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Abstract

Processes retrieve a variety of resources, such as files,
from the operating system to function. However, se-
curely accessing resources has proven to be a challenging
task, accounting for 10-15% of vulnerabilities reported
each year. Current defenses address only a subset of
these vulnerabilities in ad-hoc and incomplete ways. In
this paper, we provide a comprehensive defense against
vulnerabilities during resource access. First, we iden-
tify a fundamental reason that resource access vulnera-
bilities exist — a mismatch between programmer expec-
tations and the actual environment the program runs in.
To address such mismatches, we propose JIGSAW, a sys-
tem that can automatically derive programmer expecta-
tions and enforce it on the deployment. JIGSAW con-
structs programmer expectations as a name flow graph,
which represents the data flows from the inputs used to
construct file pathnames to the retrieval of system re-
sources using those pathnames. We find that whether
a program makes any attempt to filter such flows im-
plies expectations about the threats the programmer ex-
pects during resource retrieval, the enabling JIGSAW to
enforce those expectations. We evaluated JIGSAW on
widely-used programs and found that programmers have
many implicit expectations. These mismatches led us to
discover two previously-unknown vulnerabilities and a
default misconfiguration in the Apache webserver. JIG-
SAW enforces program expectations for approximately
5% overhead for Apache webservers, thus eliminating
vulnerabilities due to resource access efficiently and in
a principled manner.

1 Introduction

Processes retrieve a variety of resources from the oper-
ating system to function. A resource is any abstraction
that the system call API of an operating system (OS) of-
fers to a process (apart from a process itself). Examples
of resources are files (configuration, data, or log files),

network ports, or interprocess communication channels
(IPCs) such as sockets and shared memory. Such OS
abstractions free the programmer from having to know
details of the underlying hardware and allow her to write
portable code. Conceptually, resource access is a pro-
cedure that takes as input the name (e.g., filename) and
namespace bindings (e.g., directories or symbolic links),
and returns the resource (e.g., file) as output to the pro-
cess.

Securely accessing resources has proven to be a chal-
lenging task because of adversarial control of the inputs
to resource access. Adversaries may control the input
name or a binding to direct victim processes to unsafe re-
sources. In the well-known time-of-check to time-of-use
(TOCTTOU) attack [6], an adversary exploits the non-
atomicity between check operations (e.g., access) and
use operations (e.g., open) to redirect the victim to re-
sources of the adversary’s choosing. Other attacks are
link following, untrusted search paths, Trojan-horse li-
brary loads, and directory traversal. These attacks are
collectively referred to as resource access attacks [40].
10-15% of the vulnerabilities reported each year in the
CVE database [12] are due to programs not defending
themselves against these attacks.

Current defenses against such vulnerabilities in con-
ventional OSes are ad-hoc and fundamentally limited.
First, traditional access control is too coarse-grained to
prevent resource access vulnerabilities. A process may
have legitimate access to both low-integrity adversar-
ial files and high-integrity library files; however, the re-
source access to load libraries should not access adver-
sary files (and vice versa). Traditional access control
does not differentiate between these resource accesses,
and thus cannot protect programs. Second, defenses in
the research literature require either system or program
modifications. System defenses have been mainly lim-
ited to TOCTTOU [11, 13, 25-27, 35-38, 44] and link
following [10], or require programs to be written to new
APIs [19,29,34,42]. However, system defenses are fund-



mentally limited because they do not have sufficient in-
formation about programs [8], and new APIs do not pro-
tect existing programs.

This paper presents an approach to automatically pro-
tect programs that use the current system call API from
resource access vulnerabilities. We make the follow-
ing observations: first, we find that a fundamental cause
for resource access vulnerabilities is programmer ex-
pectations not being satisfied during the program’s sys-
tem deployment. For example, during a particular re-
source access, a programmer might expect to fetch a re-
source that is inaccessible to an adversary (e.g., a log file
in /var/log) and thus not add defensive code checks,
called filters, to protect against adversarial control of
names and bindings. However, this expectation may not
be consistent with the view of the OS distributors (e.g.,
Red Hat, Ubuntu) who actually frame the access con-
trol policy. Thus, if permissions to /var/log allow ad-
versary access (e.g., through a world-writable directory),
adversaries can compromise the victim program. Our
second insight is that we can automatically infer if the
programmer expected adversarial control at a particular
resource access or not, without requiring any annotations
or changes to the program. We do this by detecting the
presence of name and binding filters that programmers
place in the program.

In this paper, we develop JIGSAW, the first system
to provide automated protection for programs during re-
source access without requiring additional programmer
effort. JIGSAW infers programmer expectations and en-
forces these on the deployment'. JIGSAW is based on
two conceptually simple invariants — that the system de-
ployment’s attack surface be a subset of the program-
mer’s expected attack surface, and that resource accesses
not result in confused deputy attacks [16]. These in-
variants, if correctly evaluated and enforced, can theo-
retically provide complete program protection during re-
source access. JIGSAW operates in two phases. In the
first phase, it mines programmer expectations by detect-
ing the presence of filters in program code. Using these
filters, JIGSAW constructs a novel representation, called
the name flow graph, from which the programmer’s ex-
pected attack surface is derived. We show that anoma-
lous cases in the name flow graph can be used to detect
vulnerabilities to resource access attacks. In the second
phase, JIGSAW enforces the invariants by leveraging the
open-source Process Firewall of Vijayakumar et al. [40],
a Linux kernel module that (i) knows about deployment
attack surface using the system’s adversary accessibil-
ity, and (ii) introspects into the program to identify the
resource access and to enforce its expectations as deter-
mined in the first phase.

Informally, JIGSAW enables “fitting” the programmer’s expecta-
tions on to its deployment.

We evaluate our technique by hardening widely-used
programs against resource access attacks. Our results
show that in general, programmers have many implicit
expectations during resource access. For example, in the
Apache web server, we found 65% of all resource ac-
cesses are implicitly expected not to be under adversary
control. However, this is not conveyed to OS distribu-
tors in any form, and may result in vulnerabilities. J1G-
SAW can be use to detect such vulnerabilities, and we
did find two previously-unknown vulnerabilities and a
default misconfiguration. However, the key feature of
JIGSAW is that it protects program vulnerabilities during
resource access whenever there is a discrepancy between
the programmers’ inferred expectations and the system
configuration, without the need to modify the program
or the system’s access control policies. We also find that
the Process Firewall can enforce such protection to block
resource access vulnerabilities whilst allowing legitimate
functionality for a modest performance overhead of ap-
proximately 5%. An automated analysis as presented in
this paper can thus enforce efficient protection for pro-
grams during resource access at runtime.

In summary, we make the following contributions.

e We precisely define resource access vulnerabilities
and show how they occur due to a mismatch in ex-
pectations between the programmer, the OS distrib-
utor, and the administrator,

We propose two invariants that, if evaluated and en-
forced correctly, can theoretically provide complete
program protection during resource access,

We develop JIGSAW, an automated approach that
uses the invariants to protect programs during re-
source access by inferring programmer expectation
using the novel abstraction of a name flow graph,
and

e We evaluate our approach on widely-used pro-
grams, showing how programmers have many im-
plicit expectations, as demonstrated by our discov-
ery of two previously-unknown vulnerabilities and
a default misconfiguration in our deployment of the
Apache web server. Further, we show that we can
produce rules to enforce these implicit assumptions
efficiently using the Process Firewall on any pro-
gram deployment.

2 Problem definition

In this section, we first give a precise definition of when
a resource access is vulnerable. This definition classifies
vulnerabilities into two broad categories. We then iden-
tify the fundamental cause for each of these vulnerability
categories — mismatch between programmer expectation
and system deployment, and difficulty in writing proper
defensive code.



