Synchronization Storage Channels (S?C): Timer-less Cache Side-Channel Attacks
on the Apple M1 via Hardware Synchronization Instructions

Jiyong Yu
University of lllinois
Urbana-Champaign

David Kohlbrenner
University of Washington

Abstract

Shared caches have been a prime target for mounting cross-
process/core side-channel attacks. Fundamentally, these at-
tacks require a mechanism to accurately observe changes
in cache state. Most cache attacks rely on timing measure-
ments to indirectly infer cache state changes, and attack suc-
cess hinges on the reliability/availability of accurate timing
sources. Far fewer techniques have been proposed to directly
observe cache state changes without reliance on timers. Fur-
ther, none of said ‘timer-less’ techniques are accessible to
userspace attackers targeting modern CPUs.

This paper proposes a novel technique for mounting timer-
less cache attacks targeting Apple M1 CPUs named Synchro-
nization Storage Channels (S?C). The key observation is that
the implementation of synchronization instructions, specifi-
cally Load-Linked/Store-Conditional (LL/SC), makes archi-
tectural state changes when L1 cache evictions occur. This
by itself is a useful starting point for attacks, however faces
multiple technical challenges when being used to perpetrate
cross-core cache attacks. Specifically, LL/SC only observes
L1 evictions (not shared L2 cache evictions). Further, each
attacker thread can only simultaneously monitor one address
at a time through LL/SC (as opposed to many). We propose a
suite of techniques and reverse engineering to overcome these
limitations, and demonstrate how a single-threaded userspace
attacker can use LL/SC to simultaneously monitor multiple
(up to 11) victim L2 sets and succeed at standard cache-attack
applications, such as breaking cryptographic implementations
and constructing covert channels.

1 Introduction

The increasing complexity of modern processors has led to a
plethora of micro-architectural side channels that can be ex-
ploited to infer sensitive information. Despite being one of the
earliest targets to mount such attacks, the shared cache is still
the most prominent—due to its shared use among all tenants
on the same processor, the relative ease with which it can be

Aishani Dutta
University of Illlinois
Urbana-Champaign

Trent Jaeger
Pennsylvania State University

Christopher W. Fletcher
University of Illlinois
Urbana-Champaign

monitored, and the richness of information that can be gleaned
through it. By measuring cache usage within a victim process,
an attacker obtains information about the victim’s memory
access pattern, which can be useful in breaking cryptographic
implementations [38,43,68], key logging [16,33,50], browser
fingerprinting [55], model stealing [67], and aiding transient
execution attacks [31,36,58].

A fundamental requirement of any cache side-channel at-
tack is a way to accurately measure cache state changes. Most
existing attacks indirectly observe the cache state by mea-
suring memory access latencies with high-resolution timers.
These can be used to deduce the cache level an address re-
sides in, and to further deduce the presence of the victim’s
address(es) in those cache levels. Even if only provided a low-
resolution timer, techniques have been proposed to enhance
the effective resolution [32, 53, 54, 66]. Regardless, precise
timing measurement is prone to (or can be aggravated by
adding) noise [23, 39], requires micro-architecture-specific
profiling (e.g., to ascertain cache latencies), and can be fully
mitigated by blocking the use of explicit timers. The attacker
can also craft ‘implicit timers‘ with a counter incremented by
sibling threads in the absence of explicit timers [34,53,65], but
this requires additional attacker capabilities such as running
multiple attack threads concurrently.

To circumvent the limitations/defenses associated with
timers, an attacker ideally would like a way to directly and
precisely measure cache state without relying on timers. Yet,
there is scant literature on such timer-less attacks, and at
present all known methods have limitations. For instance,
cache storage channels [17] rely on uncacheable mem-
ory, which can only be exploited by privileged attackers;
Prime+Abort [10] and its variant [30] exploit Hardware Trans-
actional Memory, which is a rare and even deprecated fea-
ture implemented only by specific vendors such as Intel [25].
Currently, no general-purpose primitive is available that al-
lows userspace attackers to directly and precisely observe the
shared cache state on modern CPUs.

This paper’s key insight is that the implementation of hard-
ware synchronization primitives on modern CPUs, specifi-

cally Load-Linked/Store-Conditional (LL/SC) instructions on
the Apple M1, can be exploited to directly measure whether
cache evictions have occurred.

LL/SC are general-purpose instructions in many common
ISAs (such as ARM and RISC-V) for implementing synchro-
nization/mutual exclusion. In a nutshell: LL loads an address
and marks it as ‘exclusive’! in the memory system. SC is a
store that a) ‘succeeds’, i.e., performs the store, if and only
if its address has been marked ‘exclusive’ (by some older
LL) and b) writes to a register whether it succeeded. If any
store (including an SC) from any processor core writes to an
address marked exclusive, the exclusive state is cleared. That
is, LL-SC implements atomic read-modify-write when there
isn’t an intervening write to the target address, and performs
a NOP when there is an intervening write/atomicity violation.
In both cases, it makes architectural state changes (by writing
the success bit to a register). In the normal use of LL-SC,
if an SC fails, the thread using LL-SC will retry the LL-SC
sequence until it reports success (i.e., “lock acquired”).

Ideally, only shared variables will be exclusive, and the
variable’s exclusivity status is maintained regardless of where
the variable is cached in the memory hierarchy. However,
we found that the implementation of LL/SC in the recent
Apple M1 drops the exclusive semantic when the address is
evicted from the L1 data cache, causing the later SC to fail
conservatively. In practice, this design does not compromise
correctness, as a benign use of LL/SC involves retrying when
SC fails. However, it does enable attackers to directly measure
whether a local L1 eviction has taken place—using only a
single user-space attacker thread and without the use of any
timer—by monitoring the result of the SC.

Following this idea, we propose Synchronization Storage
Channels (S2C), the first timer-less cache side-channel at-
tack technique on the Apple M1, and also the first micro-
architectural attack to exploit hardware synchronization in-
structions (specifically LL/SC). At a high level, S>C aims to
build a cross-core side channel to monitor memory accesses
of other processes sharing the same cache as the attacker.

The technical core of the paper proposes techniques to over-
come two main limitations in LL/SC semantics that impede
shared cache attacks. First, LL/SC on the M1 only indicates
L1 evictions, but to perform cross-core attacks, notifications
from the shared L2 cache (L2 evictions) are required (both
for building L2 eviction sets and performing the actual at-
tack). Second, LL/SC only allows the attacker to monitor
evictions on a single cache line, as opposed to traditional
timer-based cache attacks that pre-occupy a cache set with
multiple attacker-controlled lines and monitor all those lines.
Sometimes, the attacker may also need to simultaneously
monitor evictions happening to multiple cache sets.

To enable S>C-based attacks that can monitor a single 1.2
set, we reverse-engineer a variety of new features related to

INot to be confused with the Exclusive (E) state in modern cache coher-
ence protocols, e.g., MESI, which is a related but different concept.

the L2 cache on the M1 (for example, that the L2 is inclusive,
implements the AutoLock optimization [64] and uses a dy-
namic replacement policy). We then develop techniques that
exploit said features to enable single-threaded, unprivileged
Prime+Probe-like attacks through the L2 using only LL/SC.

To enable S>C-based attacks that can simultaneously mon-
itor multiple L2 cache sets, the insight is to view LL/SC as
a general-purpose single-bit communication channel, as op-
posed to just a means to monitor whether a victim accessed the
particular cache set. Following this, we construct a weird cir-
cuit [12] that micro-architecturally computes the logical-OR
of whether the victim accessed at least one of an attacker-
specified set of L2 cache sets—and communicates the single-
bit result of this logical-OR through LL/SC to the attacker’s
architectural state. While weird circuit constructions are not
the main focus of the paper, our weird circuit is relatively sim-
ple conceptually (relies purely on out-of-order execution and
LL/SC as opposed to requiring speculative execution/Intel’s
TSX [12]), and thus may be of independent interest.

In summary, the paper makes the following contributions.

* We present the first timer-less cross-core cache attack
technique that exploits hardware synchronization instruc-
tions, namely Load-Linked/Store-Conditional (LL/SC)
on the Apple M1. We call this technique Synchronization
Storage Channels (S2C).

We identify that LL/SC serves as a direct and pre-
cise architectural observation channel to monitor micro-
architectural events (L1 evictions).

* We conduct a detailed reverse-engineering of the M1’s
L2 caches, which is necessary to exploit SC and may
benefit future attacks against the M1.

* We develop techniques to overcome challenges in using
LL/SC to perform cache attacks. In particular, we de-
velop methods to monitor L2 evictions using LL/SC and
methods to simultaneously monitor evictions on multiple
L2 sets (despite LL/SC natively tracking L1 evictions
for only a single line at a time).

* We show that S>C can simultaneously monitor up to 11
L2 sets with high accuracy, and can be used for build-
ing covert channels as well as attacking cryptographic
implementations such as T-table AES.

The source code of the attack implementation as well as
the evaluation can be found in: https://github.com/FPS
G-UIUC/Ss2C.

Responsible Disclosure. We responsibly disclosed our find-
ings to Apple, who acknowledged our findings.

https://github.com/FPSG-UIUC/S2C
https://github.com/FPSG-UIUC/S2C

2 Background

2.1 Cache Side-Channel Attacks

The goal of a cache side-channel attack is to infer a victim
program’s secret-dependent memory access pattern by mon-
itoring the victim’s use of a shared cache. In general, cache
attacks can be categorized into the following two types.

The first type, known as flush-based, works by the attacker
flushing a line corresponding to a shared address from the
cache and monitoring whether the victim re-reads said ad-
dress (refilling the cache with the corresponding line). This
type includes techniques such as Flush+Reload [19,68] and
its variants Evict+Reload [16] and Flush+Flush [15]. These
attacks are only capable of learning memory accesses to data
that is shared between the attacker and the victim. Nonethe-
less, they have the advantage of inferring the precise cache
line-granular address accessed by the victim.

The second type, known as contention-based, relaxes the
requirement for shared memory by monitoring how the
victim’s cache lines (addresses) contend for space in the
cache with the attacker’s cache lines (addresses). Our at-
tack falls into this category. All contention-based attacks,
such as Prime+Probe [27,29, 38,43], Prime+Abort [10, 30],
Reload+Refresh [7], and Prime+Scope [45], follow a similar
attack procedure. First, the attacker primes the cache by filling
a target shared cache set with attacker-controlled lines. Later,
the attacker probes the same cache set to observe whether any
of its lines have been evicted, and from this deduces if the
victim line(s) has been accessed. By monitoring shared cache
contention, contention-based attacks do not require shared
memory, but they only learn a subset of a victim address bits
(i.e., those bits used to choose the cache set).

An accurate method for determining the location of a spec-
ified cache line within the cache hierarchy, is crucial for any
cache attack. Most methods are based on timing measure-
ments (timer-based attacks), yet several techniques achieve
this without relying on timing (timer-less attacks).

