
From Trusted to Secure:
Building and Executing Applications that Enforce System Security

Boniface Hicks, Sandra Rueda, Trent Jaeger, and Patrick McDaniel
Systems and Internet Infrastructure Security Laboratory (SIIS)

Computer Science and Engineering, Pennsylvania State University
{phicks,ruedarod,mcdaniel,tjaeger}@cse.psu.edu

Abstract
Commercial operating systems have recently introduced
mandatory access controls (MAC) that can be used to
ensure system-wide data confidentiality and integrity.
These protections rely on restricting the flow of infor-
mation between processes based on security levels. The
problem is, there are many applications that defy simple
classification by security level, some of them essential
for system operation. Surprisingly, the common practice
among these operating systems is simply to mark these
applications as “trusted”, and thus allow them to bypass
label protections. This compromise is not a limitation
of MAC or the operating system services that enforce it,
but simply a fundamental inability of any operating sys-
tem to reason about how applications treat sensitive data
internally—and thus the OS must either restrict the data
that they receive or trust them to handle it correctly.

These practices were developed prior to the advent
security-typed languages. These languages provide a
means of reasoning about how the OS’s sensitive data
is handled within applications. Thus, applications can
be shown to enforce system security by guaranteeing, in
advance of execution, that they will adhere to the OS’s
MAC policy. In this paper, we provide an architecture for
an operating system service, that integrate security-typed
language with operating system MAC services. We have
built an implementation of this service, called SIESTA,
which handles applications developed in the security-
typed language, Jif, running on the SELinux operating
system. We also provide some sample applications to
demonstrate the security, flexibility and efficiency of our
approach.

1 Introduction
The problem of building secure systems with mandatory
policy to ensure data confidentiality and integrity is com-
ing into the forefront of systems development and re-
search. Mandatory access controls (MAC) for type en-
forcement (TE) along with support for multi-level secu-

rity (MLS) are now available in the mainline Linux dis-
tributions known as Security Enhanced (SE)Linux [25].
Trusted Solaris [21] and TrustedBSD [9] also provide
MAC security. A recent release [35] made SELinux-
like security available for Mac OS X, as well. Other
projects such as NetTop [19] (which is being built with
SELinux) seek to provide strong assurance of data sep-
aration. The goals of data separation (called noninter-
ference elsewhere in the literature [10]) hold an impor-
tant place also in the recent efforts towards virtualization
with VMware [8], Xen [2] and others. All of these ef-
forts run into a critical problem—they seek to enforce
security only at the granularity of application inputs and
outputs. They cannot monitor how data is handled within
an application.

This approach would be acceptable if each application
instance only handled data at a single security level. If
that were the case, the operating system could prevent
an application from reading or writing at any other level.
The reality, however, is that many applications must si-
multaneously handle inputs and outputs with different
security levels. This problem has led to two ad hoc ap-
proaches, both of which have serious limitations. The
first approach sacrifices security to improve flexibility
and efficiency. By marking an application as “trusted,” it
is given a special status to handle inputs and outputs with
varying security policies. The operating system must
then presume that the application will internally handle
the data correctly. At best, the application’s code is sub-
jected to a manual inspection. The second solution com-
promises flexibility and efficiency in order to ensure se-
curity. Applications that must handle inputs with differ-
ing security levels are split into multiple executions, with
one to handle each level. This complicates legitimate
communication between processes and expends system
resources, making it slow, error-prone and not always
sufficiently expressive.

The first solution has been applied primarily to sys-
tem utilities. A quick check indicates that SELinux, for

example, trusts dozens of applications (30-40 SELinux
application types have special privileges for this pur-
pose) to correctly handle data of multiple levels: consider
passwd, iptables, sshd, auditd, and logrotate, to
name a few (a complete list is given in Figure 1). As an
example, logrotate handles the data from many differ-
ent levels of logs as well as its own configuration files. It
also runs scripts and can send out logs via email. Even
after a thorough inspection of the code, it is hard to say
with certainty that it never leaks log data to its (publically
readable) configuration files or improperly sends mail to
a public recipient (in fact, as of v. 2.7.1, this could actu-
ally happen).

There are a number of user applications, for which the
second approach is more common. Email clients are a
classical example, but web browsers, chat clients and
others also handle secrets such as credit card numbers
and passwords along with other mundane data. Some
servers (web servers, chat servers, email servers) also fall
into this category, handling requests from various levels
of users and thus requiring multiple versions of the same
application to run simultaneously.

What we would like is to be able to communicate the
operating system’s data labels (the label on files, sock-
ets, user input, etc.) into the application and ensure that,
throughout the application, the labeled data flows prop-
erly (i.e., in compliance with the operating system pol-
icy). Fortunately, a new technology has become avail-
able to aid in this process. Emerging security-typed
languages, such as Jif [22], provide automatic verifica-
tion of information flow enforcement within an applica-
tion. Through an efficient, compile-time type analysis,
a security-typed language compiler can guarantee that
labeled data flowing through an application never flows
contrary to its label. This provides a formal basis for
trusting applications to handle data with multiple levels
of sensitivity. Admittedly, these technologies are still
in development and thus still challenging to use. Pro-
gramming in Jif can be a frustrating endeavor. To aid
this, we are investigating tools for semi-automatic label-
ing of programs. That said, we found that Jif is tractable
in its current form for programming some small utilities
and user applications which require handling of multi-
level data. Such utility presents an as yet unrealized op-
portunity to improve broader systems security. To our
knowledge, there has been no investigation of the ways
in which these application guarantees could be used to
augment greater system security.

To this end, we have designed and built an infrastruc-
ture that 1) allows an operating system with mandatory
access controls to pass labeled data into an application
and 2) to be certain that the data will not flow through
the application contrary to the operating systems policy.
For our investigation, we have focused on the most ma-

ture security-typed language, Jif/Pol (Jif enhanced with
our policy system [13]) and the widely-studied, open
source, SELinux operating system. Because these lan-
guages have not yet been widely used, there is no infras-
tructure available for interacting with secure operating
systems. To remedy this, we have provided 1) an API for
Jif by which labeled data such as sockets, files and user
I/O can be received from and passed out of the OS—
this API ensures consistency between operating system
and application labels. 2) We provide a compliance anal-
ysis that ensures that the labeled data will be handled
securely within the application, in compliance with the
OS’s mandatory policy. We integrated these changes into
an operating system service we call SIESTA, that can be
used to securely execute multi-level applications written
in Jif, by first verifying that they will not violate the op-
erating system’s security policy.

