with a controlled type. To achieve this,
we inserted code that traverses the abstract syntax tree
(AST) for each function as it is compiled. The code
scans the AST for local declarations (VAR_DECL nodes)
and prints the location details if the type (TREE_TYPE)
of the declaration is a controlled type (independent of
the level of indirection). In the case of structure member
references, our GCC code scans the AST for function
calls (CALL_EXPR nodes). If any parameter is a refer-
ence to structure member (COMPONENT_REF node, see
Section 3.2.2 for more discussion), and the type of the
referenced field is one of the controlled types, then GCC
prints out detailed location and type information about
the parameter. Next, this information is input to a PERL
script that inserts appropriate annotations into the source
code.

For parameters in function declarations, we leave their
types unqualified. CQUAL then automatically infers
their type during the analysis process. There are a few
exceptions to this rule, where we manually annotate
function prototypes (in two header files) that we know
expect checked type parameters.

COMPONENT_REF

[VPC]_DECL

FIELD_DECLINDIRECT_REF

Figure 5: Detecting Controlled Operations in the AST

3.2.2 Step 2: Annotating Checked Parameters

Controlled operations occur whenever a member of a
controlled type is read or written (all controlled data
types are structures). Controlled operations must only
be performed on checked objects. With current ver-
sion of CQUAL, we cannot specify type requirements
for variables at individual statement level, instead, we
specify type requirements on any function parameters
that are used in controlled operations within that func-
tion. This analysis verifies complete mediation in the
inter-procedural case (i.e., where the controlling func-
tion is different from the authorizing function) but, it
cannot verify complete mediation for controlled oper-
ations within an authorizing function. Our approach to
intra-procedural analysis is described in step 4 below.

To automate the annotation process, we again added
code to GCC to output the details of controlled oper-
ations, and then input this information into a series of
PERL scripts. These scripts aggregate the controlled op-
erations to the function parameters, and add checked
qualifiers to those parameter declarations. The type in-
ference engine then propagates this up the call graph,
raising an error if an unchecked local variable is
passed to a checked parameter.

Figure 5 shows the subgraph structure that our analysis
searches for in the AST. Access to structure members
is represented in the AST by COMPONENT_REF nodes.
These nodes have two children, the first is an expres-
sion which specifies the variable being accessed, and the
second is a FIELD_DECL node which specifies which
field is being accessed. The expression that specifies the
variable being accessed is a chain of INDIRECT_REF
and ADDR_EXPR nodes corresponding to the C derefer-
ence (*) and address (&) operators, respectively. At the

end of this chain is either a VAR_DECL corresponding
to a local variable, a PARM_DECL corresponding to a
parameter, or a COMPONENT_REF if we are accessing a
member of a structure embedded in another structure.

Our analysis searches for COMPONENT_REF nodes in
the AST. When one is found, it determines the type of
the structure being accessed (the left subgraph in Fig-
ure 5). If this is a controlled type, then the expres-
sions is accessing a member of a controlled type, and
the location information (file, function, and line num-
ber) is reported. We also output whether this opera-
tion is on a local variable (VAR_DECL) or a parameter
(PARM_DECL).

This information is then input to a series of PERL
scripts. These scripts scan the GCC output for con-
trolled operations on parameters (i.e., those that contain
PARM_DECL nodes). Using the location information
provided by GCC, they find the function declaration, and
annotate the parameter with the checked qualifier.

3.2.3 Step 3: Authorizations

In theory, once an authorization is performed on a
controlled object, its qualified type is changed from
unchecked to checked. However, the current ver-
sion of CQUAL we use is flow-insensitive, i.e., the qual-
ifier type of a variable remains the same throughout its
scope (e.g., the scope of a local variable is its defining
block, typically the function). To get around this lim-
itation, following an authorization, we declare a new,
checked qualified variable with the same base type as
the object authorized. All uses of the original controlled
variable following the authorization are replaced by the
new variable. This process is automated using a PERL
script that replaces uses of the original variable via sim-
ple pattern matching.