01 conf = open("httpd.conf");
02 log_file = read(conf);
03 socket = bind(port 80);

04 open(log_file, O_CREAT); // File Squat

05 loop {
06 html_page = recv(socket);
07 strip(html_page, "../"); // Directory Traversal

// TOCTTOU Race
// TOCTTOU Race, Symlink

08 stat(html_page not symlink);
09 open(html_page, O_RDONLY);

10 write(client_socket, "200 OK");
11 log("200 OK to client")

Figure 1: Motivating example of resource access vulnerabilities
using a typical processing cycle of a web server.

2.1 Resource Access Attacks

A resource access occurs when a program uses a narme
to resolve a resource using namespace bindings. That is,
the inputs to the resource access are the name and the
bindings, and the output is the final resource. Figure 1
shows example webserver code that we use throughout
the paper: the webserver starts up and accesses its config-
uration file (line 2), from which it gets the location of its
log file. It then binds a socket on port 80 (line 3), opens
the log file (line 4), and waits for client requests. When
a client connects, it receives the HTTP request (line 6),
uses this name to fetch the HTML file (line 9). Finally, it
writes the status code to its log file (line 11).

Let us examine some possible resource access vul-
nerabilities. Consider line 6. Here, the program re-
ceives a HTTP request from the client, and serves the
page to the client. The client can supply a name such
as ../../etc/passwd, and if the server does not prop-
erly sanitize the name (which it attempts to do in line 7),
the client is served the password file on the server. This
is a directory traversal vulnerability. Next, consider the
check the server makes in line 8. Here, the server checks
that the HTML file is not a symbolic link. The reason
for this is that in many deployments (e.g., a university
web server serving student web pages), the web page is
controlled by an adversary (i.e., student). The server at-
tempts to prevent a symbolic link vulnerability, where a
student links her web page to the password file. How-
ever, a race condition between the check in line 8 and
the use in line 9, leads to a link following vulnerability
exploiting a TOCTTOU race condition.

To see how such vulnerabilities can be broadly clas-
sified, we introduce adversary accessibility to resources
and adversarial control of resource access. We then de-
fine when resource accesses are vulnerable, and use this
to derive a classification for vulnerabilities.

Adversary accessible resources. An adversary-
accessible resource is one that an adversary has permis-
sions to access (read for secrecy attacks, write for in-
tegrity attacks) under the system’s access control policy.
The complement set is the set of adversary-inaccessible
resources.

Expected/Safe Resource ‘ Malicious/Unsafe Resource ‘ Vulnerability Class

Adversary-Inaccessible | Adversary-Accessible
(Hi) Resource (Lo) Resource

Unexpected Attack Surface
Untrusted Search Path
File/IPC Squat

PHP File Inclusion

Adversary-Accessible
(Lo) Resource

Adversary-Inaccessible
(Hi) Resource

Confused Deputy
Link Following
Directory Traversal
TOCTTOU races

Table 1: Adversaries control resource access to direct victims
to adversary-accessible resources when the victim expected an
adversary inaccessible resource and vice-versa.

Adversary control of resource access. An adversary
controls the resource access by controlling its inputs (the
name or a binding). An adversary controls a binding if
she uses her write permissions in a directory to create a
binding [39]. An adversary controls a name if there is an
explicit data flow? from an adversary-accessible resource
to the name used in resource access. The adversary needs
write permissions to these resources to control names.

The directory traversal vulnerability above relies on
the adversary’s ability to control the name used in re-
source access. The link following vulnerability relies on
the adversary’s ability to control the binding (creating a
symbolic link).

Resource Access Vulnerability. A resource access
is vulnerable, i.e., a resource access attack is success-
ful, when an adversary uses her control of inputs to re-
source access (the name or a binding) to direct a vic-
tim to an adversary-accessible output resource when the
victim expected an adversary-inaccessible resource (and
vice versa).

On the one hand, the adversary can use control to
direct the victim to an adversary-inaccessible resource
when the program expects an adversary-accessible re-
source. The directory traversal and link following vul-
nerabilities of the classical confused deputy [16] (Row
2 in Table 1). On the other hand, the adversary can di-
rect the victim to an adversary-accessible resource when
the program expects an adversary-inaccessible resource.
Trojan-horse libraries is an example vulnerability of this
type. We call these unexpected attack surface vulnera-
bilities (Row 1 in Table 1), as they occur because the
programmer is not expecting adversary control at these
resource accesses. Table 1 classifies all resource access
vulnerabilities into these two types.

2.2 Causes for Resource Access Vulnera-
bilities

We identify two causes for resource access vulnerabili-

ties — one for each category in Table 1. The first cause is

a mismatch in expectations of adversary control of names
and bindings between the program and the deployment.

2 Attacks involving names require the adversary to inject sequences
of ../ or unicode characters. Thus, explicit data flow is necessary; just
implicit data flow is insufficient.



Consider Figure 2 that describes resource accesses from
the web server example in Figure 1. Here, the program-
mer expects the resource access of the HTML file to be
under adversary control, and to combat this, adds a name
filter 3 from the TCP socket (stripping . ./) as well as
a binding filter (check for a link). The programmer did
not expect the log file’s resource access to be adversary-
controlled, and therefore did not add any filters. How-
ever, due to a misconfiguration, this programmer expec-
tation is not satisfied in the deployment configuration,
causing a resource access vulnerability.

In general, resource access vulnerabilities are very
challenging to eliminate because they involve multiple
disconnected parties. First, programmers write code as-
suming that a certain subset of resource accesses are un-
der adversarial control. Resource access checks cause
overhead, so the programmer generally tries to minimize
the number of checks, thereby motivating fewer filters.
Second, there are OS distributors who define access con-
trol policies, thereby determining adversarial control of
resource accesses. However, these OS distributors have
little or no information about the assumptions the pro-
grammer has made about adversarial control, resulting
in a set of possible mismatches. Finally, there are ad-
ministrators who deploy the program on a concrete sys-
tem. The configuration specifies the location of various
resources such as log files. Thus, the administrator’s con-
figuration too may not match the programmer’s expecta-
tion.

The second cause for resource access vulnerabilities is
where the programmer does expect adversary-controlled
resource access, but the filter may be insufficient to pro-
tect the program. Note that when a program encounters
an adversary-controlled resource access, the only valid
resource is an adversary-accessible resource; otherwise,
the program is victim to a confused deputy vulnerabil-
ity. Thus, the program needs to defend itself by filtering
improper requests leading to a confused deputy. How-
ever, both name and binding filters are difficult to get
right due to difficulty in string parsing [4] and inherent
race conditions in the system call API [8] (e.g., lines 8, 9
in Figure 1).

In summary, the two causes of resource access vul-
nerabilities are: (a) unexpected adversarial control of
resource access, and (b) improper filtering of resource
access when adversary control of resource access is ex-
pected. These causes correspond to Rows 1 and 2 in Ta-
ble 1 respectively. With these two causes in mind, we
proceed to a model that precisely describes our solution.

Webserver. =
P =z

Filtered Name

Controlled
Binding

[

° Data
(Name for
HTML page)

Adv@ary

Figure 2: Demonstrating a mismatch between the expected and
deployed attack surfaces.

3 Model and Solution Overview

In this section, we provide two invariants that directly
address the two causes for resource access vulnerabilities
outlined above.

Consider the set of all resource accesses RA made by a
program®. A resource access happens when a system call
resolves a resource using a name and namespace bind-
ings. The program has code to filter the names and bind-
ings used during certain resource accesses (e.g., raz in
Figure 2). From this knowledge, we show in Section 5
how to derive P, the set of resource accesses that a pro-
grammer expects to be under adversarial control. This
set P is the expected resource access attack surface, or
simply, the expected attack surface.

Now, assume that the program is deployed and run on
a system. A subset of the resource accesses made by the
program is adversary-controlled in the deployment. Let
Y be the deployment’s access control policy. Let S be
the set of resource accesses that are adversary-controlled
under Y (ray in Figure 2). This set S defines the deploy-
ment resource access attack surface, or simply, the de-
ployment attack surface.