Timer-based attacks Most cache attacks rely on high-
resolution timers to measure the latency of accessing a spe-
cific cache line, by either reading the cycle count register
directly (e.g., via rdtscp in x86), or exploiting special in-
structions that interact with the cycle counter register (e.g.,
monitor/mwait in x86 [70]). When only low-resolution
timers are accessible, the attacker can also leverage existing
techniques to amplify small access latency differences so that
they are detectable by the timer [32,53,54,66]. Despite these
efforts, a fuzzy or inaccessible timing source can still impede
attacks that rely on timers [23,32,39]. When an explicit timer
is absent, a counter incremented by a sibling thread can serve
as an implicit timer [34, 53, 65]. However, this requires the
attacker to have additional capabilities, such as spawning and
concurrently running multiple threads. This may not be feasi-

Level Ways Sets Line Size Total size
Pocore LID 8 256 64B 128 KB
L2 12 8192 128B 12 MB
E-core LID 8 128 64B 64 KB
L2 16 2048 128 B 4 MB

Table 1: Apple M1 cache parameters (from Table 2 of [49])

ble in practice. For instance, Javascript programs in browsers
are single-threaded and sandboxed [52, 54].

Timer-less attacks The limitations of timers can be over-
come if the attacker has the ability to directly measure cache
state, i.e., directly convert micro-architectural state changes
in the cache to architectural state changes in the register
file. However, existing methods for doing so are limited and
scarce. One method is cache storage channels [17], which
directly returns to the attacker whether its data is cached
or not. This primitive, however, is not available to normal
user-space attackers as it requires configuring non-cacheable
memory. Hardware Transactional Memory is another feature
that communicates specific types of cache misses/evictions as
transactions abort when their data is evicted from the shared
cache [10, 30]. Yet, this feature is only available on some In-
tel products and has been deprecated. Intel has also disabled
the use of TSX by default on CPUs that support it through a
microcode update [26].

2.2 Apple M1

Apple has recently started using a new processor architecture
on its laptop, desktop, and tablet devices. The new processor
design, including the M1 and the latest M2, is based on the
ARMVvS8-A ISA. We have confirmed that our findings about
LL/SC in Apple processors that are later discussed (§3) apply
to both the M1 and the newest M2, but in this paper, we mainly
focus on the M1.

An M1 CPU consists of four performance-oriented cores
(P-cores) and four energy-oriented cores (E-cores). Based
on prior works [49], each P-core/E-core has its own private
L1 data cache (L1). There are two separated L2 caches, one
shared among all four P-cores, and the other shared among
all four E-cores. The associativity, number of sets, line size,
and total size of each cache is shown in Table 1. The M1
supports regular pages of size 16 KB and 32 MB huge pages
natively. Notice that the M1 does not implement Simultaneous
Multi-Threading (SMT), thus each core only runs one thread.

Previous studies [9,34] have highlighted two difficulties in
performing cache attacks on ARM processors. By adopting
the ARM ISA, the M1 also inherits both difficulties. First, the
cycle count register on the M1 is only accessible to privileged
software, unlike x86 processors where the corresponding reg-
ister can be read by unprivileged instructions. Second, ARM
does not have dedicated instructions for flushing a specific ad-

Retry: lock_val = LDREX [lock_addr]
if (lock_val == FREE) {

fail = STREX BUSY, [lock_addr]

if (fail) { goto Retry; }
}

[N O

Figure 1: A test-and-set-style lock implemented with Idrex/strex.
Even when all threads perform ldrex simultaneously and see a FREE
lock, only one thread will successfully perform strex and acquire
the lock. All other threads will encounter failed strex and retry.

dress from caches (like c1f1ush on x86), making attack meth-
ods that rely on those instructions, such as Flush+Reload [68]
and Flush+Flush [15], ineffective on the M1.

2.3 Load-Linked/Store-Conditional in ARM64

Load-Linked/Store-Conditional, also referred to as Load-
Exclusive/Store-Exclusive (Idrex/strex) by ARM [6], are used
in common RISC ISAs such as ARM, MIPS, and RISC-V for
implementing synchronization and mutual exclusion. A Idrex
loads a specified address while marking it as exclusive with
respect to the current core in memory. This means that an ad-
dress can be exclusive to multiple cores at a given time when
multiple sibling threads running on different cores execute
Idrex concurrently (e.g., for competing for a lock like Fig-
ure 1). One core can track at most one exclusive address,
meaning a younger ldrex will overturn the exclusive address
marked by an older Idrex on this core.

A strex only performs the store operation when the address
is exclusive to the current core and returns a bit in its output
operand indicating whether the store is performed. Whether a
strex succeeds or not, it clears all exclusive states associated
with its address for every core. This ensures that when multi-
ple threads simultaneously perform Idrex, such as competing
for a lock in Figure 1, only the first thread to perform strex
will succeed, forcing all other threads to lose their exclusive
access to the lock and retry the procedure. Lastly, a regu-
lar store behaves like an always-succeeding strex and also
changes the address back to non-exclusive for all cores.

The exclusive states of cached addresses and how they re-
spond to different memory operations are managed by an
exclusive monitor [4]. The exclusive monitor tracks exclusive-
ness at a granularity called the Exclusive Reservation Granule
(ERG). Whether the exclusive monitor is implemented as a
dedicated unit or integrated with existing cache logic such as
cache coherence protocol, as well as the ERG size, is design-
specific.

Exclusive address vs. the Exclusive cache-coherent state.
Modern cache-coherence protocols, e.g., MESI, use an Exclu-
sive (E) state to reduce bus invalidations when Shared+Clean
(S) data is Modified (M). Although the exclusive monitor im-
plementation may piggyback on top of the coherence protocol,

it has different semantics when compared to the E cache-
coherence state. E in cache coherence means “clean, owned
by a single core”. However, in the context of |drex/strex, a
single address can be marked exclusive simultaneously by
multiple cores. For the rest of the paper, we refer to the target
address of Idrex/strex as the exclusive address.

3 New Attack Primitive on M1 using LL/SC

This section introduces the attack primitive associated with
the behavior of ldrex and strex on the Apple M1, which en-
ables the S2C attack technique proposed in this work.

3.1 Micro-architectural strex Failures

As explained in §2.3: A strex instruction, immediately fol-
lowing a Idrex, might return ‘failed” when multiple threads
are competing to write to the same shared data. This requires
the implementation of the exclusive monitor to track the ad-
dress’s exclusiveness regardless of its location in the cache
hierarchy. However, the official ARM specification states that
in some implementations, strex might return fail for micro-
architectural reasons, e.g., cache evictions [5]:

An implementation might clear an exclusive
monitor between the Idrex and the strex, without
any application-related cause. For example, this
might happen because of cache evictions.

We investigated whether such an implementation exists,
looking specifically at the widely-used Apple M1. Our ques-
tions are: Can a single-threaded program, that executes ldrex-
strex to its own private data, see strex failures due to cache
evictions—even if it performs no action that is known to re-
voke the exclusive state (from §2.3)? If so, from what level(s)
of the cache can said evictions lead to strex failures?

The rest of this section answers these questions. To sum-
marize: in a ldrex-strex sequence, even when |drex and strex
instructions are applied to private data, strex can fail when
the exclusive address accessed by Idrex is evicted from the L1
cache before strex executes.

3.2 Experiment Design and Methodology

To answer the questions in §3.1, we designed the experiment
shown in Algorithm 1. The code contains a ldrex (line 3)
and a strex (line 6) to addr, which points to a local variable.
Between the |drex and strex, we traverse a set of random ad-
dresses S (S never includes addr) which may evict addr from
the L1 cache (line 4). To identify the location of addr after
the possible cache eviction, we load addr right before strex
(line 5), and compare its access latency with the L1 access
latency L1_ L atency using timers. The experiment, therefore,
studies how strex failures correlate with L1 evictions.

Algorithm 1: Code for testing the correlation between

strex failures and L1 evictions of the exclusive address.
Input: addr: a selected target exclusive address

1 for i =1 to 1000 do

2 Generate a set of random addresses S

3 val = LDREX [addr]

4 traverse S // may or may not evict addr from L1

5 latency = measure latency of load [addr]

6

7

8

fail = STREX val, [addr]
evicted_from_L1 =1latency >L1_Latency
print fail, evicted_from_L1

9 // An example of counting the output:

10 // fail = True,evicted_from_ L1 = True: 518
11 // fail = True,evicted_from_L1 =False: 0

12 // fail =False,evicted_from L1 =True: 0

13 // fail =False,evicted_from_L1 =False: 482

We test the above code on both P-cores and E-cores, by con-
figuring the thread quality of service [3]. The load latency is
measured by reading the M1’s cycle count register before and
after the load and computing the difference. We use a custom
kernel extension (similar to the prior Pacman Attack [49]).
Note that we read timers in this experiment, not in the actual
attack technique. L1_ Latency can be obtained by executing
two consecutive loads to the same address (with a memory
barrier in between for maintaining ordering) and measuring
the latency of the second load.

3.3 Result and Takeaway

Line 10-13 in Algorithm 1 shows an example of counting
the output of the experiment. We further ran Algorithm 1
over 10 times, and consistently observed that fail correlates
perfectly with evict_from_L1. In other words, strex to a local
exclusive address never fails when the address still remains
in the L1, and always fails when the address resides only in
lower levels of the cache. This observation aligns with the
information in ARM’s documentation (§3.1). Therefore, we
can confirm that on Apple M1 CPUs, when a |drex-strex pair
is applied to a local address, strex can fail if the address is
evicted from the L1 in between when the Idrex and strex are
performed. We discuss the potential implementation of the
exclusive monitor on the M1 that can produce this behavior
in §8.

We performed another experiment to determine the ERG
size. The experiment consists of only a single Idrex followed
immediately by a strex, but when the two have different ad-
dress operand values. We observed that strex can succeed
even if |drex and strex addresses differ. Also, strex only suc-
ceeds when the two addresses are on the same 64-byte-aligned
block. The fact that the ERG size is 64-byte (the L1 line size)
not 128-byte (the L2 line size) implies that the exclusive mon-
itor may be implemented to only track exclusiveness for L1
lines, which is consistent with our above finding about strex
failures. We also conduct experiments to verify that the be-

havior of Idrex/strex follows ARM’s specification (§2.3). For
example, we find that each core can indeed only monitor one
exclusive address at a time.

Microarchitectural factors influencing the result of strex
might seem like a bug that affects correctness. However, in
practice, this behavior is acceptable. Regular programs al-
ways use |drex and strex for thread synchronization purposes,
which are inherently non-deterministic due to unpredictable
thread interleavings. Programmers will normally use the out-
put of strex to create higher-level synchronization primitives,
for example by retrying the code until the strex succeeds as
shown in Figure 1. Therefore, a well-written program should
not break given this additional cause of strex failures, apart
from possibly wasting cycles from unnecessary code retries.”