To demonstrate the effectiveness of our approach, we
used Jif/Pol to build some prototype applications: a
security-typed version of the logrotate utility and an
email client that can handle multiple email accounts of
varying security levels. For logrotate, we were able
to determine that it is possible to have total separation
between log files of different programs and between log
files and configuration files, so long as the configuration
files have a lesser or equal confidentiality than the log
files.

In this work, we make the following contributions. We
identify a fundamental limitation in MAC systems secu-
rity and we show how recent advances in programming
languages can be applied to solve this problem. More
specifically, we give a clean, general architecture for us-
ing security-typed language technology to enforce sys-
tem security within applications. To test our approach,
we implemented this architecture for Jif and SELinux
and provide some reusable software artifacts. Namely,
we extend the Jif Runtime environment to provide a
reusable API for reading and writing OS resources la-
beled with SELinux security contexts. We also give a
policy analysis which tests Jif policy for compliance with
SELinux policy. Additionally, we provide a system ser-
vice, SIESTA, that incorporates this analysis tool and
uses it to determine whether a Jif application can be se-
curely executed in a given SELinux operating system. Fi-
nally, we evaluate our implementation for security, flexi-
bility and efficiency using some example applications we
constructed.

In Section 2, we give some background on MAC se-
curity and security-typed languages, we also describe the
problems involved with integrating security-typed lan-
guages into MAC OS’s. We give our architecture in Sec-
tion 3 and describe the implementation of this architec-
ture and some demonstrative applications in Section 4.
We evaluate these applications, as well as our approach,

for its usability, efficiency and security in Section 5. We
examine some related work in Section 6 and we conclude
in Section 7.

2 Problem
2.1 Security background

Security lattices Standard information flow models,
on which we base our work, arrange labels on data as a
lattice of principals, sometimes called a principal hierar-
chy. The traditional model [3, 7] allows data only to flow
up the lattice (i.e. data can become more secure, but not
less secure). If, for some reason, data must flow down
the lattice, a declassification must take place. These pol-
icy violations should be infrequent or non-existent and if
occurring at all should be carefully regulated. Filters for
regulating declassification are called declassifiers.

Lattices may have a variety of principals and struc-
tures. A standard military lattice is simply a vertical line
containing five levels1: unclassified, classified, confiden-
tial, secret and top secret, with top secret placed on the
top of the lattice and unclassified on the bottom. While
unclassified data can be written to classified files, the op-
posite is not true.

We use the term “MLS” broadly throughout this pa-
per. Although the term has traditionally referred to
military levels of sensitivity, such as secret or top se-
cret, more general lattices can also be expressed [7].
For example, consider the lattice in Figure 3. In this
lattice, data labeled configP can be written up to
xserver_log_t:s1. The principals at the top of this
lattice are all incomparable with each other. This means
that data cannot flow between these labels at all. They
could only be written to a mutually higher principal.

2.2 Enforcing MAC policies within applications

In an OS with MAC security, the OS can monitor its re-
sources (such as files, sockets, etc.) and when an ap-
plication tries to read them, write them, delete them,
etc. it can prevent the application from performing one
of these security-sensitive operations. To accomplish
this, OS entities are divided into subjects and objects.
Every operating system resource (socket, file, program,
etc.) is an object, labeled with a type and an MLS
level2, such as system_u:object_r:user_t:s0 for a
public object owned by the reader. We will abbreviate
this as user_t:s0 since the user and role labels are al-
ways the same for system resources. The running pro-
cess is considered a subject and also has a label, such
as system_u:system_r:logrotate_t:s0-s1, where
the colon-separated label consists of user, role, type and
MLS level (reading the label from left to right). Notice
that the MLS level may consist of a range, indicating
that a particular process can handle a range of levels. In
this case, the subject would have access to objects in the

range s0 to s1.

Jif Runtime API

SELinux API

OS layer

application

disk

App flow
policy

Lap<=L'ap

OS flow
policy

Los<=L'os

Lap L'ap

Los L'os

Figure 2: As data passes from a disk through the OS into an appli-
cation and again when it is written back out, there must be consistency
in labels and permitted flows at the OS and application levels. This
requires proper labeling and compliance of the application policy with
the operating system policy.

If a running process for logrotate, for example, has
this label and attempts to read from a user’s file labeled
with user_t:s4, a security check will be triggered by
this security-sensitive operation and (under a typical pol-
icy) it will be stopped by the Linux Security Module
(LSM). However, if logrotate has permission to read
from a log file labeled var_log_t:s1 and to write to
a configuration file labeled logrotate_var_lib_t:s0
(which it normally does), the OS cannot stop it from
reading the log data and leaking it down to the lower se-
curity configuration file. This could leak secrets stored
in the log data to the publicly readable configuration file.
Currently, the logrotate utility and the other utilities in
Figure 1 are merely trusted not to leak data and it is not
easy to verify, by manual inspection, that the C code for
these utilities does not contain such a leak.

What is needed is 1) a way to pass the security labels
into the application along with the resources, and 2) an
automated way to ensure that the application honors the
flow requirements on the labels. Furthermore, both of
these conditions should be checked prior to executing the
application. This situation is illustrated in Figure 2. Be-
cause the second requirement is precisely what security-
typed languages, such as Jif, do well, we consider how
they might be used to meet this need.