Given Y, the expected attack surface P is safe for the
deployment S if S C P, i.e., if all resource accesses in
the deployment attack surface are part of the program’s
expected attack surface. Intuitively, this means that the
program has filters to protect itself whenever a resource
access is adversary-controlled. If r is the resource access
under consideration, then, the invariant stated in propo-
sitional logic blocking unexpected adversary is:

Invariant: Unexpected Adversary Control(r) :
(reS)—(rep)

If this safety invariant is enforced, resource access vul-

3 A filter is a check in code that allows only a subset of names, bind-
ings and resources through.

4The representation used to identify a resource access is
implementation-dependent. In our implementation, we use program
stacks at the time of the resource access system call.



nerabilities are eliminated where programs do not expect
adversary control. Therefore, vulnerabilities are only
possible where programs expect adversary control.

Now that we are dealing with an adversary-controlled
resource access (€ S) that is also expected (€ P), the
only valid resource is an adversary-accessible resource;
otherwise, the program would be victim to a confused
deputy attack. We say that resource accesses in P are
protected from a confused deputy vulnerability if, when
the resource access is adversary-controlled (i.e., € S), it
does not accept adversary-inaccessible resources. Let R
be the set of resource accesses that retrieve adversary-
accessible resources (as defined under Y). Then, a re-
source access r is protected from confused deputy vul-
nerabilities if the following invariant stated in proposi-
tion logic holds:

Invariant: Confused Deputy(r) :

(reS)— (remRr) @

Once these two rules are enforced, the only re-
sources that are allowed are adversary-accessible re-
sources where programs expect adversary control. Prob-
lems occur if the program does not properly handle this
adversary-accessible resource. For example, if it does
not filter data read from this resource properly, memory
corruption vulnerabilities might result. Such vulnerabil-
ities that occur in spite of fetching the expected resource
are not within the scope of this work.

Let us examine how the rules above stop the vul-
nerability classes in Table 1. Consider vulnerability in
Row 2, where the victim expects an adversary inacces-
sible resource (high integrity or secrecy), but ends up
with an adversary-accessible (low integrity or secrecy)
resource. The typical case is an untrusted search path
where the program expects to load a high-integrity li-
brary, but searches for libraries in insecure paths due
to programmer oversight or insecure environment vari-
ables, and ends up with a Trojan horse low-integrity li-
brary. Here, since the programmer does not expect a
low-integrity library, she does not place a binding (or
name) filter. Thus, we will infer that this resource ac-
cess is not part of the expected attack surface (¢ P), and
Invariant 1 above will stop the vulnerability if this re-
source access is controlled in any way (binding or name)
by an adversary (€ S). The other vulnerability classes
in this category are blocked similarly. Next, consider
vulnerabilities in Row 1. Here, the victim expects an
adversary-accessible resource (low integrity or secrecy),
but ends up with an adversary inaccessible resource (high
integrity or secrecy). In a link following vulnerability,
the adversary creates a symbolic link to a high-secrecy
or high-integrity file, such as the password file. Thus, the
adversary uses her control of bindings (€ S) to direct the
victim to an adversary-inaccessible resource (¢ R). In a

PHASE 1:

: PHASE 2:
FIND EXPECTED ATTACK SURFACE RUNTIME ENFORCEMENT

Program Deployment
Execute

Detect Detect
Binding @ Name

Filters Filters ,?ch\
Calculate program's P H aci::;:gg‘;y ©
expeﬁzg;ﬂack@ Llnvariams H resources @

s. ?—J

Figure 3: Overview of the design of our system.

directory traversal vulnerability, the adversary uses her
control of the name to supply sequences of ../ to di-
rect the victim to a high-secrecy or high-integrity file. In
both cases, Invariant 2 will block the vulnerability since
the adversary controls the resource access (€ S) through
the name or binding, but the resource is adversary inac-
cessible (£ R).

4 J1GSAW Approach Overview

Figure 3 shows an outline of the design of JIGSAW. JI1G-
SAW has two phases. In the first phase, JIGSAW calcu-
lates P, the expected attack surface. Finding P requires
inferring programmer expectations. To infer program-
mer expectations, we propose an intuitive heuristic — if
the programmer expects adversary control at a resource
access, she will place filters in code to handle such con-
trol. Given the program, we perform a black-box analy-
sis to detect the existence of any binding and name filter-
ing separately (Step 1 in Figure 3), and use this informa-
tion to calculate the program’s expected attack surface
(Step 2).

In the second phase, JIGSAW enforces Invariants 1
and 2 above by determining S, the deployment attack sur-
face, and R, the set of adversary-accessible resources.
The deployment’s access control policy Y determines
which resources and bindings are adversary-accessible.
We leverage existing techniques to calculate adversary
accessibility given Y [10, 17,41] (Step 3). At runtime,
if an adversary-accessible resource is used, that resource
access is in R. If the name is read from an adversary-
accessible resource or the binding used in resolving that
name is adversary accessible, then that resource access
is in S. Finally, we need to enforce Invariants 1 and 2
for individual resource accesses (Step 4). Any enforce-
ment mechanism that applies distinct access control rules
per individual resource access system call would be suit-
able. In our prototype implementation we leverage the
open-source Process Firewall [40] which enables us to
support binary-only programs (i.e., our prototype imple-
mentation does not rely on source code access).



S Phase 1: Find Expected Attack Surfaces

The first step is to determine the expected attack surface
P for a program. We do this in two parts. First, we pro-
pose a heuristic that implies the expectations of program-
mers with respect to the adversary control of the inputs to
resource access and introduce the abstraction of a name
flow graph to model these expectations and enable the
detection of missing filters (Sections 5.1 to 5.3). Next,
we outline how one can use dynamic analysis methods
to build name flow graphs by accounting for adversary
control of names and bindings (Sections 5.4 and 5.5).

5.1 Resource Access Expectations

Determining P requires knowledge of the programmers’
expectations — whether the programmers expected the re-
source access to be under adversary control or not. The
most precise solution to this problem is to ask each pro-
grammer to specify her expectation. Unfortunately, such
annotations do not exist currently. As an alternative, we
use the presence of code filters to infer programmer ex-
pectation. We use the following heuristic:

Heuristic. If a programmer expects adversarial con-
trol of a resource access, she will add code filters to pro-
tect the program from adversarial control.

Thus, the way we infer if a programmer expects an
adversary-controlled resource access is by detecting if
she adds any code to filter such adversarial control. An
adversary controls a resource access by controlling either
the name or a binding used in the resource access. Thus,
we need to detect whether a program filters names and
bindings separately.

Before presenting exactly how we detect filtering, we
will introduce the concept of a name flow graph for a
program, which we will use to derive the expected attack
surface P given knowledge of filtered resource accesses.

5.2 Name Flow Graph

We introduce the abstraction of a name flow graph, which
represents the data flow of name values among resource
accesses in the program annotated with the knowledge
of whether names and/or bindings are filtered each in-
dividual resource access. Using this name flow graph,
we will show that we can compute resources accesses
that are missing filters automatically. A name flow graph
G, = (V,E) is a graph where the resource accesses are
nodes and each edge (a,b) € E represents whether there
exists a data flow in the program between the data of any
of the resources retrieved at the access at node a and any
of the name variables used in an access at node b. We
refer to these edges as name flows.

Further, V =V UV, where V; is the set of resource ac-
cesses that filter bindings and V, the set of vertices that do
not. Similarly, E = Ey UE,, where Ey is the set of name
flows that are filtered, and E, the set that is not. That is,
a name flow graph is a data-flow graph that captures the
flow of names and is annotated with information about
filters. The meaning of filtering for names and bindings
is described in Sections 5.4 and 5.5, respectively.