The simple approach of replacing all uses of the vari-
able on source lines following the authorization makes
two assumptions about the function’s control-flow graph
that must be verified. Firstly, that there are no back-
edges from below the authorization to above it. This
ensures that the authorization is not inside a loop and
that there are no goto statements below the authoriza-
tion that jump to above the authorization. Secondly, that
there is no control-flow path from above to below the au-
thorization that does not execute the authorization. This
ensures that the authorization is not inside a conditional
or switch statement.

These assumptions are verified by adding code to GCC
to build the function’s control-flow graph from its regis-
ter transfer language (RTL) description. Once the graph
is created, the two properties described above are veri-
fied. While the vast majority of authorizations possess
these properties, exceptions do exist. Fortunately, the
number of exceptions is small enough that they can be
handled manually.

3.2.4 Step 4: Verifying Controlled Operations
Within Authorizing Functions

The analysis so far verifies mediation in the inter-
procedural case, but, it does not verify intra-procedural
mediation. Intra-procedural analysis is required to verify
that controlled operations within an authorizing function
occur after the authorization.

Our approach in step 3 makes this analysis simple. In
step 3 we replaced all uses of the controlled object (���)
following the authorization with a new variable (���

�
). An

intra-procedural control-flow analysis verified the valid-
ity of this replacement. The intra-procedural analysis
reduces to finding all controlled operations within the
function that operate on local variables (parameters are
handled by the inter-procedural analysis). If the local
variable is an introduced variable (���

�
) then it is medi-

ated, otherwise a warning is generated.

3.2.5 Step 5: Verifying Assignments to Checked
Objects

As described in Section 2, complete mediation requires
verification that a variable is not re-assigned between
an authorization and a controlled operation. From the
CQUAL perspective, the right hand side (RHS) of an as-
signment takes one of four forms:

1. An unchecked object.

2. A checked object.

3. A structure member (e.g. dentry->d_inode).

4. An explicit type cast (e.g. (struct in-
ode*)0xc2000000). Since explicit casts in the
Linux source obviously don’t include our quali-
fiers, CQUAL treats them as unqualified.

CQUAL correctly handles the first two cases, as the ob-
jects are qualified. If the left hand side (LHS) of the

assignment is checked then CQUAL will raise a type
violation for the first case and allow the second case.

In the third case, however, the structure member has no
type qualifiers to cause type violations. With no other
information, CQUAL will therefore infer that the RHS
has the same qualified type as the LHS, and report no
errors. As an example of how this can produce false-
negatives, consider the code fragment below.

void func a(struct inode * $checked

inode);

void func b(struct inode * $checked

inode)�
...

inode = dentry->d inode;

...

func a(inode);�

The variable inode in func_b has already passed se-
curity check since it has a checked qualifier. However,
it is assigned a value dentry->d_inode, before be-
ing passed to func_a which expects a checked in-
ode. Clearly we would like CQUAL to raise a type vio-
lation, since dentry->d_inode is not an authorized
variable. However, according to CQUAL inference rule,
CQUAL will infer that dentry->inode is checked
and allow the function call.

The solution is to treat dentry->d_inode as
an unauthorized local variable by typecasting it to
unchecked. At present we have not implemented the
interim solution and so this source of false-negatives re-
mains in our results.

The fourth case fails to report type violations for the
same reason. Explicit casts in the Linux kernel do not in-
clude our type qualifiers, therefore, CQUAL infers their
type. To address this problem, we wrote a PERL script
that scans the source for explicit casts, and inserts the
unchecked qualifier. Any assignment of such an ex-
pression to a checked variable or parameter will result
in a type violation.

3.2.6 Steps 6 and 7: Determining and Verifying All
Inter-procedural Code Paths

CQUAL performs interprocedural inferencing to verify
that between an initializing function and the controlling

function, there exists a security check. The controlled
object variable has an unchecked qualifier when it’s
defined in the initializing function. When the initializ-
ing function calls other functions passing the controlled
variable as a parameter, the unchecked qualifier is
propagated down the calling chain, until the authoriz-
ing function is reached, at which point, a new checked
variable is defined and used after the security check
(Step 4 in Section 2). When the authorizing function
calls other functions passed the new checked vari-
able, the checked qualifier is again propagated along
the calling chain, until it reaches the controlling func-
tion. If a controlling function is reached without passing
through an authorizing function, then an error will be
raised, because the variable will have an unchecked
type and the controlling function expects a checked
type.