From the security perspective, this observation is relevant
in the context of cache side-channel attacks. As explained
in §2.1, the ability to directly and accurately observe cache
state circumvents the defenses and other challenges associ-
ated with timer-based attacks. Utilizing Idrex and strex in-
structions, an attacker can detect L1 evictions, which can be
caused by contention in lower-level shared caches, such as the
L2 cache in M1 processors. On the other hand, such detection
is limited to one exclusive address at a time, since each core
can only monitor one exclusive address. The rest of the paper
builds upon this idea and presents S>C, a timer-less attack
technique aimed at the M1’s shared L2 caches.

4 Reverse-Engineering M1’s Shared L2 Cache

The goal of the S>C attack technique is to leverage Idrex and
strex to expose information leakage through the shared L2
cache, which requires detailed knowledge about the M1’s L2
cache. Given the lack of such information in existing research,
in this work, we present the first detailed reverse-engineering
of the M1’s shared L2 caches, which encompasses various
key characteristics of the L2 cache, such as the inclusion pol-
icy (§4.3), the replacement policy (§4.4) and the set index
mapping (§4.5). Due to the observability of |drex/strex be-
ing limited to the L1 (§3.3), these details are essential for a
successful S2C-based attack. The information in this section
may also benefit other cache attacks.

We describe the reverse-engineering process with a pri-
mary emphasis on the caches used by P-cores, as the results
obtained from E-cores are similar. This section’s reverse engi-
neering makes use of all capabilities required, such as making
extensive use of the privileged cycle count register, and execut-
ing experimental code on multiple cores simultaneously. For
the actual attack technique, starting in §5, we limit attackers

2Note that livelock can occur when too many memory accesses are placed
between Idrex and strex, causing the exclusive address to be constantly
evicted from L1. There is no guarantee that this won’t occur, but programmer
guidance (which says to minimize the use of instructions between a Idrex and
strex pair, plus several other rules of thumb) tries to minimize its likelihood
in practice [5]. We discuss this further in §8.

to single-threaded execution without access to timers.

Terminology We define addresses mapped to the same
cache set as congruent addresses, and further define addresses
mapped to the same L1 set as LI-congruent. Correspond-
ingly, L2-congruent addresses are mapped to the same L2 set.
An LI/L2 eviction set for a target address is defined as a set
of addresses that are L1-/L2-congruent to the target address,
with the size of at least the L1/L2 associativity. Such sets
can be used to evict the target address from the L1 or L2,
respectively.

4.1 Reverse Engineering Private L1s

Before reverse engineering the L2 cache, we first investigate
the private L1 cache. We suspect that, like most modern CPUs,
the M1°s L1 cache is also virtually-indexed/physically-tagged,
with a Least Recently Used (LRU) replacement policy. In this
case, the L1 set index will correspond to the regular page
offset subtracting the L1 line offset bits.

To test this, we first choose a random address and create a
candidate L1 eviction set comprised of eight addresses (since
the L1 is 8-way-associative) that share the same L1 set index
bits as the target address. We start by accessing the target
address, then traverse all 8 addresses in the candidate evic-
tion set, and lastly measure the access latency to the target
address and compare the latency with the L1 latency obtained
from §3.2.

The results show that the candidate L1 eviction set always
evicts the target address out of the L1 cache. Also if we drop
one address from the eight-element eviction set, the target
address will never be evicted. This confirms our hypothesis:

L1 sets are indexed by the page offset bits subtracting
the L1 line offset bits. The L1 cache adopts an LRU-
based replacement policy for choosing evicted lines.

4.2 L2 Eviction Set Generation with a Timer

Our L2 cache reverse-engineering process relies heavily on
L2 evictions. Since ARM does not provide cache flush instruc-
tions, we generate L2 eviction sets for inducing L2 evictions,
similar to previous studies [9, 13,22, 34]. However, identi-
fying L2-congruent addresses for building the L2 eviction
set is challenging given that the L2 set index may depend on
physical page number bits.

Vila et al.’s algorithm [59] is the most popular eviction set
generation algorithm that overcomes this challenge. The algo-
rithm starts by adding randomly generated virtual addresses
to a candidate set, and tests whether the candidate set can
evict the previously loaded target address from the L2, until
enough L2-congruent addresses are included and the eviction
appears. At this moment, the candidate set is an L2 eviction

set superset, meaning that it contains a valid L2 eviction set,
but also a significant number of redundant, non-L2-congruent
addresses. One thing to notice is that the L2’s inclusion policy
is not yet known. Assuming the L2 is exclusive of the L1, the
first loaded target address will only be cached in the L1, not
L2, therefore a valid L2 eviction set cannot evict the target
address from the L2 unless it evicts the target address from
the L1 first. So we force Vila et al.’s algorithm to generate
only addresses with identical L1 set indices as the target ad-
dress, ensuring that a valid L2 eviction set can always evict
the target address from the L1 to the L2 first, and subsequently
from the L2. Once obtaining the L2 eviction set superset, the
algorithm prunes the superset iteratively and checks whether
the remaining is still capable of evicting the target address
until the set size reaches the L2 associativity, and the superset
is now reduced down to a minimal L2 eviction set.

4.3 L2 Cache Inclusion Policy and AutoLock

Understanding the cache inclusion policy is crucial for cache
attacks, especially our new S2C attack technique, where the
attacker can only observe the L1 cache state. Case in point, if
the shared L2 is inclusive of the private L1, contention within
the L2 will cause L1 evictions, allowing the attacker to detect
cross-core activities by monitoring the L1.

One straightforward method for determining whether the
L2 cache is inclusive of the L1 works as follows. First, we
randomly select an address and create its L2 eviction set
using the technique in §4.2. Next, we access this address on a
processor core, and then traverse the eviction set on a different
core. If the L2 cache is inclusive, traversing the eviction set
will evict the address from the L2, and correspondingly from
L1. If the cache is non-inclusive/exclusive, this L1 eviction
will not happen. Hence whether the L2 is inclusive can be
determined by measuring the access latency to the address in
the end and comparing it with L1_ Latency.

After running this experiment with different addresses, we
always observe an L1 hit. In fact, a recent attack on the Apple
M1 by Hetterich et al. [22] also observed this phenomenon
and suggested that it could be due to several factors, namely
an exclusive/non-inclusive policy or a hardware optimization
used in some ARM CPUs called AutoLock. AutoLock is a com-
mon optimization used by ARM CPUs in conjunction with
inclusive caches [64]. When evicting data from the shared
inclusive L2, AutoLock prioritizes data that is not present in
L1 caches, effectively locking those that are present in the
L1, since they are likely to be frequently reused. However,
Hetterich et al. did not confirm whether the M1’s L2 cache is
inclusive with AutoLock or exclusive/non-inclusive [22]. The
rest of §4.3 explains how we determine that the L2 cache is
actually inclusive with AutoLock, by leveraging a technique
called eviction set splitting.

SetM 1 Set M L1

san{[s|e]7]e]s[ro]u[n] [[2[]e]s]e] | |
Set M+1 Set M+1
7|18|9]|10|11|12

1
12883+~ 1=~ +1-F+4-F1 o e B e e e o ot o o o

Figure 2: How eviction set splitting circumvents AutoLock. Ev-
ery number represents a different address, and the values represent
the access order. marks addresses without L1 copies (non-
AutoLocked). Red marks addresses with L1 copies (AutoLocked).
The right part shows eviction set splitting: the minimal 12-element
eviction set is distributed over two adjacent L1 sets, ensuring all
elements are AutoLocked.

4.3.1 Eviction Set Splitting

We first eliminate the impact of AutoLock on our analysis
of the inclusion policy. A standard AutoLock mechanism
chooses L2 lines with no L1 copies to evict over those with
L1 copies. Therefore, for an L2 eviction set to evict the target
address cached in another core’s L1 (hence AutoLocked),
we must ensure that the L2 eviction set addresses are also
AutoLocked. In this way, the replacement logic is forced to
evict AutoLocked lines to service cache fills. The original
eviction set generated from §4.2 cannot achieve this, because
all eviction set elements are mapped to the same L1 set, so
there are always eviction set elements cached only by the L2,
as shown in Figure 2 (left). Note, the L1’s associativity is less
than the L2’s associativity (Table 1).

Yet, we notice that the L2 line size in the M1 is 128 Bytes,
twice the size of L1 lines. This means that data in one L2 set
can reside in two adjacent L1 sets. By toggling bit 6 in half of
the eviction set addresses, as shown in Figure 2 (right), those
addresses can be moved to the other half of the L2 lines, and
their L1 copies are moved to the adjacent L1 set. Now, since
all addresses own L1 copies, AutoLock, assuming it exists,
can no longer interfere with the L2 eviction.

4.3.2 L2 Inclusion Policy

We use Algorithm 2 to determine the inclusion policy of
L2.° The algorithm first generates L2-congruent addresses

following §4.2, and chooses 1-4 addresses to form a set T'.

The rest of the addresses, serving as the L2 eviction set of T,
undergo eviction set splitting and form S. Hence, all lines in
S and T are AutoLocked. The algorithm then traverses 7 on
core 1, and subsequently traverses S on a different core 2 and
measures the latency of traversing S.

Figure 3 shows the result of the experiment. This result

3We note that the use of 2 cores in this experiment is not fundamental,
but was done to match the methodology used in subsequent sections.

Algorithm 2: Code for testing L.2’s inclusion policy.

Input: 7: A set of addresses mapped to the same L2 set
S: A split L2 eviction set of T (T, S are in the same L2 set)
Output: Cycles spent by the traversal of S
1 Function Is_Inclusive (7, S):
2 [Core 1] traverse T
3 [Core 2] t = measure latency of traversing S
4 return ¢

—o— Sizeof T=1

Sizeof T=2
—— Sizeof T=3
—&— Sizeof T=4

4000

~ 2000

Cycles spent by
core 2's traversal

o

6 7 8 9 10 11 12 13 14 15
Size of S

Figure 3: Time spent to traverse the split S when varying the size
of S and T in Algorithm 2. This result shows that the L2 cache is
inclusive of the L1.

reveals that the L1 cache is inclusive, because, from core 2’s
perspective, the entire S can be cached in the L1 only if the
total size of T and S does not exceed the L2 associativity. In
other words, the contention with 7 in the L2 causes S to be
evicted from the L1, which is only possible in an inclusive
L2.

4.3.3 AutoLock

Algorithm 3: Code for verifying AutoLock’s effect.