Name Flow Graph

Line 9 Line 3
HTML Network
file Socket

ELF
binary
loader

Line 4
Log
File

Figure 4: Name flow graph for the example in Figure 1.

The name flow graph for our web server in Figure 1
is shown in Figure 4. Its nodes are resource accesses
and edges connect two resource accesses if the data read
at the source resource access may affect the name used
at the target resource access. The bold nodes are those
that filter bindings, whereas the bold edges are those that
filter names.

The name flow graph determines P, the expected at-
tack surface. According to our heuristic in Section 5, a
resource access is part of the expected attack surface if
a programmer places both name and binding filters on
the resource access to handle adversarial control. How-
ever, not all name flows need be filtered — only name
flows originating from other resource accesses also un-
der adversarial control must be. Since this definition is
transitive, we need to start with some initial information
about resource accesses that are part of the expected at-
tack surface, which we do not have. However, we find
that we can easily define which resource accesses should
not be in P. That is, we can use the absence of filters
to determine resource accesses that should not be under
adversarial control. This complement set of P is P. We
define an approach to calculate P below. Any resource
access not in P is then in P, the expected attack surface.

Formally, a resource access u € P if any of the follow-
ing conditions are satisfied:

(i) u € V,: Binding filters do not exist, or
(ii) u Sve V.. There exists an unfiltered name flow edge
originating at u, or
(iii) (u = v) A (v € P): There exists a name flow path
originating at u to a resource access in P.

Consider the example in Figure 5. Here, resource ac-
cesses a and b filter bindings (a,b € V). ¢ does not filter
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Figure 6: Determining whether a resource access in a resource

flow graph should be in P.

bindings (¢ € V). c¢’s name is determined from input
at b, and b’s name is determined from input at a. The
name flow from a to b is filtered. By (i) above, ¢ € P
since it does not filter bindings, and the programmer did
not expect adversary control by our heuristic. Next, by
(ii) above, b € P, since it is the origin of an unfiltered
name flow (which adversaries should not control). Fi-
nally, by transitivity using (iii) above, a € P, because it
is the origin of a name flow to a resource access that is in
P, and thus adversaries should not control the name read
from resource access at a. All combinations of name and
binding filters between a pair of nodes and the inference
of node membership in P are presented in Figure 6.

Figure 7 describes the algorithm used to calculate
membership in P, given V¢,V,,Er, and E,. It imple-
ments (i)-(iii) above. It starts by initially assigning any
node that does not filter bindings to P ((i)), and the source
of unfiltered name flows to P ((ii)). It then uses a fixed
point iteration to apply the transitive rule (iii), and adds
the source of any name flow to a target already in P to P.
At the termination of the algorithm, any resource access
not in P is in P.

5.3 Detecting Missing Filters

Using the name flow graph, we can compute cases where
filtering is likely missing. Intuitively, a filter is missing if
the program filters some adversarial control of resource
access but not others. This can happen in two cases: (a)
if an incoming name flow is filtered but the binding at the
resource access is not, or (b) a binding is filtered but an
outgoing name flow is not. The dotted boxes in Figure 6
show these cases.

Precisely, filters are possibly missing at a resource ac-
cess r in two cases:

Case I:  3s,e: (s rhe€EfAreV,). There exists
a filter on an incoming name flow (indicating adversarial
control of name) but not a binding filter, or

Input: Set of unfiltered names E,, and bindings V,,

Output: P
1: PO > Resource accesses that can be adversary controlled
2: forveV,do > Any node that does not filter bindings
3: P+ PUv > Cannot be adversary controlled
4: end for
5: fore € E, do > Any edge that does not filter name
6: P+ PUe.src > Mark source as not adversary controlled
7: end for
8: ¢« True
9: while ¢ = True do > Propagate set - fixed point iteration

10: ¢« False

11: fore € E, do

12: if e.tgt € PAe.src ¢ P then

13: P+ PUe.src

14: ¢ < True

15: end if

16: end for

17: end while

Figure 7: Inferring P from knowledge of filtering

Case2:  Js,e:(r=sAe€E,Ar € Vy). There exists
a filter on a binding (indicating an adversary-accessible
resource) but not on all outgoing name flows.

As an example of a missing filter indicating a vulner-
ability, we found that in the default configuration, the
Apache web server filters the name supplied by a client
(by stripping . . /), but does not filter the binding used to
fetch the HTML file. Therefore, an adversary can create
a link of her web page to /etc/passwd, which will be
served.

Not all possibly missing filters indicate a vulnerabil-
ity. Some filters perform the same checks as JIGSAW.
As an example, we found that 1ibc had binding filters
when it accessed (some) resources under /etc to reject
adversary-accessible resources, enforcing Invariant 1 it-
self. Thus, there is no need to filter names originating
from this resource (although Case 2 indicates a possi-
bly missing filter). We call filters that perform the same
checks JIGSAW, redundant.

5.4 Detecting Presence of Binding Filters

We now outline our technique for detecting the filtering
of bindings. Our objective in detecting here is to deter-
mine resource accesses that perform any filtering of bind-
ings. Note that we do not aim to prove the correctness of
the filtering checks themselves.

To define how we detect binding filters, we discuss
how bindings are involved in resource access and how
programs filter them. A program accesses many bindings
(directories and symbolic links) during a single resource
access. In theory, any one of these is controllable by the
adversary. Filtering of directories is done by checking its
security label, whereas link filtering checks if the binding
is a link, and optionally, the security label of the link’s



target. Bindings are filtered if, in some cases, the pro-
gram does not accept a binding based on checks done on
any binding used during resource access. An ideal solu-
tion would detect the existence of any such check.

Both static and dynamic approaches are possible to de-
tect binding filtering. Static analysis uses the program
code to determine if checks exist. However, this is quite
challenging as there are a wide variety of ways to per-
form checks, including, for example, lowering the priv-
ilege of the process to that of the adversary [9, 39]. In-
stead, we opt for a dynamic analysis that detects the ef-
fects of filtering.

To detect filters, we have to choose a test that will def-
initely fire the filter, if such a filter is present. Our tests
are attacks that attempt to exploit vulnerabilities if filters
were absent. Not all attacks corresponding to vulnerabil-
ity classes in Table 1 are suitable as tests to detect pro-
gram filters. Consider the subset of attacks correspond-
ing to vulnerability classes in Table 1 where the adver-
sary uses her control of bindings to direct the victim to
an adversary-accessible resource (Row 1). If the program
accepts the adversary-accessible resource, it is generally
not possible to determine if this was due to the program
intentionally accepting this resource or due to the pro-
gram assuming that there would be no adversary control
of the resource access. On the other hand, consider the
subset of attacks corresponding to vulnerabilities where
the adversary uses control of bindings to direct the victim
to an adversary-inaccessible resource (e.g., link follow-
ing). Here, if the programmer were expecting adversary-
controlled bindings, she has to add checks to block this
resource access as this scenario is, by definition, a con-
fused deputy vulnerability. Thus, we can use the results
of a link following vulnerability to determine the exis-
tence of binding filters, and thus, the programmer’s ex-
pectation. In Section 8, we describe a dynamic analysis
framework that performs these tests.

5.5 Detecting Presence of Name Filtering
The other way for adversaries to control resource access
is to control names. We aim to determine if the program
makes any attempt to filter names, which would indicate
that the programmer expected to receive an adversary-
controlled name. Again, note that to determine program-
mer expectation, we only need to determine if there is
any filtering at all, not if the filtering is correct.

To determine name filters in programs, we first de-
scribe how names originate. Names are either hard-
coded in the program or received at runtime. First, hard-
coded names are constants defined in the program binary
or a dynamic library. For an adversary to have control
of hard-coded names, she needs to control the binary or
library, in which case trivial code attacks are possible.
Therefore, we assume hard-coded names to not be under

adversarial control. Second, programs get names from
runtime input. In Figure 1, a client is requesting a HTML
file by supplying its name. The server reads the name
from this request (name source) and accesses the HTML
file resource from this client input (name sink). In gen-
eral, a name can be computed from input using one or
more read system calls.