In Jif, when a variable is declared, it is tagged with
a security label. An automated type analysis ensures no
leakage can occur through implicit or explicit flows. For
example, consider a program which has been executed
by Alice (who can enter information through stdin and
read from stdout), but which also has access to files,
some of which can not be accessed by Alice (like per-
sistent state such as statistics from others’ executions)
and some of which are publicly readable (like config

Type of utility Trusted applications
Policy management tools secadm, load_policy, setrans, setfiles, semanage, restorecon, newrole
Startup utilities bootloader, initrc, init, local_login
File tools dpkg_script, dpkg, rpm, mount, fsadm
Network utilities iptables, sshd, remote_login, NetworkManager
Auditing, logging services logrotate, klogd, auditd, auditctl
Hardware, device management hald, dmidecode, udev, kudzu
Miscellaneous services passwd, tmpreaper, insmod, getty, consoletype, pam_console

Figure 1: A list of trusted applications in the SELinux release for Fedora Core 5 using mls-strict policy version 20.

files). In the following code (written in Jif syntax), data
is read from the keyboard on line 1 and properly stored
in a variable labeled with Alice’s policy. In line 2, the
label on leak can be inferred as {alice:}. Then a file
is opened to write out configuration information (which
is publicly readable). A leak occurs, however, when the
program attempts to write Alice’s data out to the config-
uration file. This code also contains a security violation
in line 10, because statistics, which Alice should not be
able to access, are printed to the screen. The typechecker
would flag these errors and prevent this program from
compiling.
1. String{alice:} secret = stdin.read();

2. String leak = secret;

3. FileOutputStream[config] conf =

4. Runtime.openFileWrite("tool.conf",{config:});

5. conf.write(leak);

6. FileInputStream[state] statsFile =

7. Runtime.openFileRead("stats.dat",{state:});

8. String stats = statsFile.readLine();

9. if (stats.split[0].equals("bob"))

10. stdout.write(stats);

Returning to Figure 2, we can presume that objects
stored in the system are already labeled (with an OS la-
bel, Los, for example), but we still need an OS API to get
the labels and provide them to the application. Addition-
ally, this must connect into a language-provided API to
translate these labels into labels that the application can
enforce (Lap). This must be a carefully controlled inter-
face so that the labels cannot be manipulated or spoofed.
Finally, the information flows that the application will
enforce must comply with the information flows enforced
in the operating system. In the example, if the operating
system policy were to state that L′

os ≤ Los (L′ is less
confidential than L), but the application policy still has
Lap ≤ L′

ap (L is less confidential than L’), then the ap-
plication would violate the operating system’s policy.

Compliance testing is complicated by the mismatches
between the lattices used by the operating system and
those used by the application for enforcing information
flow. Firstly, there may be principals in each lattice that
are not found in the other. These cannot merely be re-
moved, because they might connect shared principals
and be involved in information flows. Secondly, there
may be a mismatch in the kinds and granularity of per-

var_log_t:s2 var_log_t:s1 xserver_log_t:s1

logP

configP

logrotate_var_lib_t:s0

= flow
allowed

... ...

Figure 3: The lattice of principals describing all possible flows for
logrotate. The two basic levels are logs and configuration files. The
data in configuration files affect the logs but the reverse should not be
true. Also, the logs should not be able to flow into each other.

missions that the OS handles (set attribute, open, link,
delete, read, etc.) compared to the application. Finally,
the application policy could be more restrictive than the
OS policy, but the reverse should not be true.

For example, consider the lattice we constructed for
logrotate in Figure 3. logrotate only needs to han-
dle two kinds of files—the log files and the configuration
and state files. Furthermore, the log files should be dis-
joint from each other and more sensitive than the con-
figuration and state files. In this lattice, configP and
logP do not have corresponding principals in the oper-
ating system. Also, we can see that this policy is more
restrictive than the OS policy (notice that var_log_t:s1
is normally be able to flow into var_log_t:s2 accord-
ing to OS policy, but not in this lattice). Also, this policy
does not capture all possible OS principals. Finally, this
policy only describes basic information flows–read and
write.

We identify the following tasks. (1) We need a mech-
anism by which an application can prove that its infor-
mation flow enforcement does not violate the system in-
formation flow policy. Both Jif/Pol (JP) applications and
SELinux express the information flow policies that they
are enforcing, so we need an approach to compliance
testing the application policy against the system policy.
This must include some control of application-level de-
classification preventing both unacceptable declassifica-
tion filters and also the overuse of applications with de-
classifying filters. (2) We need mechanisms for the appli-

cation to determine the label of its input channels neces-
sary to enforce information flow. If JP applications can-
not distinguish between secret and public inputs, it must
label them all secret to enforce information flow require-
ments, thus impacting usability. (3) The system must be
able to determine the label of all JP application outputs.
Again, the lack of an accurate label would either result
in overly conservative enforcement (i.e., the application
may only send secrets) or possible vulnerabilities (i.e.,
the application sends a secret to a public entity).

To summarize, these considerations motivate the fol-
lowing concrete problems:

1. How can we pass operating system resources along
with their labels into an application?

2. How can we pass application data along with their
labels out into the operating system?

3. How can we be sure that the application will faith-
fully enforce the operating system’s policy on these
labels?

With the solution of these problems, we have a guar-
antee of system information flow enforcement, based on
reconciliation of information flow enforcement and accu-
rate communication of information flow labels between
application and system layers. In the next section, we
provide an architecture that solves these problems. In
Section 4, we give the details of our implementation of
this architecture for Jif and SELinux.

3 Architecture
In this section, we provide a general architecture for solv-
ing the problems described in Section 2. Namely, we
describe the necessary steps for ensuring that a security-
typed application can handle data with a range of secu-
rity levels and still enforce the information flow goals of
the OS. Note that this architecture is independent of any
particular language or OS. We describe, in general, the
features that are required for our approach. In Section 4,
we will describe our implementation of this architecture
for Jif and SELinux.

3.1 Process steps

We begin with a description of the overall process and
then focus on the details of various steps in the subse-
quent subsections. Our five process steps are illustrated
in Figure 4.

0) Initial state The OS must have a MAC policy im-
plementing some information flow security goals. We
focus on SELinux in this paper, but this could include
other high assurance operating systems such as Trusted-
Solaris or TrustedBSD. The key is that there must be an
explicit MAC policy that is accessible to a system dae-
mon for analysis of confidentiality policies. (Here we

focus on ensuring confidentiality, but other information
flow goals could also be examined.)