3.3 Complete Authorization

Verification of complete authorization is basically car-
ried out in the same way as complete mediation, with
slight modification to the lattice structure based on the
authorization requirement information. Rather than hav-
ing a generic checked type qualifier for all security
checks, we assign a type qualifier for each unique secu-
rity check. A controlled operation that requires multi-
ple security checks will then have a type qualifier that
is a subclass of the corresponding type qualifiers of the
checks required. For instance, if a system contains two
security checks, denoted by

���
and

���
respectively, as-

suming that the controlling function f(file) requires
both security checks to be performed on the file ob-
ject, then the type qualifier lattice should be:

partial order {
$checkedForC1C2 < $checkedForC1
$checkedForC1C2 < $checkedForC2
$checkedForC1 < $unchecked
$checkedForC2 < $unchecked

}

Figure 6 shows the graphic representation of the lattice.
Function f should expect the parameter to be of type
checkedForC1C2.

Figure 7 gives an example of a controlled operation re-
quiring multiple authorizations identified by the runtime
analysis tool [6]. Three security checks are necessary
for the controlled operation unlink() on a directory
inode, namely, permission to traverse the inode, permis-
sion to write the inode, and permission to unlink file

checkedForC2

unchecked

checkedForC1

checkedForC1C2

Figure 6: A four-node type qualifier lattice.

in the directory. In the function prototype definition of
unlink(), we specify the authorization requirement
checkedforExecWriteDirunlink. After the se-
curity checks, a new variable Cdir that possesses the
right authorization requirements replaces the old vari-
able dir, and is passed to the controlling function.

4 Results

We ran the experiments on Linux version 2.4.9 with the
September 4th, 2001 LSM patch. We used GCC version
3.0.2 and CQUAL version 0.9 for our static analysis.

We analyzed four subsystems of Linux: the file system
(including ext2 physical file system), virtual memory
management, networking, and IPC. The analysis gener-
ated 524 type errors (CQUAL inference conflicts). Be-
low we give a detailed analysis of the type errors and
discuss techniques in coping with false positives.

4.1 Type Error Categorization

We categorize the unique type errors into three groups
that we examine below.

4.1.1 Category 1: Inconsistent Checking and Usage
of Controlled Object Variables

In this category, the variable that is checked is not the
variable that is used subsequently. There is, however,
some sort of mapping between the checked variable and
the used variable (e.g. the used variable is a field of
the checked variable). Therefore, it is easy to obtain
the checked variable from the passed variable and vice
versa.

/* inserted by our tool */
struct inode *

$checkedForExecWriteDirunlink Cdir;

/* code from include/linux/fs.h */
struct inode_operations {

...
int (*unlink) (struct inode *
$checkedForExecWriteDirunlink,
struct dentry *);

...
}

/* code from fs/namei.c */
int vfs_unlink(struct inode *dir,

struct dentry *dentry)
{

...
/* check for EXEC and WRITE */
may_delete(dir, dentry, 0);
...
/* check for UNLINK */
security_ops->inode_ops
->unlink(dir, dentry);

...
/* controlled operation */
dir->i_op->unlink(Cdir, dentry);
...

}

Figure 7: An example of controlled operation requiring
multiple authorizations. Note that error checking code is
removed to make the code easier to follow.

These type errors are subject to TOCTTOU [2] attacks,
because the mapping between the checked variable and
the used variable might change during the course of exe-
cution. Whether the vulnerability is exploitable depends
on whether the user can manipulate the mapping without
special privilege. At least one of the type errors that we
found is exploitable, as we demonstrate below.

Figure 8 shows the code path that contains the type er-
ror. The code sequence shows Linux implementation
of file locking via the fcntl system call. In func-
tion sys_fcntl(), the variable filp, which is a
pointer to the file structure and is retrieved via the
file descriptor fd, is checked by the security_ops-
>file_ops->fcntl(filp,...) hook. However,
after the check, the file descriptor fd, instead of the
checked variable filp, is passed to the intermediate
function do_fcntl(fd,...) and eventually to the
worker function fcntl_getlk(fd,...) , where the
filp is retrieved again with the given fd.