Next, we define the action of filtering names. There
are two ways in which programs filter names. First, pro-
grams can directly manipulate the name. For example,
web servers strip malicious characters (e.g., ..) from
names. Second, it can check that the resource retrieved
from this name is indeed accessible to the adversary. For
example, the setuid mount program accepts a directory
to mount from untrusted users who are potential adver-
saries, but checks that the user indeed has write permis-
sions to the directory before mounting. Thus, a name is
filtered between a source and a sink if, in some cases, the
name read at a source is changed, or the resource access
at the sink is blocked. An ideal solution would detect the
existence of any such checks.

Determining name filtering is a two-step process.
First, we should determine pairs of resource accesses
where the name is read from one resource (source) and
used in the other (sink). Next, we determine if the pro-
gram places any filters between this source-sink pair.

Again, we can use static or dynamic analysis to find
pairs and filters. To detect filters, Balzarotti et al. used
string analysis [4], whereas techniques such as weakest
preconditions [7] or symbolic execution [18] can also be
used. However, static analysis techniques are tradition-
ally sound, but may produce false positives. Therefore,
we use dynamic analysis to detect evidence of filtering.

To determine both pairs and filtering, we use a run-
time analysis inspired by Sekar [33]. Sekar’s aim is to
detect injection attacks in a black-box manner. The tech-
nique is to log all reads and writes by programs, and find
a correlation between reads and writes using an approx-
imate string matching algorithm. Thus, given as input
a log of the program’s read and write buffers, the algo-
rithm returns true if a write buffer matches a read buffer
“approximately”.

We adapt this technique to find name flows. We log
all reads and names during resource access, and find
matches between names and read buffers. We first try
matching the full name; if no match is found, we try to
match the directory path and final resource separately.
Often, parts of a name are read from data of different re-
sources. For example, a web server’s document root is
read from the configuration file, whereas the file to be
served is read from the client’s input. Both of these are
combined to form the name of the resource served. As
with the method for finding binding filters, we use the
directory traversal attack in Row 2 to trigger filtering.



Since our analysis is a black-box approach, if a possi-
ble name flow is found, the read buffer might just coinci-
dentally happen to have the name, but not actually flow
to it. Thus, we execute a verification step. We run the
test suite again, but this time change the read buffer con-
taining the name to special characters, noting if the name
also changes. If it does, we have found a name flow.

6 Phase 2: Enforce Programmer Expecta-
tions

Once we find the expected attack surface P, JIGSAW en-
forces resource access protections using Invariant 1 and
Invariant 2 in Section 3 on program deployments. To do
this, a reference monitor [1] has to mediate all resource
accesses and enforce these rules. To enforce these rules
correctly for each resource access, a reference monitor
must determine whether this resource access is in P, and
identify the system deployment’s attack surface S and ad-
versary accessibility to resources R.

6.1 Protecting Accesses in P at Runtime
The first challenge is to determine whether the resource
access is in P. There are two ways to do this: (a) the
program code can be modified to convey its expectation
to the monitor through APIs, or (b) the monitor already
knows the program expectation and identifies each re-
source access. Capability systems use code to convey
their expectation during each resource access. Capabil-
ity systems [21] present capabilities for only the expected
resources to the OS during access. For example, decen-
tralized information flow control (DIFC) systems [19,45]
require the programmer to choose labels for the autho-
rized resource for each resource access. However, such
systems require modifying program code and recompila-
tion, which can be complex to do correctly.

Another option is for the reference monitor to extract
information necessary for it to identify the specific re-
source access, and hence whether it is in P. Researchers
have recently made the observation that if they only
protect a process, they may introspect into the process
(safely) to make protection decisions [40]. They imple-
mented a mechanism called the Process Firewall, a Linux
kernel module that introspects into the process to enforce
rules to block vulnerabilities per system call invocation.
This is similar in concept to a network firewall that pro-
tects a host by restricting access per individual firewall
rules. We use this option because it does not require pro-
gram code or system access control policy changes, and
was shown to be much faster than corresponding pro-
gram checks in some cases.

The general invariant that the Process Firewall en-
forces is as follows:

pf_invariant(subject, entrypoint, syscall trace,
object, resource_id, adversary_access, op) — Y|N

Here, entrypoint is the user stack at the time of the
system call. Resource accesses in P are identified by
their entrypoint. A single system call may access mul-
tiple bindings (e.g., directories and links) and a resource.
As each binding and resource is accessed at runtime, its
adversary access is used in the decision. If a binding
is adversary-accessible, then the resource access is in S.
If the final resource is adversary-accessible, then the re-
source access is in R. If a resource access in R is the
source of a name, this fact is recorded in syscall_trace
and the resource access using this name is in S. This
general invariant is instantiated to enforce our invariants
in Section 3. The invariants are converted into Process
Firewall rules using templates (Section 8).

6.2 Finding Adversary Accessibility R

R is the set of resource accesses at runtime that use adver-
sary accessible resources, and is required to enforce In-
variant 2 in Section 3. Calculating R requires knowing:
(a) who an adversary is, and (b) whether the adversary
has permissions to access resources. We address these
questions in turn.

There have been several heuristics to determine who
an adversary is. Gokyo [17] uses the system’s mandatory
access control policy to determine the set of SELinux la-
bels that are trusted for the system — the rest are adversar-
ial. Vijayakumar et al. [41] extend this approach to iden-
tify per-program adversaries. Chari et al. [10] and Pu et
al. [43] use a model based on discretionary access control
— a process running with a particular user ID (UID) has
as its adversaries any other UID, except for the superuser
(root). We can use any of these approaches to define an
adversary.

Second, we need to determine whether an adversary
has permissions to resources. As discussed in Section 2,
an adversary-accessible resource is one that the sys-
tem’s access control policy Y allows an adversary per-
missions to (read for secrecy vulnerabilities, write for in-
tegrity vulnerabilities, and execute for both). This can be
queried directly from the access control policy Y. Any
resource access at runtime that uses adversary-accessible
resources is in R.

Some resources become adversary-accessible through
indirect means. For example, programs log adversarial
requests to log files. Thus, adversaries affect data in log
files even if the access control policy does not give ad-
versaries direct write permissions to log files. Such ex-
ceptional resources are currently manually added to R.

6.3 Finding Deployment Attack Surface S

The deployment attack surface S is the set of resource ac-
cesses a process performs at runtime that are adversary-
controlled. An adversary can control resource accesses



by controlling either the name or a binding (or both). An
adversary controls a binding if she uses her write per-
missions in a directory to create a binding. An adversary
controls a name if the adversary has write permission to
the resource the name is fetched from.

To determine adversary control of names, we need to
detect if there is a data flow from adversary-supplied data
to a name used in a resource access. Data flow is most of-
ten determined by taint tracking [5,20,22,31]. However,
taint tracking techniques have overheads ranging from
2x to 50 [28]. Instead, JIGSAW approximates data flow
using control flow (entrypoints — process stacks at the
time of reading names and using names). Pairs of pro-
cess stacks during read and resource access system calls
are initially associated by detecting explicit data flow be-
tween these calls (Section 5.5). During enforcement, if
the Process Firewall sees the same stacks, we assume an
explicit data flow between the read and resource access
system calls, and the resource access is in S.

6.4 Finding Vulnerabilities

We can use the rules generated to also find vulnerabil-
ities. Vulnerabilities are detected whenever a resource
access is denied by our rules but is allowed by the pro-
gram.