Input: addr: A randomly selected address
S: A minimal L2 eviction set of addr generated by §4.2
Output: Latency of the 2nd access to addr
1 Function Check_AutoLock (addr, S):

2 Split S into n on one L1 set and |S| — on the other L1 set
3 [Core 1] load [addr]

4 [Core 2] traverse S

5 [Core 1] t = measure latency of load [addr]

6 return ¢

We further use Algorithm 3 to verify that the L2 indeed
implements the AutoLock mechanism. The experiment starts
by accessing addr, and then traverses its eviction set S on a
different core. We explore different ways of splitting S by
varying the number of addresses in S to be flipped to the other
L1 set. We observe that addr can be evicted when the smaller
half of S has at least 3 addresses (meaning 3 or 9 addresses
are flipped). This proves the existence of AutoLock: when
fewer than 3 eviction set elements reside in an L1 set on core
2, the other L1 set on core 2 can only hold 8 eviction set
addresses. Hence, at most 11 addresses out of 12 in the L2
set are AutoLocked, including at most 2+ 8 = 10 eviction set
elements plus addr, thus addr is never evicted.

100% {0y 100% {-

80% 80%

60% 60%

—e— iterate once

iterate 1 times
iterate 2 times
iterate 4 times
iterate 6 times
iterate 8 times

40% 40%

20% 20%

L2 eviction rate

SERR

0% 0%

10 11 12 13 14 15 16 17 18
eviction set size

(@) (b)

10 11 12 13 14 15 16 17 18
eviction set size

Figure 4: (a) The L2 eviction rate of addr when we run Algorithm 3
but allow Core 2 to traverse S multiple times. (b) The L2 eviction
rate of addr when we run Algorithm 3 but traverse S on Core 1 (the
same core as load [addr]) instead of Core 2 and only iterate over S
once.

M1’s shared L2 is inclusive of private L1s. M1 also
employs the AutoLock optimization [64] to prioritize
data without L1 copies for eviction from the L2.

4.4 L2 Replacement Policy

Algorithm 3 can also be utilized to investigate the L2 replace-
ment policy. After applying eviction set splitting to S, addr
and addresses in S are all AutoLocked thus evictable from the
L2. We examine the replacement policy by measuring how
difficult it is to evict addr as we vary the size of S and the
number of times the traverse function iterates over S.

The L2 eviction rate with different eviction set sizes and
iteration counts is displayed in Figure 4 (a). The L2 eviction
rate is always 0% when the size of S is less than the L2
associativity (due to AutoLock), and it increases to 100% as
S grows. In addition, by iterating over S more times, a smaller
S can guarantee to evict addr. For example, iterating over the
minimal eviction set at least 8 times guarantees the eviction
of addr in practice. These observations imply that a non-LRU
replacement policy is being used. In fact, prior studies have
shown that a pseudo-random replacement policy is adopted
by the L2 cache in previous Apple ARM CPUs [20,21, 34].

Since the experiment above uses cache lines belonging
to different cores, we ask whether the replacement policy
behaves differently for lines belonging to the same core. Thus,
we change line 4 in Algorithm 3 such that the eviction set
S is accessed by the same core as addr. Also, traverse only
iterates over S once. The result shown in Figure 4 (b) indicates
that even one iteration over the minimal L2 eviction set S is
guaranteed to evict addr. This is possible only when an LRU-
based policy is used. We make the following observation:

The L2 replacement policy behaves as LRU when
eviction candidates are lines belonging to the same
core, and non-LRU (possibly pseudo-random) when
lines belonging to different cores can be evicted.

4.5 L2 Cache Set Index Mapping

The L2 eviction set generation technique §4.2 is agnostic
about the actual L2 set index mapping function. However, this
technique is not applicable when the cache state is measured
with |drex/strex instead of timers, as shown in §5.3. The main
reason is due to the fact that Idrex/strex only indicates data
residency in L1, as opposed to timers that pinpoint the exact
cache level that the data is at. Here, we aim to learn the L2
set index mapping which is later used by S?C for generating
L2 eviction sets.

We reverse-engineer the undocumented L2 set index hash
function by inspecting the physical addresses of L2-congruent
addresses, which can be retrieved by /proc/self/pagemap
on Linux. Based on previous research on reverse-engineering
Intel’s undocumented set/slice mapping function [14,24,40],
we speculate that on the M1, every L2 set index bit is also
computed through a reduction operation with exclusive-or
(xor) against a specific set of physical address bits. To verify
this, we generate a large number of mutually L2-congruent
addresses and compute the xor value of different combina-
tions of physical address bits. When a combination is actually
used for computing an L2 set index bit, the xor reduction
will produce the same bit value for every L2-congruent phys-
ical address. We demonstrate how every L2 set index bit is
formed from physical address bits in Figure 5 based on our
experimental results.” Notice that 11 out of 13 set index bits
are directly mapped from huge page offset bits. The other 2
bits are computed over a complex xor operation involving the
huge page number bits.

5 S2C Monitoring a Single Cache Set

We now present a protocol that enables the attacker (the re-
ceiver) to use S?C to monitor a single L2 cache set that the
victim may access. §6 will describe how to generalize the
protocol to simultaneously monitor multiple L2 sets.

5.1 Attacker Model and Overview

We assume an attacker who co-locates with a victim process
on the same Apple M1 processor, and shares the same L2

“4This pattern resembles the address mapping in Intel CPUs, in which the
LLC set index is directly mapped from huge page offset bits (subtracting
cache line offset bits) and LLC slice index bits are xor-ed from the high-order
page number bits [24,40]. It is possible that the M1 also divides the L2 cache
into as many slices as cores, resulting in a 2-bit L2 slice index, and each slice
owns 8192/4 = 2! sets.

A
CLLTI| (ELLTTTT] Physical
t214 [} address bits

2 2|2 2 1|1|1{1|1 1 12 1 f f

2 2(2 2

...... ’2|1|0|9|8|7|6|5 4|3|2|1|0|9|8|7|6|5|4 3|Z|1|0|9|8|7 6|5|4|3|2|1|0
[+—L2 Line Offset —»|

Regular Page Offset ——|

«— Regular Page

«— Huge Page k |

Huge Page Offset ——————————————»

Figure 5: L2 set index bit mapping based on our reverse engineering
(§4.5). Eleven L2 set index bits are directly mapped from huge
page offset bits. Two L2 set index bits on the top are XOR-ed from
multiple regular page number bits (® denotes the XOR operation).

cache. The attacker can run arbitrary unprivileged code, but
the attacker has no access to any timing source (such as PMC0)
and is limited to using a single core. Such an attacker can-
not use timing measurement techniques mentioned in §2.1,
including the implicit timer since no two attacker-controlled
threads can run concurrently. The attacker can allocate huge
pages, which is required for generating eviction sets in §5.3.

The attacker’s goal is to monitor the victim’s memory ac-
cess patterns, specifically, whether/how the victim accesses a
target address that maps to a specific L2 set. As a contention-
based cache attack, S2C cannot differentiate victim addresses
that are mapped to the same L2 set, as mentioned in §2.1.

Similar to existing cache attacks [10, 15, 16,43, 45, 68],
a complete S>C-based attack has two phases: a preparation
phase when the attacker generates the L2 eviction set for the
target victim address, and an attack phase when the attacker
detects the victim’s access to the target address in real-time.
We explain the attack phase first in §5.2 assuming minimal L2
eviction sets for the target address are available, and describe
how to generate the L2 eviction set using Idrex/strex instead
of relying on timing measurements in §5.3.

5.2 Attack Phase

A strex leaks 1-bit of information about whether an attacker-
controlled exclusive address is evicted from the L1 cache.
To relate this bit to the victim’s activities on a single target
address, an S2C attacker can simply co-locate the exclusive
address with the victim target address in the same L2 set, with
additional efforts to ensure that the strex fails if and only if
the victim reads/writes to the victim target address.

This strategy faces two unique challenges. First, strex only
indicates data’s presence in L1, unlike timing measurements
which reveal the exact cache level through concrete latency
numbers. To avoid false positives, the exclusive address vis-
ited by Idrex must remain in the L1 until the expected L2 set
contention occurs, which implies a victim’s access to the tar-
get address. Second, unlike normal Prime+Probe which can
measure the access latency to multiple addresses, Idrex/strex

only observes one specific address. This necessitates that
our attack performs a very delicate balancing act: we must
ensure that the exclusive address is not only evictable (not
constrained by AutoLock), but that it is the line that gets
evicted by the victim’s access to the target address.

Algorithm 4: How S2C monitors the victim’s access to a
single target address addr using Idrex/strex.

Input: P: exclusive address
SP: remaining eviction set of addr excluding P
Output: Boolean value indicating if addr is accessed
1 Function Monitor_Single_Addr (P, sPy:

2 [attacker on core X] val = LDREX [P]

3 [attacker on core X] traverse S¥

4 /* Now P should be the next to evict in L2, but
still cached in L1 (i.e. AutoLocked) */

5 [victim on core Y] may or may not access [addr]

6 /* The access to [addr] should evict P from the
L2, and also from L1 due to inclusive cache */

7 [attacker on core X] fail = STREX val, [P]

8 return fail

We now explain how S2C addresses both challenges, using
Algorithm 4 as a guide. The attacker can obtain an exclusive
address P that is L2-congruent with the target address addr,
by choosing an arbitrary address from addr’s minimal L2
eviction set S. The rest of the eviction set S¥ is traversed on
the same core after Idrex completes. Importantly, we must ap-
ply eviction set splitting (§4.3) to this L2 eviction set S. This
guarantees that every L2 eviction set element, including P and
all of S, are cached in the L1. This addresses the first chal-
lenge. For this exact same reason, P and SP are AutoLocked
and occupy the entire L2 set, meaning P can be chosen by
the L2 replacement logic, according to the mechanism of Au-
toLock §4.3.3. Additionally, our study of the L2 replacement
policy in §4.4 points out that the L2 uses an LRU-based policy
for evicting L2 cache lines belonging to the same core. Since
Idrex happens strictly before traversing S”, the L2 line where
P is located will become LRU after line 3 since P and S” are
from the same core. The attacker then waits for the victim’s
action by spinning a loop a number of times. Whenever addr
is accessed, P will be evicted from both L1 and L2, causing
the strex on line 7 to fail.

5.3 Preparation Phase

During the preparation phase, S>C generates L2 eviction sets
for the target address utilizing Idrex/strex only. As mentioned
in §4.2, Vila’s algorithm (or similar techniques such as [56])
is widely used by cache attacks due to the weak assumptions
it makes on the attacker — no knowledge about the address
bits beyond the regular page offset bits is required.
However, we found that using Vila’s algorithm (or any
similar techniques based on pruning eviction set supersets)
by replacing timing measurement with Idrex/strex is unfeasi-
ble due to AutoLock. To start, ldrex/strex cannot distinguish

between L1 evictions caused by L1 cache contention and
those caused by L2 evictions. Therefore, building the L2 evic-
tion set superset should not use candidate addresses that are
L1-congruent with the target address addr. Given addr is Au-
toLocked and hence can only be evicted from the L2 when
the other 11 lines in the same L2 set are also AutoLocked, the
traversal of an L2 eviction set superset S can evict addr only
if at one point, all 12 L2-congruent addresses in S are cached
in L1. This is clearly impossible: they compete for one single
L1 set, meaning at most 8 addresses can be AutoLocked with
addr in the L2 set.” The outcome is that we can never identify
an L2 eviction set superset, let alone reduce it to obtain the
actual L2 eviction set.