This double retrieval of the file pointer creates a
race condition and can be exploited as follows. A
user can have the security_ops->file_ops-
>fcntl(filp) authorization performed on a differ-
ent file to the one that is eventually locked. Figure 9
shows the exploit.

Note that although step (7) is written as a whole system
call, there is actually only one line of C (an assignment)
in step (7) that needs to come between (6) and (8). Since
step (6) does a get_user, the attacker can cause their
own program to page fault which enables step (7) to be
performed before (8).

Also note that non-LSM Linux is not vulnerable since
the validation in fcntl_setlk is done after the sec-
ond lookup. LSM is vulnerable because the only autho-
rization that protects the operation is performed before
the second lookup.

As an example of how dangerous this can be, login
and su (PAM’d versions) both try to lock the file
/var/run/utmp (world readable). insmod locks
any modules it loads.

A patch that fixes this problem was posted to the LSM
mailing list [5].

The remaining type errors in this category involve kernel
data structures that cannot be easily modified by users
via system calls. As a result, it is unclear whether these
type errors can lead to exploits. However, it certainly
complicates the code unnecessarily and increases the

/* from fs/fcntl.c */
long sys_fcntl(unsigned int fd,

unsigned int cmd,
unsigned long arg)

{
struct file * filp;
...
filp = fget(fd);
...

err = security ops->file ops
->fcntl(filp, cmd, arg);

...
err = do fcntl(fd, cmd, arg, filp);

...
}

static long
do_fcntl(unsigned int fd,

unsigned int cmd,
unsigned long arg,
struct file * filp) {

...
switch(cmd){
...
case F_SETLK:

err = fcntl setlk(fd, ...);

...
}
...

}

/* from fs/locks.c */
fcntl_getlk(fd, ...) {

struct file * filp;
...

filp = fget(fd);

/* operate on filp */
...

}

Figure 8: Code path from Linux 2.4.9 containing an ex-
ploitable type error.

THREAD-A:
(1) fd1 = open("myfile", O_RDWR);
(2) fd2 = open("target_file", O_RDONLY);
(3) fcntl(fd1, F_SETLK, F_WRLOCK);

KERNEL-A (do_fcntl):
(4) filp = fget(fd1);
(5) security_ops->file_ops

->fcntl (fd1);
(6) fcntl_setlk(fd1,cmd)

THREAD-B:
/* this closes fd1, dups fd2,
* and assigns it to fd1.
*/

(7) dup2(fd2, fd1);

KERNEL-A (fcntl_setlk)
/* this filp is for the target
* file due to (7).
*/

(8) filp = fget (fd1)
(9) lock file

Figure 9: An example exploit.

chance of race conditions when the data structures are
not properly synchronized, which may result in poten-
tial exploits.

Here we present a type error of this kind. Many se-
curity checks that intend to protect the inode structure
are performed on the dentry data structure. For exam-
ple, the following code does the permission check on the
dentry structure, but does the “set attribute” operation
on the inode structure.

/* from fs/attr.c */
...
security_ops->inode_ops

->setattr(dentry, attr);
...
inode = dentry->d_inode;
inode_setattr(inode, attr);
...

It is also quite common in Linux to check on the file
data structure and operate on the inode data structure.

/* from mm/filemap.c */
struct page * filemap_nopage(

struct vm_area_struct * area, ...)
{

struct file * $unchecked file
= area->vm_file;

...
page_cache_read(file, ...);
...

}

static inline int page_cache_read(
struct file * file, ...)

{
struct inode * $unchecked inode =
file->f_dentry->d_inode;

struct address_space *mapping =
inode->i_mapping;

...
mapping->a_ops->readpage(file, page);
...

}

Figure 10: An example of unauthorized access.

4.1.2 Category 2: Controlled Objects Modified
Without Security Checks

This category includes functions that modify controlled
objects without any security checks. The code seg-
ment in Figure 10 shows an example of such cases.
The function filemap_nopage() is called when a
page fault occurs within an m’mapped region. Since
there is no check on the file object within the func-
tion, its type is unchecked. It is then passed to
function page_cache_read(), which in turn calls
mapping->a_ops->readpage(), which expects a
checked file object. This code path shows that once a
file is mapped into a process address space, the process
can access the file even after security attributes of the file
have changed.