We use the same dynamic analysis from test suites
that we use to detect the presence of filters in Sec-
tions 5.4 and 5.5 to also test the program for vulnera-
bilities in our particular deployment. Instead of enforc-
ing the rules, we compare denials by Invariant 1 or In-
variant 2 in Section 3 with whether the program allows
the resource access. If the rule denies resource access
whereas the program accepts the resource, we flag a vul-
nerability. Note that this process locates vulnerabilities
in our specific deployment; there might be other vulner-
abilities in other deployments that we miss. In any case,
our rules, if enforced, will protect these program vulner-
abilities in any deployment.

7 Proving Security of Resource Access

In this section, we first argue that if P, S and R are cal-
culated perfectly, then JIGSAW eliminates resource ac-
cess vulnerabilities. Our argument is oracle-based; that
is, we can reason about the correctness of our approach
assuming the correctness of certain oracles on which it
depends. Our argument is contingent on the correctness
of the three oracles that determine: (i) program expecta-
tion for P, (ii) adversary accessibility of resources for R,
and (iii) adversary control of names and bindings for S.
We then discuss the practical limitations JIGSAW faces
in realizing these oracles.

7.1 Theoretical Argument

Assuming ideally correct oracles for determining pro-
grammer expectation, adversary accessibility of re-
sources and adversary control of names and bindings, we
argue that Invariants 1 and 2 in Section 3 protect a pro-
gram from all resource access vulnerabilities as defined
in Section 2.1 without false positives.

According to the definition in Section 2.1, a resource
access vulnerability is caused when an adversary con-
trols an input (name or binding) to direct a program to an
adversary-accessible resource when the program expects
an adversary-inaccessible resource (and vice-versa). Our
proof hinges on two observations. First, resource access
vulnerabilities are impossible if adversaries do not con-
trol the input name or binding. Invariant 1 denies all ad-
versary control of inputs where the programmer expects
only adversary-inaccessible resources, thus eliminating
all vulnerabilities in these cases. Thus, vulnerabilities
are only possible where the programmer expects to ad-
versary control of input name or binding. Second, if in-
deed the adversary controls the input name or binding,
the only authorized output is an adversary-accessible re-
source; otherwise, a confused deputy vulnerability (Row
2 in Table 1) can result. To block this, Invariant 2 allows
retrieval of only adversary-accessible resources when in-
put is under adversary control. Hence, we have shown
that our rules deny resource accesses if and only if adver-
sary control of input directs the program to unexpected
resources, thus blocking resource access vulnerabilities
without false positives.

7.2 Practical Limitations

In a practical setting, the determination of program ex-
pectations, adversary accessibility to resources, and ad-
versary control of names and bindings is imperfect. This
may lead to false positives and false negatives. We will
discuss limitations with determining each of these in
turn.

The first oracle determines programmer expectation,
for which we use the intuitive heuristic in Section 5: if a
programmer does not place filters, then she does not ex-
pect adversary control of resource access, i.e., she only
expects adversary-inaccessible resources. The detection
of filters themselves uses runtime analysis. This faces
three issues: (i) if identified filters are actually present,
(ii) if actual filters are missed, and (iii) incompleteness
of runtime analysis. First, if a detected filter is not ac-
tually present, this might result in false negatives. How-
ever, to detect filters, we mimic an attack and detect if
the program blocks the attack. The only way the pro-
gram could have blocked the attack is if it had a filter.
Second, if an actual filter is missed, this might result in
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Figure 8: Implementation of JIGSAW’s testing framework.

false positives. By the same argument above, if the fil-
ter cannot defend against our mimicked attack, then it is
not complete enough anyway. Third, runtime analysis
is inherently incomplete and may lead to false negatives
for those resource accesses not covered. However, even
with the limited developer test suites currently available,
we were able to generate rules to block many vulnerabil-
ities and find previously-unknown ones even in mature
programs.

Next, we have the oracle that determines adversary ac-
cessibility to resources. The main challenge here is de-
termining who an adversary is. If we do not have a suffi-
ciently strong adversary model, we may miss adversaries
and hence have false negatives. While there is no univer-
sally agreed-upon definition of who an adversary is, we
use the intuitive DAC model’ that most programmers as-
sume [10,43]. However, our framework permits the use
of different adversary models. More conservative adver-
sary models [41] will identify more adversary-accessible
resources, possibly exposing more vulnerabilities.

The final oracle determines adversary control of
names and bindings. The challenge here is to determine
if there is a data flow from adversary-supplied data to a
name used in a resource access. As described in Sec-
tion 6.3, JIGSAW approximates data flow using control
flow. However, even if control flow is the same across
two executions of the program, it does not necessarily
imply the data flow is the same, leading to false posi-
tives and negatives. While we have not found this to be a
problem in our experiments (Section 9.4), more precise
data flow tracking techniques [5,20,31] will address this
challenge.

8 Implementation

There are two parts to our implementation. First, we
need to test individual program resource accesses to de-
tect the presence of filters. This is used by the algorithm
in Figure 7 to generate P. Second, we need to enforce
invariants in Section 3 using the Process Firewall. This
involves determining R and S; this is done as discussed
in Section 6.2 and Section 6.3 respectively.

8.1 Testing Programs

To test programs, we develop a framework that can inter-
cept system calls and pass control to a user-space com-
ponent that performs the tests. The kernel component
is a small module that intercepts system calls and re-
turns, and forwards them to a user-space daemon through
netlink sockets. The flow of operations is as shown in
Figure 8. When a monitored program makes a system
call, it is intercepted by the framework’s kernel module,
and forwarded to the user-space daemon. There are two
resource namespaces available per program — a “test”
namespace that is modified for hypothetical tests and the
original namespace (similar in principle to [39]). This
daemon introspects into the monitored process to iden-
tify its resource access (using the user-space stack), and
checks its history to see if filters have already been de-
tected. If not, it then proceeds to modify the test filesys-
tem (for binding filter detection). It then returns to the
kernel module. Control passes to the process in ker-
nel mode, which accesses the original or test filesystem
(depending on whether binding filters are being tested).
The system call end is also intercepted, and similarly for-
warded to the user-space daemon to test for name filters
(as the read buffer is now available and can be modified).
We use test suites provided with program source code
to drive the programs. We repeatedly run these suites
until all resource accesses have been tested for filters.

8.2 Enforcing Invariants

As noted, JIGSAW uses the open-source Process Fire-
wall [40] to perform enforcement. The Process Firewall
is a kernel module that uses the Linux Security Modules
to mediate resource accesses. In addition, it can perform
a user stack backtrace to identify the particular resource
access being made. Given P and the edges in the name
flow graph, we have two rule templates to instantiate in-
variants into rules to be enforced by the Process Firewall.
Figure 9 shows the templates. Note that the rules for con-
fused deputy are stateful. Adversary control of name or
binding is recorded by the first rule, the adversary’s iden-
tity is recorded by the second rule, and the third rule uses

3 A process with uid X has as its adversaries any uid ¥ # X (except
superuser root)



Rule Templates

Unexpected Adversary Control: (r € S) A (r € P) = Deny
For each r € P:
pftables -i r.ept -d LOW -o DIR_SEARCH -j DROP

Confused Deputy: (r € P)A(r € S)A(r € R) = Deny

Name:

For each r| € P such that E(ry,r2):

pftables -i rl.ept -d LOW -j STATE --set --key
<random_value> --value 1

pftables -i rl.ept -d LOW -j STATE --set --key "adv"
--value ADV_ID

pftables -i r2.ept -d HIGH -m STATE --key
<random_value> --cmp 1 --equal -m PERM -s --key
"adv" --deny -j DROP

Binding:

pftables -d LOW -o DIR_SEARCH -j STATE --set --key
<rl.ept> --value 1

pftables -d LOW -o DIR_SEARCH -j STATE --set --key
"adv" --value ADV_ID

pftables -d HIGH -m STATE --key <random_value> --cmp
1 --equal -m PERM -s --key "adv" --deny -j DROP

Figure 9: Process Firewall rule templates.

this state to block access to an adversary-inaccessible re-
source. Thus, R is adversary-specific; in addition to pro-
tecting programs against all its adversaries, it also pre-
vents one adversary from using the program as a con-
fused deputy against another adversary.