Inspired by previous works [14,27,38], S2C instead utilizes
the reverse-engineering result of the L2 set index mapping
and huge pages® to directly compute the minimal L2 eviction
set (§4.5). Since 11 out of 13 L2 set index bits are huge
page offset bits, after allocating a huge page, the attacker
can easily identify addresses within this huge page that share
those 11 set index bits as the target address. Although the
remaining two bits cannot be determined due to the unknown
huge page number, we can easily determine whether two
arbitrary addresses within the huge page share the same value
for these two bits, because the huge page number is identical.

With this observation, our L2 eviction set generation works
as follows. Given a target address, we allocate one huge page,
and collect all 27 = 128 addresses on this page that share the
same regular page offset and address bits [19:16] as the target
address. All these address bits except the L2 line offset bits are
required to match the target address to achieve L2-congruence.
Next, we group the 128 addresses into four groups, such that
addresses within each group share the same two XOR-ed bits.
Since the huge page number of these addresses as well as
the target address is unknown, we cannot determine which
address group has the exact same L2 set index as the target
address, but it is guaranteed that one of these four address
groups will be an L2 eviction set of the target address.

We leverage Algorithm 4 to identify which group is actually
the L2 eviction set. For each group, we choose 12 addresses
from the total 32 addresses as the candidate minimal eviction
set, and apply eviction set splitting so that those 12 addresses
are distributed to two sibling L1 sets evenly. As for Algo-
rithm 4, one address is chosen as the address for Idrex/strex,
and the remaining are traversed after Idrex. Unlike the attack,
when testing eviction sets, the attacker must trigger access to

SEven if the attacker owns multiple cores to traverse the candidate set
separately, it is still infeasible for a candidate L2 eviction set S to evict
addr: the L2-congruent addresses constitute only around 1/2° ~ 1.6% of
S according to Figure 5. Therefore, it is almost impossible to see 12 L2-
congruent addresses cached in the L1.

6 Although allocating huge pages requires only user-level privilege, it may
not be available when the attacker is limited to a sandboxed environment,
e.g., browsers. In those scenarios, the attacker cannot proactively allocate
huge pages via system calls. Instead, the attacker must rely on the runtime
allocating huge pages automatically, e.g., via OS features such as Transparent
Huge Pages in Linux.

the target address (which could be done by a victim-provided
API call that is known to access the target address). Only
when the tested address group is L2-congruent with the target
address will the strex fail.

6 S?C Monitoring Multiple Cache Sets

We now generalize the protocol from §5 to enable the attacker
to simultaneously monitor multiple victim L2 cache sets. The
attacker model is otherwise the same as that presented in §5.1:
the attacker is unprivileged, runs on a single thread, etc. As
with §5, we do not require modifications in the victim’s code.

The challenge here is that Idrex/strex only allow the
single-threaded attacker to monitor evictions on a single ad-
dress/cache line at a time. To work around this limitation, the
insight is to view Idrex/strex as a general-purpose single-bit
communication channel that can communicate the result of
an arbitrary 1-bit function computed in micro-architectural
space. With this in mind, we construct a micro-architectural
weird circuit (uWC) [12] that computes the logical-OR of
whether the victim accessed at least one of several attacker-
specified L2 sets—and communicates the 1-bit result of this
logical-OR through |drex/strex to the attacker’s architectural
state, namely the result of strex.

We remark that while weird circuit constructions are not
the main focus of the paper, our weird circuit is relatively sim-
ple conceptually compared to the original proposals in [12],
and may be of independent interest. In particular, our con-
struction relies solely on out-of-order execution, as opposed
to some form of speculative/transient execution (e.g., spec-
ulative instruction execution, Intel’s TSX). We also remark
that while we compute logical-OR due its useful semantics,
other functions are of course possible (e.g., one to compute a
hop in a binary search to localize which victim cache set was
accessed). We leave such investigations to future work.

6.1 uWC Construction

We explain the yWC assuming the attacker wishes to moni-
tor two victim target addresses a and b located at L2 sets A
and B for simplicity, and generalize to monitoring N L2 sets
Ao,A1,...,Ay—1 at the end.

To start, the attacker uses the procedure from §5.3 to con-
struct minimal L2 eviction sets for target addresses a and b,
and also a third eviction set for another address x allocated by
the attacker itself. The attacker ensures that x is located at an
L2 set X different from A and B, and X is not used by the vic-
tim. The attacker further builds a linked list Pa — Pb — Px,
where Pa,Pb,Px are addresses randomly chosen from the
eviction sets generated for a, b, and x, respectively.

The attacker is interested in whether the victim accesses
a line in sets A or B. At a high level, it can infer activity on
these sets by observing the eviction of Px with Idrex/strex,
and using out-of-order execution to create a race between a)

Pb = load [Pa] slack
SetA (hit)

// racing code
Pb = load [Pa]
Px = load [Pb]

Run
STREX [Px
load [)[(] ! @ SetB LRU racing < load [Pb load [x]
code Px=load [Pb] (miss)
- — > (miss)
-» - o
I SetX P X evicts Px
SetA | AX
Paj | LRU STREX [Px]
| Victim accesses b (fail)
Set B LRU | time
Leb] ® ®
LRU
setX P : Seta Pb = load [Pa] slack
N - o
A ! R =load [Pb
12cache U | sets LRU R‘f" Px= (‘:‘?t) [Pb]
| racing
® * code STREX[Px] "(’;':s[s’;l
Set X LRU (succeed)
o x_ev_icts Px
LRU
Victim accesses time

neither anorh

Figure 6: An example of how S?C constructs a yWC to monitor
victim addresses (called a and b) that map to L2 cache sets A and B,
respectively. See text in §6.1 for a detailed walkthrough.

traversing the linked list Pa — Pb — Px and b) accessing x.
Depending on the outcome of this race, Px could be evicted by
x when it is accessed by the attacker’s strex, which indicates
whether the victim displaced data in sets A or B.

In more detail: In the “Prime” step (Figure 6 @), the at-
tacker uses the techniques in §5.2 to bring Pa, Pb, Px into the
cache, position each in the LRU position of each respective
L2 set and ensure that each is evictable (using eviction set
splitting; §4.3.1). It further evicts x from all levels of cache
and monitors Px using Idrex. It then waits for the victim to
make an access (see Figure 6 @), same as in §5. In the “Probe”
step, the attacker begins the race (Figure 6 ®) by simultane-
ously a) traversing Pa — Pb — Px and b) making an access
to x. x will always result in a miss. It accesses Pa, Pb with nor-
mal loads and accesses Px using strex. There are two possible
outcomes, depending on the victim’s access pattern:

e If the victim accessed neither A nor B (Figure 6 @-®,
bottom), traversing Pa — Pb — Px will result in all hits
and complete before x fills the cache. Since Px will still
be cached, strex returns O (success).

¢ Otherwise (Figure 6 @-®, top), traversing Pa — Pb —
Px will result in at least one miss and complete after
x fills the cache. Since Px will be evicted (by x), strex
returns 1 (fail).

Monitoring N victim addresses. The above generalizes
to monitoring N victim addresses agp,ay,...,ay— located
at different L2 sets using N eviction sets, a separate set X
(which serves the same function as before) and a linked list
that traverses P, — P4, — -+ — Pay_, — Px.

100%{ &—
80%
—e— victim accesses one target address
victim accesses non-target address

40%| —— victim performs no access
20%

60%

Chance that strex fails

0%

1 2 3 4 5 6 7 8 9 10 11 12
of target addresses

Figure 7: The chance that strex fails when the victim accesses
different addresses, given S2C monitoring multiple target addresses.

Implementation considerations. Our implementation
matches closely with the above description. That said, we
needed to place load[x] after the strex in program order (Fig-
ure 6 @). This is because strex is not performed until it
reaches the head of the reorder buffer, and thus would not
execute until load[x] is completed if the load was placed be-
fore it. Another important factor is that, as N increases, it is
necessary to delay the load to x to ensure that traversing the
linked list is faster than accessing x, if all linked list accesses
are hits. This delay, called ‘slack’ in Figure 6, is implemented
by spinning in a loop a specific number of times.

7 Evaluation

Our evaluation is performed on an M1 Mac Mini, running
Asahi Linux (Linux version 6.1.0). We cannot conduct the
full evaluation on MacOS since the M1 version of MacOS
does not support huge pages. Following the attacker model
described in §5.1, the S2C attacker is single-threaded and
does not use timers.

7.1 Monitoring Multiple Cache Sets

We now evaluate S?C’s ability to simultaneously monitor
multiple cache sets. Here the victim may access a set of ad-
dresses that map to different L2 cache sets, and the attacker
uses the method described in §6 to detect accesses to those
sets. Ideally, any victim access to those sets should result in a
100% strex fail rate; if the victim accesses none of the afore-
mentioned sets, we expect a 0% fail rate, i.e., the difference
in the strex fail rate should be close to 100%.

Figure 7 shows the probability that the attacker’s strex fails
when the victim 1) accesses one target address, 2) performs
no memory accesses, and 3) accesses addresses belonging
to other L2 sets. When monitoring less than 12 addresses,
we can always find a suitable slack so that the difference in
the strex fail rates between the victim accessing the target
address versus accessing no/other addresses is close to 100%
(the difference is at least 93%). This showcases S2C’s effec-
tiveness in monitoring up to 11 L2 sets. For more than 12
target addresses, we cannot find a slack value that achieves
a favorable difference in the strex fail rate. This results in

significant false positives, as shown in Figure 7.

7.2 Covert Channel

S2C, like previous cache side channels, can be used to es-
tablish cross-process covert channels. However, as the strex
output only conveys 1-bit of information, the channel only
transmits 1-bit at a time. Another challenge in building covert
channels with S2C is that it requires synchronization between
two processes without relying on timing measurements, which
are used by prior cache attacks [15,38,45,72].

The transmission of each bit consists of two stages: the
standby stage and the transmission stage. Both stages em-
ploy Algorithm 4, but in opposite directions. The sender and
the receiver each designate an address located in different L.2
sets, and both generate an L2 eviction set for the other party’s
address. The address owned by the sender, dubbed addry,ays,
is used in the transmission stage. The receiver prepares an
exclusive address (to be monitored by strex) which is L2-
congruent to addryaps, and uses it along with the remaining
eviction set to detect the sender’s accesses to addrrans. 10
transmit 1 bit, the sender accesses addr,ans (and otherwise
makes no access). The receiver pauses by iterating over a
busy-waiting loop eight thousand times to give the sender
sufficient time to access the targeted L2 set, and then checks
whether addry,.,s Was accessed using strex.