Since there is an LSM authorization hook to verify read
access to a file on each read call, this is inconsistent
with the current hooks. A discussion with the LSM
community revealed that enforcement on each read
is optional and will only be used for files that are not
m’mapped. This hooks, as well as the one for checking
access on write have been documented to clarify this
inconsistency.

In other cases, for example function iput(), it seems
that checks are not necessary, as the function is used for
reference counting. In other cases, such as initialization

function clean_inode() for the inode data struc-
ture, there is no need for security protection, as modifi-
cation of the data structure is restricted to zeroing and
initialization of the contents. We call these functions
“safe” functions and consider type errors induced by
these functions as false positives.

4.1.3 Category 3: Kernel-Initiated Operations By-
passing Security Checks

This category includes operations that are initiated in-
side the kernel, instead of going through system call in-
terfaces. As such, they do not go through the normal se-
curity checks that system calls go through. As the kernel
developers have added some limitations on the kernel’s
use of these commands, it is clear that they are security-
sensitive.

One example is the do_coredump() function, which
creates a core file containing in-memory image of the
running process, when certain signals are caught that end
the process. A check is done when the core file is cre-
ated, however, subsequent seeks and writes to the file are
performed without security checks. This deviates from
the user case, where every lseek() or write() sys-
tem call requires a check.

Another example is the kswap daemon. The kswapd
daemon calls prune_icache(), which tries to sync
the inodes that are to be released. The inodes are reached
via a global variable super_blocks, which contains
heads for various inode lists.

4.2 Type Error Rates

CQUAL type errors can be examined in two ways:
source type errors and path type errors. A source type
error is a variable that is used in such a way that a type
error is generated. That is, the variable is used in an
unchecked state in at least one function that expects
the variable to be checked. A path type error is a
unique call path that leads to a type error. Figure 11
shows an example path type error. Note that for each
source type error there may be multiple path type errors.

Table 1 shows both the source and path type error counts
for Linux kernel subsystems. For source type errors, we
also display the source type error rate, defined to be the
percentage of controlled variables that are involved in
type errors.

Subsystems Path Type Error Counts Source Type Error Counts Source Type Error Rate (%)
File System 73 57 10%
Memory Management 18 17 9%
Networking 431 308 22%
IPC 2 2 3%

Table 1: Path and source type errors.

Table 1 shows two interesting facts: (1) over 500 path
type errors are present in the kernel and (2) most of the
type errors occur on one path. Fortunately for the LSM
community, most the type errors identified by the anal-
ysis are false positives. However, examining this many
type errors to find a few exploitable errors is not practi-
cal. Therefore, we need secondary analyses to remove
obvious false positives. Second, since most types errors
associate one source with one error path, so it may be
that some of the sinks of the analysis (i.e., the functions
with controlled operations) may not really require autho-
rization.

4.3 Reducing False Positives

Given that the tools generated about 500 type errors, one
may conclude that the false positive rate is unmanage-
able, but we do not find this to be the case. A signifi-
cant number of the errors are in functions in which it is
easy to verify that no security compromises are present,
such as those caused by “safe” functions described in
Section 4.1.2. “Safe” functions are falsely marked as
controlling functions because they modify field mem-
bers of controlled data structures. However, since the
modification is for the purpose of reference counting or
initialization, the modification does not require security
authorizations.

To identify what these functions are, we (slightly) mod-
ified CQUAL to print the inferencing path that leads to
a type error. Figure 11 shows an example error path in-
volving a “safe” function iput(). iput() decreases
the usage count for the given inode and releases it if the
usage count hits zero.

We then report the list of controlling functions that are
the sinks of the error paths. Because hot controlling
functions often contribute to multiple type errors, the
number of controlling functions are much smaller than
the number of type errors. We then manually go through
the list and identify “safe” functions, which are removed

inode.ii:8383 $unchecked <= inode_p
inode.ii:8387 inode_p <= iput_arg0
inode.ii:8831 iput_arg0 <= $checked

Figure 11: An example error path ending in function
iput. Each line represents an inference according to the
CQUAL rules, e.g. the first line means that inode p is a super
class of the unchecked qualifier type. The first column shows
the source file and line number where the inference occurs.

from the list of controlling functions. Appendix A lists
the “safe” functions we identified. The CQUAL analysis
process is then restarted.