1) Program secure application An application devel-
oper provides the bytecode for a security-typed applica-
tion along with a policy template that can be specialized
by the user for a particular operating system configura-
tion. We have used Jif/Pol in this paper, but the concepts
extend to any security-typed language. A key point is
that the language must provide a policy system such that
each application will have an explicit policy that can be
analyzed by a system daemon to understand the security
lattice and declassifiers the application uses. We discuss
this further in Section 3.2.

2) Specialize application policy Although a program
will be developed with some basic security goals in
mind, the application policy may be customized for dif-
ferent users running on different systems. This is es-
pecially important because the application policy must
make connections to operating system label names which
may not be the same from system to system. Of course, a
reference policy should always be provided by the devel-
oper which should run on a default system configuration.
The reference policy also serves as a template for cus-
tomization to a customized OS. We discuss this further
in Section 3.3.

3) Invoke service In an MLS environment, a user may
have the authority to run at various security levels, but
typically only logs in at one level at a time. In our ap-
proach, when he desires to run an application with a
range of levels, he must first invoke an operating system
service to check the application for compliance with op-
erating system security goals. There must be no way to
subvert this, i.e. to run the application without allowing
the system first to perform the necessary checks. This
should be enforced in the system policy.

The operating system service performs checks based
on four inputs: the system policy, the object code for the
application, the application policy and the desired range
of levels. We discuss this further in Sections 3.4 & 3.5.

4) Run application If all the checks succeed, the op-
erating system service may launch the application at the
requested security level range.

3.2 Programming infrastructure

To address the last two problems listed in Section 2,
namely that operating system resources—both inputs and
outputs—must be labeled properly in the application, op-
erating system and language APIs are necessary. First,
the operating system API must offer procedures for an
application to get labels on files, sockets and other OS
resources. It must also be possible for the application
to set labels on resources when they are created by the
application. Secondly, the security-typed language API

Compiler

Application
(Jif code)

Lang API

01001...

failed compliance
check; dump process

signed
bytecode

0) Initial State

1) Program secure application
2) Specialize

application policy

Compiler

Application
call requests
MLS range

passed
compliance

check

4) Run application

3) Invoke service

App
policy

app developer
user

Legend

language provider
OS provider

Service

OS
policy

OS API

Figure 4: The process for executing an application with range of MLS privileges consists of 5 steps. The steps are performed and components
are provided by different entities as shown by the different colors.

must supply procedures for getting and creating operat-
ing system resources. The primary concern is that these
API abstractions provide the only way to access oper-
ating system resources. One solution, the one we use,
is to provide a single way of creating new, or opening
existing resources. With this approach, when an applica-
tion’s data structure is mapped onto a system resource,
the internal label assigned to the data structure can be
checked to correspond with the external label on the sys-
tem resource. Thereafter, throughout all possible pro-
gram executions, the normal security-type analysis pro-
vided by security-typed languages can ensure that that
label is never violated.

3.3 Specializing application policy

Our approach assumes that a developer will construct ap-
plications that enforce some security goals. For example,
a program variable into which a secret password will be
read should be labeled differently from a variable that
will contain public information. This must be part of the
program code. The meanings of these labels are estab-
lished in a high-level application policy external to the
program code, however, and configured according to user
preferences and system policy. For example, the public
information could be treated just as secretly as the pass-
word if the user desires. Furthermore, the application
developer will not know the names of security labels on
the user’s operating system; these must be configured by
the user in light of the operating system policy. Another
consideration is that a user may prefer not to use certain
declassifiers in a particular application; this should be
customizable in the application policy. Once the appli-
cation policy has been specialized, the policy and appli-
cation can be passed to an operating system service for
compliance checking and execution.

3.4 Verifying run requests

The operating system service must be on the critical
path for running any security-typed application, because
it will ensure that all three requirements listed in Sec-

tion 2 are met. Namely, it will ensure that 1) the labels
passed into and 2) out of the application are consistent
with the operating system labels and it will ensure that 3)
the application will enforce the operating system’s pol-
icy throughout its execution. To do this, the service must
make four checks: (1) the application’s information flow
policy must be provably compliant with the operating
system policy, (2) the code should be verified as hav-
ing been compiled by a proper security-typed language
compiler, (3) the declassification filters required by the
application, if any, must be acceptable for the operating
system and (4) from a global view, there is no suspicious
behavior in running this trusted process that would ap-
pear to be covert channels (such as forking dozens of
processes which might each leak a small amount of in-
formation by their existence and through declassifiers).

The key requirement here is the first, compliance test-
ing, which is discussed in more detail below. The other
three requirements are more general or more ad hoc—
there are no general solutions so lots of ad hoc ones are
possible. They remain ongoing areas of research. We
discuss some preliminary approaches in Section 4.2.

Note that because the service itself is trusted to handle
multiple security levels of data, it should either be written
in a security-typed language and bootstrapped into place,
or it should be small enough to be verified by hand.

3.5 Compliance analysis

A trusted application is given some flexibility to handle
information in ways that a normal application could not.
Before granting such privileges, however, the operating
system should check to be sure that the application will
not abuse them. In other words, the application policy
should comply with the operating system policy.

An application is said to be compliant if it intro-
duces no information flows that violate the policy
of the operating system in which it is running.

For a security-typed application all possible infor-
mation flows can be determined based solely on the

high-level delegation policy, modulo some declassifica-
tions [13]. The operating system need only check the
compliance of flows that are relevant to its own princi-
pals.

The compliance analysis between a security-typed ap-
plication with high-level policy and a MAC-based op-
erating system with static policy consists of three steps.
(1) Convert the application policy and operating system
policy into a form in which they can be compared. (2)
Determine which security levels are shared between the
operating system and application. For each of the secu-
rity levels, collect all allowed flows for the application.
(3) Compare these to the flows allowed by the operating
system. If there are strictly more flows allowed by the
operating system with respect to shared security levels,
then the application can be declared compliant and can
be safely executed.

This problem contains several challenges. One is that
the OS may contain security levels not used in the ap-
plication and the application may contain security levels
not used in the OS. Another is that the OS and application
may have a mismatch in the granularity of permissions.
Also, either policy could be quite large and unwieldly,
making analysis slow or even intractable. These were all
problems we had to solve when implementing this analy-
sis for Jif and SELinux. We describe our implementation
in Section 4.3.