During the standby stage, the sender waits for a signal from
the receiver indicating that the receiver is ready. Likewise,
this is achieved by the sender monitoring the receiver’s access
to the address addrreaqy. Different from the transmission
stage, the receiver will always access addrcaqy to indicate
readiness. The sender repeatedly calls Algorithm 4 until an
access to addrycaqy is observed, at which point the sender can
proceed to the transmission stage.

After tuning the covert channel code, we achieve a band-
width of approximately 185 Kbits per second with a 98.5%
accuracy. The small error rate is due to the sender’s access to
addri,ans overlapping with the receiver’s Idrex/strex, creat-
ing a blindspot that has been studied in previous works such
as Prime+Scope [45]. Since our synchronization also relies
on S?C instead of a precise timing source, the blindspot can
also cause de-synchronization. For example, if the receiver
sends a ready signal that is missed by the sender, the sender
will get stuck waiting. In the next round, the receiver will
interpret that as the sender transmitting 0, at which point it
will send another ready signal (which, hopefully, the receiver
will now see). This de-synchronization has a 0.2% chance of
affecting each bit transmission.

Comparison with Prime+Probe We also implement a sim-
ilar 1-bit covert channel using Prime+Probe, after enabling the
cycle count register from kernel space. For the Prime+Probe
covert channel, the receiver owns the address addr,ans, and

the sender controls the L2 eviction set of addriyans. TO trans-
mit a bit, the receiver first accesses addrra,s, and the sender
traverses the eviction set when the transmitted bit is 1 (and
otherwise does not traverse the eviction set). The receiver
pauses for a certain duration to allow the eviction set traversal
to finish, and then times the access to addr ans to determine
whether it has been evicted. Unlike S>C which relies on cache
contention during the standby stage for synchronization, the
Prime+Probe covert channel utilizes the timer directly for syn-
chronization. This not only reduces the activities during each
transmission, leading to a significant increase in bandwidth,
but also ensures precise synchronization between the attacker
and the sender, eliminating the problem of de-synchronization.
This 1-bit Prime+Probe covert channel is capable of trans-
mitting approximately 382 Kbit per second with over 99%
accuracy.

7.3 Attacking T-table AES

We now demonstrate how S?C can be used to perform full
key extraction on T-table AES, based on the classical chosen-
plaintext attack due to Osvik et. al [43].

T-table AES is a popular benchmark for evaluating cache
side-channel attacks because it creates secret key-dependent
T-table access patterns, which can be used to infer information
about the secret key [10, 15,43,45]. We adapt the attack by
Osvik et. al [43], which proceeds in two steps: targeting high-
key nibbles and low-key nibbles of key bytes, respectively.
Specifically, the first round of T-table AES performs bitwise
XOR between the plaintext and the private key, and the output
bytes are used directly as indices for T-table lookups. To
exploit this behavior, the attacker repeatedly interacts with the
victim. In each interaction, the attacker tries to guess the high
nibble of one key byte by creating a specific plaintext. When
the guess is correct, the XOR produces an index value < 24,
thereby creating an observable access to a specific cache line
where the looked-up T-table is based. While this cache line
may also be accessed by other rounds, it is guaranteed to be
accessed when the high nibble from the plaintext byte and
the target key byte match. Repeating for each key byte, this
allows the attacker to recover the high nibble of each key byte.

The low nibbles can be retrieved similarly by exploiting
the second round. In the second round, every T-table access
index depends on four distinct key bytes, instead of one key
byte in the first round. Since the high key nibbles are known,
the attacker can guess possible values for the four low nib-
bles corresponding to the four key bytes used by the T-table
index. It validates these guesses in the same way as before:
by submitting plaintexts and monitoring whether the T-table
target cache line is accessed during the AES operation. This
process can be repeated to learn the values of nibbles in other
sets of four key bytes.

Here we show that S>C can leverage the above attack
technique to infer the full 16-byte AES key. Our experiment

<3 w
=) 5 107 o Accuracy * 2
= ~ o
“ 3 1099
[olie} E [
>0 E=30)
O < 0.5 © -
g3 558

2@ =
Y E Duration “®
<E 0.0 3

0 200 400 600 800 1000
Number of AES encryption calls (thousands)
(a) First-round attack result.

- —
2019 — 4000 %
o9 —e— Accuracy v S

[=}

e 2 [SR]
o o T O
> E=R0)
OZos5 2000 © —
© { —-c
e e =5
>S9 - =
g’g) Duration ©
‘o002 3

0 200 400 600 800 1000
Number of AES encryption calls (millions)

(b) Second-round attack result.

Figure 8: Accuracy of recovered high nibbles and the attack
duration of both the first-round and the second-round attack,
as we increase the number of total AES calls for the full first-
/second-round attack. The kink in the accuracy plot in (b) is
due to measurement noise.

uses OpenSSL’s T-table AES implementation [1]. The vic-
tim process maintains a secret key and exposes an AES en-
cryption/decryption API to the attacker. The attacker process
performs the chosen-plaintext attack and leverages S>C (in-
stead of Prime+Probe as in the original attack [43]) to monitor
accesses to targeted cache lines.

Figure 8 shows the proportion of nibbles that can be accu-
rately recovered in the first-round and the second-round attack,
as we increase the number of plaintext samples used for test-
ing each possible nibble value (or four nibble values in the
second-round attack). Each data point is averaged over ten in-
dependent attacks, where each attack performs one first-round
and one second-round attack to leak one randomly-generated
private key. The figure also shows the attack latency as a
function of the number of AES calls. The high nibbles can
be recovered with 100% accuracy with around 300K encryp-
tion calls, which takes around 1 second. However, to recover
the low nibbles with 100% accuracy, we need around 700M
encryption calls, which is roughly 40 minutes. Notice that
recovering low nibbles requires significantly more time than
high nibbles because, in the second-round attack, the attacker
must guess four nibbles together, and measuring a cache ac-
cess only indicates if all four nibbles are guessed correctly.’
This difference is mentioned by the original attack [43].

Since most recent cache attacks only evaluate the first-
round attack [10, 15,30,45], we can compare the effectiveness
of our version of the first-round attack to them. For instance,

"To illustrate, assume N samples are needed to verify each guess. The
first-round attack, therefore, requires 16 (16 high nibbles) * 16 (16 possible
values for each high nibble) * N = 256 * N AES calls, whereas the second-
round attack requires 4 (4 four-nibble combinations) * 16* (guess values for
4 low nibbles) * N = 262,144 * N AES calls.

Flush+Flush [15] shows 250 encryptions are required to re-
cover all high nibbles, whereas Prime+Scope [45] reports a
similar number (around 200). Therefore, S2C demonstrates a
similar capability in retrieving AES key bytes albeit using a
different cache measurement technique and targeting Apple
CPUs.

8 Discussion

8.1 Impact on Other Processors

Load-Linked/Store-Conditional is an ISA-agnostic primitive
for performing efficient mutual exclusion and synchronization.
We now discuss its support in other existing ISAs, and where
we believe those implementations may enable S>C-based
attacks.

CISC/x86. CISC architectures such as x86 do not support
LL/SC as part of their ISAs. We have further performed ex-
periments to check whether native x86 hardware atomics
(cmpxchg) are implemented using LL/SC-like microcode un-
der the hood and haven’t found evidence to support this theory.

ARM. In 2022, Apple introduced the M2 which continues
using the same ARMv8-A ISA as M1. We are able to repro-
duce the same attack primitive that we explained in §3 on M2
CPUs. Future work is needed to reverse engineer the M2’s
cache configuration (akin to that in §4) to enable S2C-based
attacks (i.e., across cores). It is possible that other ARM CPUs
follow the LL/SC semantics specified in ARM’s manual, mak-
ing them vulnerable to the base S>C mechanism. But more
reverse engineering is needed to confirm on which ARM
CPUs this holds.

RISC-V. RISC-V is a relatively new and rapidly-growing
RISC architecture. Different from ARM, RISC-V recognizes
that allowing store-conditional to fail on cache evictions might
impede LL/SC progress indefinitely. Therefore, the official
RISC-V manual suggests that “reservations (exclusive ad-
dresses) are tracked independently of evictions from any
shared cache” [62], which, if implemented in real life, can
effectively mitigate S>C.

MIPS. MIPS is an older RISC ISA. The MIPS manual
suggests that the base observation in S2C may apply. We
quote: “...load or store may cause a cache eviction between
the LL and SC that results in SC failure” [2].

8.2 Mitigations

Restricting access to the attack primitive is a straightforward
yet effective method for mitigating many side-channel at-
tacks [25,32,35,39,70]. Because LL/SC is only leveraged

by the attacker and not required to be used by the victim,
one would seemingly need to summarily disallow LL/SC.
However, LL/SC are basic instructions that are impractical to
disable. Given this, we propose several mitigation strategies.

Changing Exclusive Monitor Implementation. Because
the exclusive monitor only tracks addresses in the L1 cache,
we speculate that the exclusive monitor is implemented by
piggybacking on the cache coherence protocol. The imple-
mentation may use a dedicated coherence state for exclusive
addresses accessed by LL instructions. The behavior of SC
aligns with this design: an SC succeeds when the target ad-
dress is in the new state; and like normal stores, an SC inval-
idates the address in other private L1 caches, forcing other
threads to lose their exclusiveness to that address. To patch
this vulnerable implementation, the safe exclusive monitor
should keep track of exclusive addresses independent of the
location of the addresses in the cache hierarchy.

Software Mitigations for Cache Side-Channels. Miti-
gating cache side-channel attacks have been an important
topic in side-channel research. Software developers gen-
erally use constant-time programming to eliminate secret-
dependent memory access patterns [8,41,42,48,51,69,71].
Constant-time programming has been applied to many mod-
ern cryptographic libraries for protecting critical assets such
as keys [18,44]. However, many crytographic libraries, as well
as general-purpose programming still opt out of the constant-
time property in favor of better performance [28].

Hardware Mitigations for Cache Side-Channels. Re-
searchers have also proposed hardware-based mitigations
for defeating cache side channels, most of which are based
on cache partitioning or randomization. Cache partitioning
splits the cache into partitions, and each partition can be
used by a security domain without any interference from
other domains [11, 37, 60, 61]. Cache randomization intro-
duces randomness into the cache set mappings, hindering
the attacker from creating cache contention with victim
lines [46,47,57,63]. Since LL/SC is a contention-based attack,
both of these approaches would apply in principle.

Finally, disabling huge pages does mitigate our current at-
tack by preventing eviction set generation. For this reason, the
current M1’s MacOS is immune to S>C in practice. However,
previous MacOS versions on Intel CPUs do support huge
pages. Given that the M1 CPU natively supports huge pages,
future MacOS versions on Apple CPUs may re-adopt huge
pages, making it once again susceptible.