9 Evaluation

In this section, we evaluate our technique on several
widely-used programs. We chose these programs be-
cause: (i) resource accesses are central to their opera-
tion, and (ii) they offer a study in contrast — OpenSSH
and Postfix were explicitly architected for security [30],
whereas the others were not. To derive expectations, we
used developer test suites that came with the program or
created our own. We answer: (a) how common are im-
plicit programmer expectations during resource access,
(b) whether the resulting expected attack surface was
safe for our deployment and vulnerabilities where not,
and (c) security effectiveness of hardened programs from
resource access vulnerabilities. We find that in all pro-
grams except OpenSSH, more than 55% of all resource
accesses are implicitly expected to be free from adver-
sarial control. Moreover, we discovered two previously-
unknown vulnerabilities and one default misconfigura-
tion in the Apache webserver. Finally, we find that pro-
tection can be enforced with an overhead of <6% on a
variety of programs and few false positives.

9.1 Implicit Programmer Expectations

Table 2 shows a summary of the results obtained by J1G-
SAW. We first note the percentage of resource accesses
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Figure 10: Resource Flow Graph for Apache. Nodes that have
the icon of adversaries beside them are those where we found
adversarial control of resource access in our deployment.

that are implicitly expected to not be in P, due to the
absence of name or binding filters. For all programs
except OpenSSH, the programmer placed no filters for
more than 55% of resource accesses. If any of these re-
source accesses somehow come under adversarial con-
trol, the program can be compromised. It is very easy for
OS distributor policies or administrator configurations to
not match with these programmer assumptions. By ex-
plicitly identifying such resource accesses, we are able
to protect them from any adversarial access in any de-
ployment. OpenSSH makes fewer assumptions during
resource access (17.6%). However, OpenSSH was re-
architected after several years of experience with previ-
ous vulnerabilities. Using our technique, we can protect
all resource accesses.

9.2 Case Study: Apache
In total, we found 20 resource accesses for Apache. Of
these, Apache code filtered bindings for 7 accesses, and
the name for 5 accesses. This led to 13 out of 20 resource
accesses (65%) not being in P (using the algorithm in
Figure 7). We found three resource accesses in S — P for
the Apache web server in our deployment, violating the
first rule in Section 3. These corresponded to two previ-
ously unknown vulnerabilities in the Apache web server
and one default misconfiguration. That such problems
occur in even a mature program like Apache shows the
importance of principled reasoning of resource access.
While we found these vulnerabilities in our deployment,
other deployments may have different vulnerabilities, but
all will be blocked using our enforcement (Section 9.3).
Figure 10 shows the resource flow graph for Apache.
Apache’s expected attack surface is centered around re-
source accesses during the interaction with a client to
serve a web page. It assumes that the location of the main
configuration file and resources specified in it are not ad-
versary controlled. Apache’s resource flow graph is rela-
tively complex due to long chains of resource flows, and
it is difficult to reason about safety without the help of au-
tomated tools like ours. Resource accesses that had vul-



Program Dey 4 E| |Vf| |Efl €P &P Impl Missing Redundant Vulns.  Inv. Is  Inv. 2s
Tests? Exp. %

Apache v2.2.22 Yes* 20 23 7 5 7 13 65% 2 0 3 13 12

OpenSSH v5.3pl  Yes 17 17 14 0 14 3 17.6% 0 3 0 3 2

Samba3 v3.4.7 Yes 210 84 78 19 78 132 62.8% 0 5 0 132 40

Winbind v3.4.7 Yes 50 38 19 13 19 31 63.3% 0 0 0 31 28

Postfix v2.10.0 No 181 15 79 7 79 102 5632% 0O 9 0 102 15

Table 2: Statistics of program-wide resource accesses. Dev Tests show whether we used developer test suites or created our own.
Impl. Exp. is the percentage of resource accesses (|P|/|V]) that are implicitly expected to be adversary-inaccessible. The last two
columns show the number of instantiations of Invariant 1 and Invariant 2 in Section 3 for resource accesses in the program. *- We

augmented the Apache test suite with additional tests.

nerabilities in our deployment are shaded in the graph.

The first vulnerability we found was during resource
access of a user-defined .htpasswd file. Apache allows
each user the option of enabling HTTP authentication for
parts of their website. This includes the ability to specify
a password file of their choice. However, the resource ac-
cess that fetches this password file is not filtered. Thus,
users can specify any password file — even one that they
do not have access to. One example exploit is to direct
this password file to be the system-wide /etc/passwd.
Traditionally, it is difficult to brute-force the system-wide
password file since prompts are rate-limited. However,
since HTTP authentication is not rate-limited, this may
make such brute-force attacks realistic. Such a scenario,
though obvious after discovery, is very difficult to rea-
son about manually due to Apache’s complex resource
accesses. Thus, it has remained hidden all these years.

The second vulnerability is a default misconfiguration.
When serving web pages, Apache controls whether sym-
bolic links can be followed from user web pages by the
option FollowSymLinks, which is turned on by default
in Ubuntu and Fedora packages. Turning this option on
implicitly assumes trust in the user to link to only her
own web pages. Interestingly, the name for this resource
access is filtered — only the bindings are not. One way we
were able to take advantage of this misconfiguration was
through the error document on specific errors, such as
HTTP 404, that is specifiable in the user-defined config-
uration .htaccess file. This allows an adversary to ac-
cess any resource the Apache web server itself can read,
for example, the password file and SSL private keys. We
found that our department web server also had this option
turned on. By simply making an error document linked
to /etc/passwd, we were able to view the contents of
the password file on the server. This demonstrates an-
other typical cause of resource access attacks — adminis-
trators misconfiguring the program and violating safety
of the expected attack surface.

The third vulnerability is a link following attack on
.htaccess. Apache allows .htaccess to be any file
on the filesystem it has access to. This may be exploited

to leak configuration information about the webserver.

Finally, we note that test suites that come with pro-
grams are traditionally focussed towards testing func-
tionality and not necessarily resource access. For exam-
ple, the stock test suite for Apache only uncovered 7 re-
source accesses in total, and after we augmented it, there
were 20 in total. Better test suites for resource access
would help test more resource accesses.

9.3 Process Firewall Enforcement

Process Firewall rules enforce the safety of the ex-
pected attack surface under the deployment attack sur-
face. Given the program’s expected attack surface, Pro-
cess Firewall rules enforce that any adversary-controlled
resource access at runtime (i.e., part of the deployment
attack surface) is allowed only if the resource access is
also part of the program’s expected attack surface. In
addition, for those resource accesses allowed, they also
protect the program against confused-deputy link and di-
rectory traversal vulnerabilities. The last two columns in
Table 2 shows the number of Process Firewall rules we
obtained (separately due to Invariants 1 and 2).

We evaluated the ability of rules to block vulnera-
bilities. First, we verified the ability of these rules to
block the three discovered vulnerabilities in Apache.
Second, we tried previously-known, representative re-
source access vulnerabilities against Apache and Samba.
We tested an untrusted library load (CVE-2006-1564)
against Apache. Here, a bug in the package manager
forced Apache to search for modules in untrusted direc-
tories. Our tool deduced that the resource access that
loaded libraries did not have any filtering, and thus, was
not in P, blocking this vulnerability due to Invariant 1
in Section 3. In addition, we tested a directory traversal
vulnerability in Samba (CVE-2010-0926). This is a con-
fused deputy vulnerability involving a sequence of ../
in a symbolic link. This vulnerability was blocked due to
Invariant 2.