4 Implementation
For our implementation, we use the Security Enhanced
Linux (SELinux) operating system [25] provided as part
of the mainline Linux kernel. To build our secure ap-
plications, we used the most mature security-typed lan-
guage, the Java + Information Flow (Jif) language [23],
augmented with our policy system (Jif/Pol). Jif is the
only security-typed language with an infrastructure that
was robust enough to be expanded to handle the kinds
of system calls that were necessary for interacting with
SELinux. Because we were focused primarily on confi-
dentiality, it was sufficient for us to use Jif v. 2.0.1 (v. 3.0
adds integrity to the security labels in Jif and is a target
for our future work).

Our implementation consists of three major endeav-
ors. First, we extended the Runtime infrastructure of the
Jif compiler with an interface to SELinux kernel 2.6.16
for getting and setting SELinux security contexts on net-
work sockets and files. In order to make this configurable
we added some primitives to the Jif/Pol language and
implemented the changes in the Jif/Pol policy compiler.
Second, we constructed the Service for Inspecting and
Executing Security-Typed Applications (SIESTA). This
includes a system daemon along with an interface that
can be run by the user; both were written in C. It also
includes a policy compliance checker which was writ-

ten in XSB Prolog. Thirdly, we have utilized this infras-
tructure to build and test two demonstrative applications:
logrotate and JPmail.

4.1 Extensions to the Jif Runtime

The basic paradigm in Jif for labeling operating system
resources is to parameterize the resource stream with a
label and pass that label into the proper method of the
Runtime class when opening or creating the resource.
The Runtime method then checks to ensure that the label
passed in by the application is acceptable (not too high,
not too low) for the resource being requested. For exam-
ple, the following code gets the standard output stream
and attempts to leak a secret.

// user is a principal passed in through main(...)

Runtime[user] rt = Runtime[user].getRuntime();

final label{} lb = new label{user:};

PrintStream[lb] stdout = rt.stdout(lb);

int{high:} secret = ...;

stdout.println(secret);

Jif ensures (1) that the Runtime class, which is instan-
tiated by getRuntime(), is parameterized only by the
user who executed this program (for SELinux this would
be the security context of the program). Jif also ensures
that when creating a stream for stdout, that the stream
is parameterized by a label which is (2) equivalent to the
label passed as a parameter to rt.stdout() and (3) no
more secure than the label on the Runtime class. This
corresponds to the notion that we should be able to print
public data or user data to the user terminal, but nothing
more secret than this.

Following this paradigm, we extended the Jif
Runtime to handle labeled IPsec sockets (both
client and server sockets) and labeled files. The
basic concept is straight-forward: we provided
openSocket, openServerSocket, openFileWrite
and openFileRead methods which ensure that the
streams attached to these operating system resources are
properly labeled within the Jif application. The details
of this implementation required some additional work,
however, in order to properly interface with the SELinux
API for getting and setting security contexts on sockets
and files.

The code for implementing the socket interface was
particularly challenging, because of the way labeled
IPsec handles SELinux security contexts and IPsec secu-
rity associations (SAs). Namely, in order to provide the
proper cryptographic protocols for a particular socket, it
is necessary that the application first creates the socket,
then assigns the proper security context and then at-
tempts to make a connection (it must occur strictly in
that order). At that point, the IPsec subsystem attempts
to establish an SA for the given security context, local
host and port number and remote host and port number.

The problem is that the standard Java Socket API (on
which we must build for Jif) does not distinguish be-
tween creating a socket file descriptor and attempting
to make a connection. Consequently, we had to extend
the Socket class to implement our own SelinuxSocket
and SelinuxServerSocket. The constructors for our
new classes can take a security context. Then, when
the socket attempts to establish a connection, a shim is
inserted between socket creation and socket connection
that calls into the SELinux API to change the socket’s
security context. After connection, the Runtime class
ensures that the SA retrieved for the socket corresponds
to the security context that it was set to.

The rest of the code in Runtime.openSocket(...)
follows the model of stdout(...), checking to ensure
that the label which is attached to the Jif Socket object
corresponds to the security context attached to the op-
erating system resource. The difference is that because
sockets are always two-way in Java, the label must be
equivalent (neither higher security nor lower security) to
the SELinux security context.

Extending the Jif policy system Because Jif and
SELinux use different kinds of labels and principals, we
needed to make some connection between them. We han-
dled this by extending the Jif/Pol policy language with
an operator, [·], to signify an operating system label and
also wild cards to match a series of labels.

Consider the lattice for logrotate in Figure 3. The
SELinux principal logrotate_var_lib_t:s03 is at a
lower secrecy level than the Jif principal configP. With
our new policy syntax, we can express this relationship as
[.*:.*:logrotate_var_lib_t:s0] -> configP.
The Jif Runtime does not create principals in advance to
correspond with every operating system principal; it only
creates them as needed (e.g. when a file labeled with
that principal is opened). Furthermore, when they are
created they are assumed to be unrelated (incomparable)
to any other principals in the lattice. Thus, the effect
of the policy statement given above is that a hook is
inserted into the Runtime to watch for any principals
matching this wildcard and when one is created, it will
be properly placed in the lattice.

When the relationship is reversed and a Jif principal
must be lower in the security lattice than an SELinux
principal, the relationship is stored in the Jif princi-
pal at the time of its creation (the beginning of the
program). For example, if we have the policy state-
ment logP -> [.*:.*:.*:.*], placing the Jif princi-
pal logP lower in the lattice than any SELinux principal.
Note that this policy statement does not presume any-
thing about the relationship between different SELinux
principals that match the same wildcard—only that each
of them is higher than logP.