It is painful to manually identify “safe” functions. But
two reasons make it a manageable task. First, there are
only a few such functions, even though they accounted
for a significant portion of the type errors (Table 2). Sec-
ondly, these functions are relatively stable across kernel
releases. So with a high probability this task only needs
to be done once and the results can be reused in future
kernel releases. After the “safe” functions are identified,
we only need to verify that they do not change in new
kernel releases, or that the changes do not affect their
intended functionality.

Table 2 shows the reduction in terms of both path and
source type errors after removing the “safe” functions
for the four kernel subsystems we tested. This reduces
the number of type errors by around 75% for both path
and source type errors.

While this is a significant improvement, other means
for removing false positives are being examined. First,
there may be a significant number of other “safe” func-
tions. Second, there are several cases where a variable
is assigned from another variable that is checked. In
the file system, often the dentry is authorized, then
the inode is assigned from the dentry->d_inode.
Unfortunately, CQUAL cannot yet reason that a field
extracted from a checked structure is also checked
(see Section 5.2). Third, we have not yet fully examined
kernel-initiated paths that lead to type errors.

Path Type Errors Source Type Errors
With “Safe” Without “Safe” % With “Safe” Without “Safe” %

Subsystems Functions Functions Reduction Functions Functions Reduction
File System 73 37 49% 57 31 45%
Memory Management 18 14 22% 17 13 24%
Networking 431 73 83% 308 55 82%
IPC 2 2 0% 2 2 0%

Table 2: Error reduction after eliminating “safe” functions.

5 Discussion

Here we examine the effectiveness of our approach and a
possible extension to CQUAL that may improve its util-
ity.

5.1 Effectiveness of Our Approach

Given the extensive nature of static analysis, we are
somewhat surprised that we have only found a couple of
exploitable CQUAL type errors in our analysis. Some of
the analyses are fairly new, so we may find more errors,
but this is a bit of a surprise.

We are encouraged by one of the exploits that we did
find. The Category 1 TOCTTOU exploit is one that
would be difficult to find via runtime analysis. Typi-
cally, the association between the file descriptor and the
file would not change, so benchmarks consisting of be-
nign programs would not uncover this error. With static
analysis, the inconsistency was clear.

Another aspect of the effectiveness of our approach is
its ease of use, since most of the analysis process is au-
tomated. It is straightforward to apply the process to a
modified kernel or new releases of the kernel. We tested
this by running the tool against Linux version 2.4.18.
After the kernel source tree is downloaded, and a few
small changes are applied to the Makefile and two source
files (see Section 3.2.1), the rest of the process requires
little manual effort (except for identifying false posi-
tives). The time it takes to complete the process is also
quite reasonable. As a matter of fact, most of the time
is spent on kernel builds - our modified version of GCC
collects information on controlled types while compiling
the source code.

Here we present the times for the major steps. These
numbers are only intended for a ballpark measure of the
effort needed to perform analysis, so they should not be

interpreted as representing the optimized performance of
the tools. The test platform was a 667 MHz Pentium
III machine with 128MB of memory. It took about 30
minutes to do the three clean kernel builds using our ex-
tended GCC to generate the annotation information. It
should be possible to perform all this analysis in one ker-
nel build, however. Most of that time is contributed by
the GCC backend that generates machine code (whereas
our GCC analysis code only works on the AST tree). We
compared normal kernel build time with the build time
that has our GCC analysis code enabled, and the differ-
ence is negligible. Annotation of the source by the Perl
scripts took about 1 minute, And finally, it took about
10 minutes for CQUAL to perform the analysis. With
the additional analysis overhead of a 15 minutes or less,
we expect that an optimized process can be done suf-
ficiently quickly for these tools to be useful for kernel
programmers.