9.4 False Positives

As discussed in Section 7.2, false positives are caused by
improper determination of: (i) programmer expectation
and (ii) adversary control of names.

First, false positives are caused by a failure of our
heuristic in Section 3 that determines program expecta-
tion. In some cases, we found that a program had no
filters at a resource access, but still expected adversary-
controlled resource access. We found that this case oc-
curs in certain small “helper” programs that perform a
requested task on a resource without any resource ac-
cess filters. For example, consider that the administra-
tor (root) runs the cat utility on a file in an adversarial
user’s home directory. Because cat does not filter the
input bindings, the user can always launch a link fol-
lowing attack by linking the file to the password file,
for example. However, if there is no attempted attack,
then our rule will block cat from accessing the user’s
file, because the resource access has no filters and is thus
not part of the expected attack surface (by our heuristic).
However, we may want to allow such access, because
cat has filters to protect itself from the input data to pre-
vent vulnerabilities such as buffer overflows.

To address such false positives, we propose enforcing
protection for such helper programs specially. Our in-
tuition is that when these programs perform adversary-
controlled resource access, they can be considered ad-
versarial themselves. All subsequent resources to which
data is output by these programs are then considered
adversary-accessible.  Other programs reading these
resources should protect themselves from input (e.g.,
names) as if they were dealing with an adversary-
accessible resource.

To enforce this approach, we implemented two
changes. First, we enforce only Invariant 2 (confused
deputy) in Section 3 for these programs. Second, when-
ever Invariant 1 would have disallowed access, we in-
stead allow access, but “taint” all subsequent output re-
sources by marking them with the adversary’s label (us-
ing filesystem extended attributes).

We evaluated the effect of this approach during the
bootup sequence of our Ubuntu 10.04 LTS system.
We manually identified 15 helper programs. During
boot, various startup scripts invoked these helper pro-
grams a total of 36 times. In our deployment, 9 of
these invocations accessed an adversary-accessible re-
source. Note that our original approach would have
blocked these 9 resource accesses, disrupting the boot
sequence, whereas our modification allows these re-
source accesses. These invocations subsequently tainted
4 output resources — two log files and two files stor-
ing runtime state. We found two programs reading
from these tainted files — ufw (a simplified firewall), and

the wpa_supplicant daemon (used to manage wireless
connections). These programs will find the tainted re-
sources adversary-accessible, and will have to protect
themselves from such input.

Second, false positives are caused during enforcement
by our implementation’s approximation of adversarial
data flow using control flow. Such false positives are due
to implementation limitations and not any fundamental
shortcoming of our approach. To evaluate this, we used
two separate test suites for Apache — one to build the
name flow graph and generate Process Firewall rules,
and the other to test the produced rules. We used our
enhanced test suite to generate rules and ApacheBench
to test the generated rules. ApacheBench ran without
any false positives. However, different configurations or
variable values might result in different data flows even if
the stacks remain the same. As mentioned in Section 7.2,
accurate data flow tracking can solve this problem.

9.5 Performance

A detailed study of the Process Firewall is in [40]. In
summary, system call microbenchmarks showed over-
heads of up to 10.6%, whereas macrobenchmarks had
overheads of up to 4%. The main cause for overhead is
unrolling the process stack to identify the system call.
To confirm these results, we evaluated the performance
overhead of a hardened Apache webserver (v2.2.22) that
had the 25 rules from Table 2. Using ApacheBench to
request the default Apache static webpage, we found an
overhead of 4.33% and 5.28% for 1 and 100 concurrent
clients respectively. However, we can compensate for
such overhead by compiling Apache without resource
access filters, since filters are now redundant given our
enforced rules. Vijayakumar et al. [40] showed that re-
moving code filters causes a throughput increase of up to
8% in Apache.

10 Related Work

10.1 Inferring Expectations

Determining programmer expectations from code has
previously been done in a variety of contexts. Engler [14]
et al. infer programmer beliefs from code. For example,
if a pointer p is dereferenced, the inferred belief is that p
!= NULL. They use this to find bugs in the Linux kernel.
Closely related are techniques to infer invariants from
dynamic traces [3, 15,32]. Daikon [15] uses dynamic
traces to infer hypothesis such as that a particular vari-
able is less than another. Baliga et al. [3] use Linux ker-
nel traces to propose invariants on data structures. While
we deal with a different class of attacks, our approach is
in the same spirit as the above works.



10.2 Defenses During Resource Access

Current defenses against resource access attacks in OSes
are ad-hoc and fundamentally limited. Defenses can be
classified into those that require changes to either the (i)
system (e.g., OS, libraries), or (ii) program code.

The simplest system defense is to change the access
control policy to allow a process access to only the set of
expected resources. Unfortunately, this defense is both
complicated and does not entirely stop resource access
attacks. First, fixing access control policies is a com-
plicated task. For example, even the minimal (targeted)
SELinux MAC policy on the widely-used Fedora Linux
distribution has 95,600 rules. Understanding and chang-
ing such rules requires domain specific expertise that not
all administrators have. Second, access control alone
is insufficient to stop resource access attacks because it
treats processes as a black-box and does not differenti-
ate between different resource access system calls. In
our example in Figure 1, the web server opens both a
log file and user HTML pages. Thus, it needs permis-
sions to both resources. However, it should not access
the log file when it is serving a user HTML page, and
vice versa. Traditional access control does not make this
difference. Other system defenses have mainly focused
on TOCTTOU attacks [11,13,25-27,35-38,44] and link
following [10]. However, system defenses are prone to
cause false positives because they do not know what pro-
grams expect [8], e.g., which pairs of system calls expect
to access the same resource.

The simplest program defense is to use program code
filters that accept only the expected resources. How-
ever, there are a number of challenges to writing cor-
rect code checks. First, such checks are inefficient and
cause performance overhead. For example, the Apache
web server documentation [2] recommends switching off
resource access checks during web page file retrieval to
improve performance. Second, checks are complicated.
The system-call API that programs use for resource ac-
cess is not atomic, leading to TOCTTOU races. There is
no known race-free method to perform an access-open
check in the current system call API [8]. Chari et al. [10]
show that to defend link following attacks, program-
mers must perform at least four additional system calls
per path component for each resource access. Going
back to the example in Figure 1, the checks on lines
7 and 8 are not enough — the correct sequence to use
is 1stat-open-fstat-1stat [10]. Thirdly, program
checks are incomplete, because adversary accessibility
to resources is not sufficiently exposed to programs by
the system-call API. Currently, programs can query ad-
versary accessibility only for UNIX discretionary ac-
cess control (DAC) policies (e.g., using the access
system call), but many UNIX systems now also en-

force mandatory access control (MAC) policies (e.g.,
SELinux [24] and AppArmor [23]) that allow different
adversary accessibility. While custom APIs have been
proposed [19,29,34,42] to address such limitations, these
require additional programmer effort and do not protect
current programs.

11 Conclusion

In this paper, we presented JIGSAW, an automated ap-
proach to protect programs from resource access attacks.
We first precisely defined resource access attacks, and
then noted the fundamental cause for them — a mismatch
between programmer expectations and the actual deploy-
ment the program runs in. We defined two invariants that,
if evaluated and enforced correctly, can theoretically of-
fer complete protection against resource access attacks.
We proposed a novel technique to evaluate programmer
expectations based on the presence of filters, and showed
how the invariants could practically be enforced by the
Process Firewall.

We applied this technique to harden widely-used pro-
grams, and discovered that programmers make a lot of
implicit assumptions. In this process, we discovered
two previously-unknown exploitable vulnerabilities as
well as a default misconfiguration in Apache, the world’s
most widely used web server. This shows that even ma-
ture programs only reason about resource access in an
ad-hoc manner. The analysis as presented in this paper
can thus efficiently and automatically protect programs
against resource attacks at runtime.
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