To summarize, the lattice policy we used for

logrotate is small and concise (it is the lattice that was
illustrated in Figure 3):

[.*:.*:logrotate_var_lib_t:s0] -> configP;

configP -> logP;

logP -> [.*:.*:.*:.*];

4.2 SIESTA

The Service for Inspecting and Executing Security-
Typed Applications (SIESTA) consists of two parts: a
service interface and a system daemon, as shown in Fig-
ure 5. The service interface takes two inputs from the
user—the security-typed application to be executed and
the desired MLS range at which it should be executed.
The service interface calls a long-running system dae-
mon to carry out the checks described in Section 3.4.
If everything is acceptable, SIESTA proceeds to execute
the Jif application with the special MLS privileges. In
the following, we describe SIESTA’s operation in more
detail.

The SIESTA service interface starts running with the
same MLS level as the process that called it. Running
the interface also causes an SELinux transition into the
siesta_t domain which limits the process’s function-
ality to communicating with the daemon and forking a
new trusted Jif application. The communication between
the interface and the daemon is supported by IPC mech-
anisms plus security functions, creating what we called
a SIESTA channel. Furthermore, supported by OS pol-
icy we make the siesta_t domain the sole gateway for
executing Jif applications in a domain with special MLS
privileges. This guarantees that the user cannot directly
run a Jif application with special privileges unless it has
first been checked by SIESTA. The logic in the service
interface is quite simple, deferring the complex consid-
erations to the system daemon.

First, the SIESTA system daemon is responsible for
ensuring that the Jif application it has been given is trust-
worthy. It must first ensure the “Jif-ness” of the applica-
tion bytecode archive (jar). Doing this in a general way
is really an orthogonal issue and a research topic in itself,
so here we take a straight-forward approach and just val-
idate a jar signature against a potential list of third-party,
trusted Jif compiler signatures.

Once the Jif-ness of the application has been estab-
lished, the policy jar that has been passed to the daemon
must be checked for compliance against the system pol-
icy. The jar contains the Jif-compiled policy files (prin-
cipals and policy store) that will govern the application
while it executes. It also contains a manifest of the policy
from which it was built. The policy compliance check is
described in more detail in Section 4.3.

Thirdly, the SIESTA daemon ensures that the declas-
sifiers used by the application are acceptable to the oper-
ating system. Although there are no general solutions to

fork("jif logrotate.jar
 mypolicy.jar")

sysadm_t:s0

siesta_t:s1-s2

shell

> siesta
 logrotate.jar
 mypolicy.jar
...
logrotate output
...
>

"logrotate.jar"
"mypolicy.jar"

"s1-s2"

siestad_t:s0-s15

"logrotate.jar"
"mypolicy.jar"

"s1-s2"

jif_logrotate_t:s1-s2
logrotate

1

2 3 4

SIESTA Daemon

yes/no

yes ? Service Interface

SIESTA Interface

SIESTA
Channel

Global Service: It checks if app honors
system security requirements

siesta_t:s0
context_range_set(s1-s2)

This process runs logrotate with
privileges to read/write files anywhere

within the requested MLS level
then returns to the shell

Figure 5: SIESTA: a service which securely validates and executes trustworthy security-typed applications.

this problem, we provide a preliminary approach. Before
running an application, a compliance algorithm should
check the declassifiers used by the application against
a white-list or black-list of declassifiers. For example,
standard military procedure prohibits the use of DES for
protecting secret data. This can be easily checked in the
application policy and applications that violate such re-
quirements can be prevented from executing. As more
security-typed applications are used, a list of trusted de-
classifiers can be established and become a more natural
part of the operating system policy. Also, some appli-
cations, like logrotate, don’t need any declassifiers at
all. Other approaches could also be feasible here, taking
advantage of ongoing research in quantifying the infor-
mation leaked through declassification [28]. We discuss
this further in Section 5.1.

Lastly, although we do not attempt to implement
any particular policy for eliminating the covert channels
which could be created through the execution of hun-
dreds of these security-typed applications, we provide
hooks that could be used as such policies are developed.

The SIESTA daemon must be executed by a system
administrator prior to executing any security-typed ap-
plications. It must run with a full range of MLS privi-
leges so that it can handle security-typed applications of
all sensitivities. At the same time, it can be limited to a
fairly constrained functionality, because it only needa to
read from files and communicate with the SIESTA ser-
vice interface via IPC.

4.3 Compliance analysis

There are a few key challenges in attempting to deter-
mine compliance between Jif policy and SELinux policy.
The foremost challenge is in the semantic difference be-
tween Jif’s information flow lattice and SELinux’s MLS
constraints. Although SELinux claims to have an MLS
policy (which normally means a “no read-up”, no write-
down” lattice-based policy), the so-called “MLS” exten-
sion is really a richer policy language which can be used
to implement MLS, but can also implement more general
policy goals. The second challenge lies in the difference

in granularity between Jif policy and SELinux policy.
While SELinux policy distinguishes various operations
and resource types (the policy for setting the attribute on
a file could be different from writing to a socket, for ex-
ample), Jif policy gives a more comprehensive view of all
information flows in an application. The third challenge
lies in the size of the SELinux policy for a whole oper-
ating system. The standard, complete operating system
policy consists of well over 20,000 policy statements.

For the first challenge, analyzing policy compliance
would have been a straight-forward lattice comparison if
not for the generality of the SELinux MLS policy. Thus,
some policy analysis tools are needed to determine what
information flow goals are implemented by the operating
system and whether they are compatible with the infor-
mation flows in the application we are seeking to execute.
Although several SELinux policy analyzers exist, none
were suitable for our purposes, because none handles the
new SELinux MLS extensions which were our primary
concern. Consequently, we developed our own policy
analysis tools for SELinux MLS policy, inspired by the
policy analysis engine, PAL [30]. Our tool determines
what information flows are allowed between MLS lev-
els. We describe this analysis in more detail elsewhere,
including a formal consideration of correctness [14]. For
this work, we extended and utilized this tool to compare
the flows allowed in a Jif application to the flows allowed
in the host operating system.

The second challenge is that in order to compare the
operating system policy and the application policy, they
must be in a comparable form. Since SELinux policy is
more general than Jif policy, we translate our Jif policy
into an SELinux policy. This also allows us to reuse our
policy analyzer for both policies.