5.2 Possible CQUAL Extension

A possible extension to CQUAL would enable us to cor-
rectly verify mediation between the controlled opera-
tions and all security-sensitive operations. The CQUAL
team has an interim solution and are looking into a gen-
eral solution [8]. We describe the problem here.

Currently, structures in CQUAL are treated as a collec-
tion of fields, so there is no relationship between a struc-
ture and its member fields. For example, in the code
below, var->bar would not have type checked even
though var does. Since structures are used extensively
in the kernel, we believe it would greatly enhance the
tool if CQUAL supports user-defined rules for inferring
the types of member fields from the types of structures.

struct foo {
int bar;

};

$checked struct foo *var;

For instance, for case 3 in Section 3.2.5, we would
want the inode that is extracted from a checked den-
try to be checked as well. In the case that a den-
try is unchecked, the inode of the dentry is implicitly
unchecked as well.

In addition, with current version of CQUAL, all in-
stances of a structure type share the same qualifer type.
For example, if bar is qualified as a checked type, all
instances of foo would have a checked field for bar.
What we want is to assign qualifier types to members on
a per-instance basis.

For verifying that the controlled operations mediate the
security-sensitive operations, we would also want any
structure field accessed through a checked type to be
checked as well. This would enable us to propagate
authorizations through the structure completely. Then,
we could find any members of a security-sensitive data
type that is not accessed through a controlled data type.

Note that this approach is not always applicable depend-
ing on the semantics of the qualifications. This would
not be appropriate for the type of qualifiers used by Wag-
ner et. al. [14].

6 Related Work

We are unaware of any other research work on static ver-
ification of LSM. However, a number of static analysis
tools that were successfully applied to the security do-
main. Here, we compare their work to ours.

Wagner et. al. [14] used CQUAL to identify format
string vulnerabilities. Their work motivated us to ap-
ply CQUAL to the more complicated problem of LSM
verification. The main difference between our usage of
CQUAL and theirs lies in the annotation process. In their
work, the target code for annotations is well-defined and
has a limited number of occurrences. Therefore, the an-
notations are done by hand. In our case, the scope of an-
notated code is much larger, and thus we employ GCC
to automatically detect the code to be annotated. We au-
tomate the process of marking as well.

Engler et al enables extension of GCC, called xgcc,
to do source analyses, which they refer to as meta-
compilation [7, 1]. A rule language, called metal, is
used to express the necessary analysis annotations in a
higher-level language. Since the rules match multiple
statements, the amount of annotation effort is reduced.

A variety of software bugs, including security vulnera-
bilities, have been found by this tool. While it appears
that xgcc could be used for the static analysis we per-
form, xgcc is not available at this time, so we are unable
to evaluate it. A key difference may be that metal rule
expressions will have to be extended to reference GCC
AST structures rather than the source directly.

Larochelle et. al. [11] enhanced their LCLint tool to de-
tect likely buffer overflows in C programs. The LCLint
tool bases static analysis on annotations of the programs
(or the libraries) that restrict the range of values a refer-
ence can have. The strength of LCLint is that the analy-
sis is flow-sensitive, and thus more accurate. The down-
side of the LCLint tool is its inflexibility. The current
LCLint tool is customized to deal with a set of prede-
fined software bugs. It appears that extending LCLint
for LSM verification would require a significant amount
of effort (i.e. adding new annotation types). CQUAL,
on the other hand, is more extensible by employing user-
defined type qualifier lattices.

Necula et. al. [12] define the CCured type system.
CCured leverages the fact that most C source is writ-
ten in a type-safe manner to perform a variety of static
checks on the source during compilation for things like
buffer overflows. For things that cannot be checked stat-
ically, CCured introduces runtime checks into the code.
This enables certain kinds of errors to be caught regard-
less of whether they can be found statically or dynami-
cally. While we agree with this approach to verification,
as yet the types of errors that CCured can find do not
include authorization hook placement.

Koved et. al. [10] presented a technique for comput-
ing the access rights requirements of Java applications.
Their approach uses more powerful programming anal-
ysis techniques: a context-sensitive interprocedural data
flow analysis is employed. Although the analysis is per-
formed on Java code, it is conceivable that such tech-
niques can be applied to our problem domain as well.