9 Related Works

Cache attacks The attack procedure in S?C resembles
Prime+Probe [43]: the attacker establishes its lines in specific

states (e.g., cached), and later watches for cache evictions
to deduce the victim’s behavior. Refresh+Reload [7] instead
observes the LRU state changes to the attacker’s lines with-
out relying on the victim to evict the attacker’s lines, making
the attack more stealthy. The same idea can be applied to
S2C. Prime+Scope [45] improves Prime+Probe by making
the probe step a single memory access and being windowless.
Prime+Scope is special because it requires inducing private
L1 evictions caused by shared cache evictions, which is also
required by S>C. However, Prime+Scope targets x86 CPUs
that do not implement AutoLock like ARM.

Timer-less methods to monitor parch state changes.
Most cache attacks observe cache states using timers
(§2.1). A recent attack exploits the implementation of
umwait/umonitor instructions on x86 CPUs to set up a count-
down clock on a specific address [70]. If a (potentially tran-
sient) write occurs within the countdown period, a thread is
woken up and the carry bit (CF) set; otherwise (the countdown
expires) the thread is woken up with a carry bit cleared. Both
the (transient) write — CF action in that work and the cache
eviction — SC fail action in our work are similar conceptually
(although act on different micro-architectural state changes
and impact different platforms). We note that umwait inter-
acts with an explicit timer (the timestamp counter) to control
timeout; the analog to this in our attacks is how the receiver
must spin in a loop to wait for the victim to make an access
(which is also conceptually a timer, albeit an implicit one).

As mentioned in §2.1, uncacheable memory [17] and hard-
ware transactional memory [10,30] are the only other primi-
tives that can be used to observe cache state without relying
on timing measurements. Notice that LL/SC is similar to a
hardware transaction: LL/SC collectively completes a task
that may fail (with some kind of feedback) and, just like trans-
actions, can fail due to interactions with sibling threads or for
purely micro-architectural reasons (cache evictions).

Finally, our yWC construction is similar to concurrent work
on racing gadgets [66], which serve to amplify small timing
differences so as to be detectable by low-resolution clocks.

10 Conclusion

This paper proposes Synchronization Storage Channels (S>C),
the first timer-less cross-core cache attack that exploits Load-
Linked/Store-Conditional (LL/SC) instructions. The key in-
sight is that the implementation of LL/SC on the Apple M1
enables direct observation of cache activities, i.e., whether
the address tracked by LL/SC has been evicted from the L1.
With several novel techniques to circumvent limitations in the
single-address-observation semantics of LL/SC, we show how
S2C achieves similar attack capability as prior contention-
based cache attacks but without the dependence on timing
measurements.

Acknowledgments

This work was funded by the NSF under grants 1816282,
1954521, 1942888, and 2154183, as well as by an Intel RARE
grant. We would like to thank the anonymous shepherd and
reviewers for their insightful comments during the review
process, which helped to significantly strengthen the paper.

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Openssl. https://www.openssl.org/.

MIPS® Architecture for Programmers Volume II-A: The
MIPS32® Instruction Set Manual. 2016.

Apple. Energy efficiency guide for mac apps: Prioritize
work at the task level. https://developer.apple.co
m/library/archive/documentation/Performanc
e/Conceptual /power_efficiency_guidelines_o
sx/PrioritizeWorkAtTheTaskLevel.html, 2020.

ARM. Exclusive monitor system location. https:
//developer.arm.com/documentation/den0024/
a/Multi-core-processors/Multi-processing-s
ystems/Exclusive-monitor-system-location,

2023.

ARM. Load-exclusive and store-exclusive usage restric-
tions. https://developer.arm.com/documentatio
n/ddi0406/c/Application-Level-Architecture/
Application-Level-Memory-Model/Synchroniza
tion-and-semaphores/Load-Exclusive-and-Sto
re-Exclusive-usage-restrictions, 2023.

ARM. Synchronization. https://developer.arm.

com/documentation/den0024/a/Multi-core-pro
cessors/Multi-processing-systems/Synchroni

zation, 2023.

Samira Briongos, Pedro Malagén, José M Moya, and
Thomas Eisenbarth. Reload+refresh: Abusing cache
replacement policies to perform stealthy cache attacks.
In 29th USENIX Security Symposium (USENIX Security
20), pages 1967-1984, 2020.

Sunjay Cauligi, Gary Soeller, Fraser Brown, Brian Jo-
hannesmeyer, Yunlu Huang, Ranjit Jhala, and Deian
Stefan. Fact: A flexible, constant-time programming
language. In 2017 IEEE Cybersecurity Development
(SecDev), pages 69-76. IEEE, 2017.

Shuwen Deng, Nikolay Matyunin, Wenjie Xiong, Stefan
Katzenbeisser, and Jakub Szefer. Evaluation of cache
attacks on arm processors and secure caches. IEEE
Transactions on Computers, 71(9):2248-2262, 2021.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

Craig Disselkoen, David Kohlbrenner, Leo Porter, and
Dean Tullsen. Prime+abort: A timer-free high-precision
13 cache attack using intel tsx. In 26¢th USENIX Security
Symposium (USENIX Security 17), pages 51-67, 2017.

Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-
Ghazaleh, and Dmitry Ponomarev. Non-monopolizable
caches: Low-complexity mitigation of cache side chan-
nel attacks. ACM Transactions on Architecture and
Code Optimization (TACO), 8(4):1-21, 2012.

Dmitry Evtyushkin, Thomas Benjamin, Jesse Elwell, Jef-
frey A Eitel, Angelo Sapello, and Abhrajit Ghosh. Com-
puting with time: Microarchitectural weird machines. In
Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 758-772, 2021.

Marc Green, Leandro Rodrigues-Lima, Andreas Zankl,
Gorka Irazoqui, Johann Heyszl, and Thomas Eisenbarth.
Autolock: Why cache attacks on arm are harder than you
think. In 26th USENIX Security Symposium (USENIX
Security 17), pages 1075-1091, 2017.

Daniel Gruss, Clémentine Maurice, and Stefan Mangard.
Rowhammer. js: A remote software-induced fault attack
in javascript. In Proceedings of the 13th International
Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment-Volume 9721, pages 300—
321, 2016.

Daniel Gruss, Clémentine Maurice, Klaus Wagner, and
Stefan Mangard. Flush+flush: a fast and stealthy cache
attack. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment,
pages 279-299. Springer, 2016.

Daniel Gruss, Raphael Spreitzer, and Stefan Mangard.
Cache template attacks: Automating attacks on inclusive
last-level caches. In 24th USENIX Security Symposium
(USENIX Security 15), pages 897-912, 2015.

Roberto Guanciale, Hamed Nemati, Christoph Bau-
mann, and Mads Dam. Cache storage channels: Alias-
driven attacks and verified countermeasures. In 2016
IEEE Symposium on Security and Privacy (SP), pages
38-55. IEEE, 2016.

Shay Gueron. Efficient software implementations of
modular exponentiation. Cryptology EPrint Archive,
2011.

David Gullasch, Endre Bangerter, and Stephan Krenn.
Cache games—bringing access-based cache attacks on
aes to practice. In 2011 IEEE Symposium on Security
and Privacy, pages 490-505. IEEE, 2011.

https://www.openssl.org/
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/power_efficiency_guidelines_osx/PrioritizeWorkAtTheTaskLevel.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/power_efficiency_guidelines_osx/PrioritizeWorkAtTheTaskLevel.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/power_efficiency_guidelines_osx/PrioritizeWorkAtTheTaskLevel.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/power_efficiency_guidelines_osx/PrioritizeWorkAtTheTaskLevel.html
https://developer.arm.com/documentation/den0024/a/Multi-core-processors/Multi-processing-systems/Exclusive-monitor-system-location
https://developer.arm.com/documentation/den0024/a/Multi-core-processors/Multi-processing-systems/Exclusive-monitor-system-location
https://developer.arm.com/documentation/den0024/a/Multi-core-processors/Multi-processing-systems/Exclusive-monitor-system-location
https://developer.arm.com/documentation/den0024/a/Multi-core-processors/Multi-processing-systems/Exclusive-monitor-system-location
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Application-Level-Memory-Model/Synchronization-and-semaphores/Load-Exclusive-and-Store-Exclusive-usage-restrictions
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Application-Level-Memory-Model/Synchronization-and-semaphores/Load-Exclusive-and-Store-Exclusive-usage-restrictions
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Application-Level-Memory-Model/Synchronization-and-semaphores/Load-Exclusive-and-Store-Exclusive-usage-restrictions
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Application-Level-Memory-Model/Synchronization-and-semaphores/Load-Exclusive-and-Store-Exclusive-usage-restrictions
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Application-Level-Memory-Model/Synchronization-and-semaphores/Load-Exclusive-and-Store-Exclusive-usage-restrictions
https://developer.arm.com/documentation/den0024/a/Multi-core-processors/Multi-processing-systems/Synchronization
https://developer.arm.com/documentation/den0024/a/Multi-core-processors/Multi-processing-systems/Synchronization
https://developer.arm.com/documentation/den0024/a/Multi-core-processors/Multi-processing-systems/Synchronization
https://developer.arm.com/documentation/den0024/a/Multi-core-processors/Multi-processing-systems/Synchronization

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Gregor Haas, Seetal Potluri, and Aydin Aysu. itimed:
Cache attacks on the apple al0 fusion soc. In 2021
IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), pages 80-90. IEEE, 2021.

Maynard Handley. M1 explained. https://github.c
om/name99-org/AArch64-Explore, 2022.

Lorenz Hetterich and Michael Schwarz. Branch
different-spectre attacks on apple silicon. In Detection of
Intrusions and Malware, and Vulnerability Assessment:
19th International Conference, DIMVA 2022, Cagliari,
Italy, June 29-July 1, 2022, Proceedings, pages 116—135.
Springer, 2022.

Wei-Ming Hu. Reducing timing channels with fuzzy
time. Journal of Computer Security, 1(3-4):233-254,
1992.

Ralf Hund, Carsten Willems, and Thorsten Holz. Prac-
tical timing side channel attacks against kernel space
aslr. In 2013 IEEE Symposium on Security and Privacy,
pages 191-205. IEEE, 2013.

Intel. Performance monitoring impact of intel transac-
tional synchronization extension memory ordering issue.
2021.

Intel. Intel transactional synchronization extensions (in-
tel® tsx) memory and performance monitoring update
for intel processors. https://www.intel.com/cont
ent/www/us/en/support/articles/000059422/p
rocessors.html, 2022.

Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar.
S$a: A shared cache attack that works across cores and
defies vm sandboxing—and its application to aes. In
2015 IEEE Symposium on Security and Privacy, pages
591-604. IEEE, 2015.

Jan Jancar, Marcel Fourné, Daniel De Almeida Braga,
Mohamed Sabt, Peter Schwabe, Gilles Barthe, Pierre-
Alain Fouque, and Yasemin Acar. “they’re not that
hard to mitigate”: What cryptographic library developers
think about timing attacks. In 2022 IEEE Symposium on
Security and Privacy (SP), pages 632-649. IEEE, 2022.

Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Pono-
marev, and Aamer Jaleel. A high-resolution side-
channel attack on last-level cache. In Proceedings of the
53rd Annual Design Automation Conference, pages 1-6,
2016.

Sowoong Kim, Myeonggyun Han, and Woongki Baek.
Dprime+dabort: A high-precision and timer-free
directory-based side-channel attack in non-inclusive
cache hierarchies using intel tsx. In 2022 IEEE In-
ternational Symposium on High-Performance Computer
Architecture (HPCA), pages 67-81. IEEE, 2022.

(31]

(32]

(33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, et al. Spectre
attacks: Exploiting speculative execution. Communica-
tions of the ACM, 63(7):93-101, 2020.

David Kohlbrenner and Hovav Shacham. Trusted
browsers for uncertain times. In 25th USENIX Secu-
rity Symposium (USENIX Security 16), pages 463-480,
2016.

Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano
Giuffrida, Herbert Bos, and Kaveh Razavi. Netcat: Prac-
tical cache attacks from the network. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 20-38.
1IEEE, 2020.

Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémen-
tine Maurice, and Stefan Mangard. Armageddon: Cache
attacks on mobile devices. In 25th USENIX Secu-
rity Symposium (USENIX Security 16), pages 549-564,
2016.

Moritz Lipp, Andreas Kogler, David Oswald, Michael
Schwarz, Catherine Easdon, Claudio Canella, and
Daniel Gruss. Platypus: Software-based power side-
channel attacks on x86. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 355-371. IEEE, 2021.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, et al. Meltdown:
Reading kernel memory from user space. Communica-
tions of the ACM, 63(6):46-56, 2020.

Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Car-
los Rozas, Gernot Heiser, and Ruby B Lee. Catalyst:
Defeating last-level cache side channel attacks in cloud
computing. In 2016 IEEE international symposium on
high performance computer architecture (HPCA), pages
406-418. IEEE, 2016.

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B Lee. Last-level cache side-channel attacks are
practical. In 2015 IEEE Symposium on Security and
Privacy, pages 605-622. IEEE, 2015.

Robert Martin, John Demme, and Simha Sethumadha-
van. Timewarp: Rethinking timekeeping and perfor-
mance monitoring mechanisms to mitigate side-channel
attacks. In 2012 39th Annual International Sympo-
sium on Computer Architecture (ISCA), pages 118-129.
IEEE, 2012.

Clémentine Maurice, Nicolas Le Scouarnec, Christoph
Neumann, Olivier Heen, and Aurélien Francillon. Re-
verse engineering intel last-level cache complex address-
ing using performance counters. In Research in Attacks,

https://github.com/name99-org/AArch64-Explore
https://github.com/name99-org/AArch64-Explore
https://www.intel.com/content/www/us/en/support/articles/000059422/processors.html
https://www.intel.com/content/www/us/en/support/articles/000059422/processors.html
https://www.intel.com/content/www/us/en/support/articles/000059422/processors.html

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Intrusions, and Defenses: 18th International Symposium,
RAID 2015, Kyoto, Japan, November 2-4, 2015. Proceed-
ings 18, pages 48—65. Springer, 2015.

Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessan-
dro Chiesa, and Raluca Ada Popa. Oblix: An efficient
oblivious search index. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 279-296. IEEE, 2018.

Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha
Mehta, Sebastian Nowozin, Kapil Vaswani, and Manuel
Costa. Oblivious multi-party machine learning on
trusted processors. In USENIX Security Symposium,
volume 16, pages 10-12, 2016.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
attacks and countermeasures: the case of aes. In Cryp-
tographers’ track at the RSA conference, pages 1-20.
Springer, 2006.

Thomas Pornin. Bearssl. https://www.bearssl.or
g/constanttime.html.

Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede.
Prime+scope: Overcoming the observer effect for high-
precision cache contention attacks. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 2906-2920, 2021.

Moinuddin K Qureshi. Ceaser: Mitigating conflict-
based cache attacks via encrypted-address and remap-
ping. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 775—
787. IEEE, 2018.

Moinuddin K Qureshi. New attacks and defense for
encrypted-address cache. In Proceedings of the 46th In-
ternational Symposium on Computer Architecture, pages
360-371, 2019.

Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon:
Closing digital side-channels through obfuscated exe-
cution. In 24th USENIX Security Symposium (USENIX
Security 15), pages 431-446, 2015.

Joseph Ravichandran, Weon Taek Na, Jay Lang, and
Mengjia Yan. Pacman: attacking arm pointer authen-
tication with speculative execution. In Proceedings of
the 49th Annual International Symposium on Computer
Architecture, pages 685-698, 2022.

Thomas Ristenpart, Eran Tromer, Hovav Shacham, and
Stefan Savage. Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds. In
Proceedings of the 16th ACM Conference on Computer
and Communications Security, pages 199-212, 2009.

(51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

Sajin Sasy, Sergey Gorbunov, and Christopher W
Fletcher. Zerotrace: Oblivious memory primitives from
intel sgx. Cryptology ePrint Archive, 2017.

Michael Schwarz, Moritz Lipp, and Daniel Gruss.
Javascript zero: Real javascript and zero side-channel
attacks. In The Network and Distributed System Security
Symposium (NDSS), volume 18, page 12, 2018.

Michael Schwarz, Clémentine Maurice, Daniel Gruss,
and Stefan Mangard. Fantastic timers and where to
find them: High-resolution microarchitectural attacks
in javascript. In International Conference on Finan-
cial Cryptography and Data Security, pages 247-267.
Springer, 2017.

Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell,
Daniel Genkin, Yossi Oren, and Yuval Yarom.
Prime+probe 1, javascript 0: Overcoming browser-
based side-channel defenses. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2863-2880,
2021.

Anatoly Shusterman, Zohar Avraham, Eliezer Croitoru,
Yarden Haskal, Lachlan Kang, Dvir Levi, Yosef Meltser,
Prateek Mittal, Yossi Oren, and Yuval Yarom. Web-
site fingerprinting through the cache occupancy channel
and its real world practicality. IEEE Transactions on
Dependable and Secure Computing, 18(5):2042-2060,
2020.

Wei Song and Peng Liu. Dynamically finding minimal
eviction sets can be quicker than you think for side-
channel attacks against the llc. In Proceedings of the
International Symposium on Research in Attacks, Intru-
sions and Defenses (RAID), pages 427-442, 2019.

Qinhan Tan, Zhihua Zeng, Kai Bu, and Kui Ren. Phan-
tomcache: Obfuscating cache conflicts with localized
randomization. In The Network and Distributed System
Security Symposium (NDSS), 2020.

Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the intel sgx king-
dom with transient out-of-order execution. In 27th
USENIX Security Symposium (USENIX Security 18),
pages 991-1008, 2018.

Pepe Vila, Boris Kopf, and José F Morales. Theory
and practice of finding eviction sets. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 39-54.
IEEE, 2019.

Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, An-
drew C Myers, and G Edward Suh. Secdcp: secure

https://www.bearssl.org/constanttime.html
https://www.bearssl.org/constanttime.html

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

dynamic cache partitioning for efficient timing channel
protection. In Proceedings of the 53rd Annual Design
Automation Conference, pages 1-6, 2016.

Zhenghong Wang and Ruby B Lee. New cache designs
for thwarting software cache-based side channel attacks.
In Proceedings of the 34th Annual International Sympo-
sium on Computer Architecture, pages 494-505, 2007.

Andrew Waterman and Krste Asanovic, editors. The
RISC-V Instruction Set Manual, Volume I: User-Level
ISA, Document Version 20191213. RISC-V Foundation,
2019.

Mario Werner, Thomas Unterluggauer, Lukas Giner,
Michael Schwarz, Daniel Gruss, and Stefan Mangard.
Scattercache: Thwarting cache attacks via cache set ran-
domization. In USENIX Security Symposium, pages
675-692, 2019.

Barry Duane Williamson. Line allocation in multi-level
hierarchical data stores, 2012. US Patent 8,271,733.

John C Wray. An analysis of covert timing channels.
Journal of Computer Security, 1(3-4):219-232, 1992.

Haocheng Xiao and Sam Ainsworth. Hacky racers: Ex-
ploiting instruction-level parallelism to generate stealthy
fine-grained timers. In Proceedings of the 28th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, Vol-
ume 2, pages 354-369, 2023.

Mengjia Yan, Christopher W Fletcher, and Josep Torrel-
las. Cache telepathy: Leveraging shared resource attacks
to learn dnn architectures. In 29th USENIX Security
Symposium (USENIX Security 20), pages 2003-2020,
2020.

Yuval Yarom and Katrina Falkner. Flush+reload: A high
resolution, low noise, 13 cache side-channel attack. In
23rd USENIX Security Symposium (USENIX Security
14), pages 719-732, 2014.

Jiyong Yu, Lucas Hsiung, Mohamad EI’Hajj, and
Christopher W Fletcher. Data oblivious isa extensions
for side channel-resistant and high performance comput-
ing. In The Network and Distributed System Security
Symposium (NDSS), 2019.

Ruiyi Zhang, Taechyun Kim, Daniel Weber, and Michael
Schwarz. (m) wait for it: Bridging the gap between
microarchitectural and architectural side channels. In
USENIX Security, 2023.

Wenting Zheng, Ankur Dave, Jethro G Beekman,
Raluca Ada Popa, Joseph E Gonzalez, and Ion Stoica.
Opaque: an oblivious and encrypted distributed analytics

[72]

platform. In Proceedings of the 14th USENIX Confer-
ence on Networked Systems Design and Implementation,
pages 283-298, 2017.

Wu Zhenyu, Xu Zhang, and H Wang. Whispers in the
hyper-space: high-speed covert channel attacks in the
cloud. In USENIX Security Symposium, pages 159-173,
2012.

	Introduction
	Background
	Cache Side-Channel Attacks
	Apple M1
	Load-Linked/Store-Conditional in ARM64

	New Attack Primitive on M1 using LL/SC
	Micro-architectural strex Failures
	Experiment Design and Methodology
	Result and Takeaway

	Reverse-Engineering M1's Shared L2 Cache
	Reverse Engineering Private L1s
	L2 Eviction Set Generation with a Timer
	L2 Cache Inclusion Policy and AutoLock
	Eviction Set Splitting
	L2 Inclusion Policy
	AutoLock

	L2 Replacement Policy
	L2 Cache Set Index Mapping

	S2C Monitoring a Single Cache Set
	Attacker Model and Overview
	Attack Phase
	Preparation Phase

	S2C Monitoring Multiple Cache Sets
	WC Construction

	Evaluation
	Monitoring Multiple Cache Sets
	Covert Channel
	Attacking T-table AES

	Discussion
	Impact on Other Processors
	Mitigations

	Related Works
	Conclusion