For example, consider the Jif policy in Figure 6 in the
box labeled app-policy.jifpol. This policy says that
the Jif program has access to operating system files and
network sockets. Also, it allows data to flow from pub to
siis to sec. Furthermore, the policy states that pub is
equivalent to the security level s0 and sec is equivalent
to the security level s1, while siis has no corresponding

stdio_read_access;
stdio_write_access;
file_read_access;
file_write_access;
net_read_access;
net_write_access;
pub -> siis;
siis -> sec;
[.*:.*:.*:s0] -> pub;
sec -> [.*:.*.:.*:s1];

% Jif policy in selinux-policy syntax
...
% write-up
mlsconstrain {file} {write}
 (h1 domby h2) and (h2 eq l2) and (l1 eq h1)).
% read-down
mlsconstrain {file} {read}
 (h1 dom h2) and (h2 eq l2) and (l1 eq h1)).

app-policy.jifpol
Original Jif application policy

convert

os_policy.P

from user
Prolog code

for App policy
XSB

engine
XSB

engine

get all
OS-relevant

flows

parse

Prolog code
for OS policyfrom OS

policy.conf

SELinux policy
for OS

parse

app-policy.P

app-policy.conf

YES/NO

verify flows

Figure 6: The compliance testing process.

identity in the operating system.
Given this policy, the contents of an operating system

file at level s0 could be read into the application at level
sec (through a read-down) and then written out to a file
at level s1. This constitutes a flow from s0 to s1. This
flow must then be checked against the operating system’s
policy to determine if it is an allowed flow. Note that al-
though siis has no corresponding principal in the op-
erating system, it cannot simply be ignored, because it
could be involved (as in this case) in a flow between two
operating system principals. At the same time, the flow
from pub to siis need not be checked against the op-
erating system policy, because the siis principal does
not correspond to an OS principal. Only when both end-
points of a flow have corresponding OS principals does
the flow need to be checked against the OS policy.

Next, if the Jif application asks for
file_read_access and file_write_access,
we then add, respectively, read-down rules and write-up
rules for file access, giving an SELinux-style policy
as shown in the box, app-policy.conf. We add
similar rules for user I/O if stdio_read_access
and/or stdio_write_access are set and for sockets if
net_read_access and/or net_write_access are set
in the Jif policy.4

The third challenge we faced was the magnitude of the
operating system policy, which threatened to make the
analysis intractable. We are able to manage this in sev-
eral ways. Firstly, once the policy has been compiled into
Prolog, it need not be compiled again. Furthermore, XSB
Prolog has some efficient methods of storing the policy,
using tabling, which improve performance for analysis.
Most importantly, however, we are able to radically re-
duce the analysis of the operating system policy by first
analyzing the application policy. Because we are only
interested in verifying that the flows allowed by the ap-
plication are also acceptable to the operating system, we
don’t need to check all operating system flows—just the
ones that intersect with the application.

4.4 Sample applications

We have implemented two sample applications in order
to demonstrate the range of functionality provided by our

architecture. The first is logrotate which demonstrates
proper labeling of files and tracking of information flows
from multi-leveled files handled within the same appli-
cation. This is an example of a secure implementation
of an operating system tool and demonstrates features
that would be common to many of the utilities listed
in Figure 1. The second application is larger and more
complex—a modification of the JPmail email client [12].
For this work, we migrate this client from using a PKI for
achieving end-to-end confidentiality to using the SIESTA
infrastructure with labeled IPsec.

4.4.1 logrotate

The logrotate utility is regularly executed by cron to
gradually phase out old log files. The utility rotates each
set of log files based on some configuration. For ex-
ample, the messages log is renamed to messages.1,
messages.1 to messages.2, etc. The configuration
specifies which logs to rotate and each log has a rotate
attribute indicating how many back logs to save. The full
version of this utility can also run scripts, compress logs
and send emails. We did not implement these additional
features, but chose to focus on the essential functionality
of log rotation.

The logrotate program handles a variety of sensi-
tive information flows (an example lattice is shown in
Figure 3 and the lattice policy is given in Section 4.1).
It handles two files which are (typically) publicly read-
able: a configuration file and a state file. It handles var-
ious other log files at various security levels, creating
and modifying the files as needed in order to rotate and
delete logs according to their particular configurations.
The data in the log files is more or less secret depend-
ing on the nature of the log. For example, the logs for X
Windows and wtmp5 are usually publicly readable. Other
logs such as secure or maillog are more secret due to
their contents. On the other hand, the attributes of the
log files (e.g. seeing that they exist, getting their names,
reading their last date of modification, etc.) are public.

In order to rotate logs, the program needs to read con-
figuration information and state information and based
on that, the logs themselves are renamed. This effec-
tively passes information from the configuration files into

the log files (it is clear from looking at the directory,
for example, what the rotate attribute is for each log—
usually it is the highest filename extension, like the 4 in
messages.4). Thus, in order for our application to func-
tion properly, the level of the configuration data must be
lower or equal in the lattice, i.e. less secret, compared to
the level of the log data. On the other hand, we do not
want to leak log data into the configuration file (since it
is often publicly readable) or into other log files. In fact,
our Jif application verifies that this policy can be upheld:
not even small bits of information released by control
flows are leaked from the log files into the configuration
files and not even a single declassifier is needed to im-
plement this system utility.

4.4.2 Email client

The JPmail application [12] is an email client built in
Jif 2.0.1, using our Jif/Pol policy framework [13], which
enforces information flow control on emails according
to a given Jif policy. When we built JPmail, it was the
first real-world application built in Jif. Previously, in or-
der to maintain information flow control, JPmail utilized
encrypting declassifiers to send out email on public net-
works. By utilizing labeled IPsec sockets and trusting the
operating system to handle distributed security (i.e., the
MAC OS security ensures that emails are not leaked from
intermediate or destination servers), we were able to re-
move the cryptographic infrastructure from JPmail and
significantly simplify the code. Furthermore, we were
able to extend our mail client to handle communication
with mail servers at multiple security levels within a sin-
gle process.

While this application serves to demonstrate the usage
of client sockets, the real significance of this application
is mainly in its size and complexity. It is the largest exist-
ing Jif application and so it gives us some insight on the
difficulty of augmenting a realistic application to work
with SIESTA. In this vein, we were gratified to discover
how much cleaner and simpler the code became when it
could trust the operating system to handle security con-
cerns over its resources.