7 Conclusion

This paper presented a novel approach to the verification
of LSM authorization hook placement using CQUAL, a
type-based static analysis tool. With a simple CQUAL
lattice configuration and some simple GCC analysis,
we were able to verify complete mediation of opera-
tions on key kernel data structures. Our results re-
vealed some potential security vulnerabilities in the cur-

rent LSM framework, one of which we demonstrated to
be exploitable. We further showed that given authoriza-
tion requirements, CQUAL could be used to verify com-
plete authorization as well. Our results demonstrate that
combinations of conceptually simple tools can be pow-
erful enough to carry out fairly complex analyses.

Our main problem is the elimination of false positives.
Static analysis generally errs on the conservative side,
so we initially had a large number of type errors. How-
ever, we have identified techniques for secondary anal-
yses that can eliminate many of those false positives.
Extensions to CQUAL are necessary to eliminate some
types of false positives, but this is ongoing work.

8 Acknowledgments

We would like to thank Jeff Foster from UC Berkeley
for his timely responses to our numerous questions on
CQUAL and for his suggestions and advices on the early
draft of this paper. We also thank the anonymous review-
ers for their valuable comments.

References

[1] K. Ashcraft and D. Engler. Using programmer-written
compiler extensions to catch security holes. In Proceed-
ings of the IEEE Symposium on Security and Privacy
2002, May 2002.

[2] M. Bishop and M. Dilger. Checking for race conditions in
file accesses. Computing Systems, 9(2):131–152, 1996.

[3] LSM Community. Linux Security Module. Available at
http://lsm.immunix.org.

[4] Wirex Corp. Immunix security technology. Available at
http://www.immunix.com/Immunix/index.html.

[5] A Edwards. [PATCH] add lock hook to pre-
vent race, January 2002. Linux Security Modules
mailing list at http://mail.wirex.com/pipermail/linux-
security-module/2002-January/002570.html.

[6] A. Edwards, T. Jaeger, and X. Zhang. Verifying autho-
rization hook placement for the Linux Security Modules
framework. Technical Report 22254, IBM, December
2001.

[7] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking
system rules using system-specific, programmer-written
compiler extensions. In Proceedings of the Fourth Sym-
posium on Operation System Design and Implementation
(OSDI), October 2000.

[8] J. Foster. Personal communication, January 2002.

[9] J. Foster, M. Fahndrich, and A. Aiken. A theory of type
qualifiers. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI ’99),
pages 192–203, May 1999.

[10] L. Koved, M. Pistoia, and A. Kershenbaum. Access
rights analysis for java. In Proceedings of the 17th
Annual ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA
2002), November 2002. Accepted for publication.

[11] D. Larochelle and D. Evans. Statically detecting likely
buffer overflow vulnerabilities. In Proceedings of the
Tenth USENIX Security Symposium, pages 177–190,
2001.

[12] G. C. Necula, S. McPeak, and W. Weimer. CCured:
Type-safe retrofitting of legacy code. In Proceedings of
the 29th ACM Symposium on Principles of Programming
Languages (POPL02), January 2002.

[13] NSA. Security-Enhanced Linux (SELinux). Available at
http://www.nsa.gov/selinux.

[14] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. De-
tecting format string vulnerabilities with type qualifiers.
In Proceedings of the Tenth USENIX Security Sympo-
sium, pages 201–216, 2001.

A “Safe” Functions List

Subsystems ”Safe” Functions Source Files
File System put super fs/super.c

kill super fs/super.c
clean inode fs/inode.c
iput fs/inode.c
file operations.poll include/linux/fs.h
super operations.write super include/linux/fs.h
super operations.read inode include/linux/fs.h
super operations.read inode2 include/linux/fs.h
super operations.put inode include/linux/fs.h
super operations.clear inode include/linux/fs.h
super operations.put super include/linux/fs.h
block device operations.release include/linux/fs.h
file operations.release include/linux/fs.h

Memory Management shmem recalc inode mm/shmem.c
shmem get inode mm/shmem.c
oom kill task mm/oom kill.c

Networking skb unlink include/linux/skbuff.h
skb insert include/linux/skbuff.h

skb reserve include/linux/skbuff.h