Also significant about this application is its use of de-
classifiers. This is due to the fact that it gets user input
for all levels of email accounts from the same terminal
window. The application logic handles the proper down-
grading of input when responding to a public as opposed
to a secret email. Another, minimal source of leakage is
through an implicit flow caused by handling both public
and secret email accounts in the same user interface loop.
This small flow that normally occurs when a single user
interface is used for multi-level inputs is handled with a
declassifier. The declassifier and its use in the code must
be determined to be safe for the email client and then it
is included among the white-list of declassifiers in the

operating system policy.

5 Discussion and evaluation
5.1 Declassification

Strict information-flow policies are too strict for some
applications. This necessitates slight relaxations of the
policy through controlled “escape hatches”. There has
been a great deal of consideration about declassification
in the language-based security community [28]. We have
added our own modest work, called trusted declassifica-
tion, to this collection [13] with the greatest advantage
being its practicality and the way it exposes declassifiers
through a high-level policy. This exposure of declassi-
fiers is key for our compliance analysis. The policies it
allows are similar to recent work on integrity policies for
generating Clark-Wilson Lite models [31] of security.

The key is that all declassifying filters (aka declassi-
fiers) must be declared in the high-level policy, indicat-
ing what information flows they can be used for. For ex-
ample, in order for an application to expose secret data
(labeled {sec:}) to the public (labeled {pub:}) after en-
crypting it with AES, the application’s policy must con-
tain the statement, sec allows crypto.AES(pub);.
Otherwise, when the application tries to use the declas-
sifier at runtime, the policy check fails and an exception
is thrown. Thus, an application’s code may contain po-
tentially many declassifiers, but only those which are ex-
plicitly allowed in the policy can be used at runtime (the
compiler ensures that all necessary runtime checks are
present in the application before it generates the object
code).

5.2 Performance

In this section we consider performance costs associ-
ated with the approach outlined in the preceding sections.
We stress the preliminary nature of the implementation,
experiments, and test-bed. Because of the unique and
cross-cutting nature of these experiments, it is highly dif-
ficult to isolate performance cost (simultaneously at the
application, OS and network layers). Experimental er-
ror is caused by interactions between the OS (process
scheduling, interrupts), network delays, Java (garbage
collection and dynamic class loading), and other system
services and applications (process interference). Hence,
we focused our initial experimentation toward obtaining
a broad performance characterization of the design, leav-
ing more precise evaluation and the invention of appara-
tus to achieve it to future work.

We study the overheads associated with information
flow controls at the application (Jif) level. We compile
the Jif programs using Ahead-of-Time (AOT) compila-
tion with the gcj compiler v. 4.1.1 with classpath
0.92 [29]. We examine two operations, a) logrotate
which renames up to four log files per set and as many

Operation Configuration Median Mean σ
logrotate C 7.923501 7.943820 0.133496
logrotate Jif 13.949643 13.925600 0.122477

send C 17.825400 21.834692 12.163714
send Jif 12.522900 15.620364 10.705158

SIESTA compliance 241.060289 252.830086 25.025038
SIESTA cached 31.639957 32.368633 3.353408

Table 1: Time (ms) to send a 10KB email in both Jif and C, time (ms) to perform one rotatation of 50MB of log files and time (ms) to start up the
Jif process using SIESTA (includes Jif-ness validation and compliance checking).

sets as requested, and b) send which sends a single email
from the client to the server. For logrotate, we com-
pare our Jif application with the latest C version 2.7.1,
using only minimal features of the applications. For
sending mail, we compare a custom C-based MTA ap-
plication with JPmail with IPsec enabled. A 3DES ESP
with MD5-integrity policy was used in all IPsec-enabled
tests. The tests were run between two identical 3GHz
Intel hosts running SELinux Kernel version 2.6.16 with
1GB memory on a lightly loaded 100MBit network. All
experiments were repeated 100 times.

Table 1 provides macrobenchmarks for the different
operations and configurations when sending a single
10KB email and when rotating forty log files totalling
50MB. For sending email, the overheads of the sys-
tem/approach are relatively small: in all cases the av-
erage execution time is less than 25 milliseconds, and
in many cases significantly less. In general, costs are
in line with unprotected systems, which indicates oper-
ations such as these are likely to be unaffected by the
additional security infrastructure.

5.2.1 Sample applications

In the case of logrotate, the Jif application consistently
runs 2x slower than the C version. We tested the two
programs with various log files of different total sizes.
Since there is no inspection of the contents of the files,
the size is the determining factor. The displayed result is
for a standard complement of log files totalling 50MB.
For this utility, the decrease in speed is inconsequential.
The logrotate application is generally a cron job that
only runs daily or even weekly. Additionally, our Jif code
is entirely unoptimized and could be improved.

A further comparison of the Jif and C applications
shows, interestingly, that Jif is faster, on average, for
email sends, although there is a significant variance for
both C and Jif. We found the Jif functions represented a
vanishingly small amount of overhead in this case. Fur-
ther investigation revealed that a significant portion of the
additional costs observed in the Jif application are due to
delays in the use of Java network APIs. The C program is
slower for sends because of an implementation artifact:
JPmail does a less graceful exit with the server, whereas
the C program waits for the server finalization.

5.2.2 Compliance testing

For SIESTA, the overheads are constant and small. The
policy compliance check requires a call into the XSB
prolog interpreter but executes relatively efficiently, re-
quiring only 15.512256 ms on average. 5.577328 ms of
this time is spent in loading the policy (both for the ap-
plication and the OS) while 8.902952 ms is spent doing
the flow checks. XSB prolog is highly optimized and the
prolog source files can be compiled for greater efficiency.
The majority of time is spent in signature validation for
the jar file that is being loaded.

Fortunately, this validation process (checking Jif-ness
and checking compliance) is a one-time cost when first
verifying the compliance of the application and its pol-
icy. This process only needs to be repeated if the ap-
plication changes (for a new version), if the application
policy changes or if the OS system policy changes, all of
which should be rare events. Otherwise, the service may
compile the jar file together with its policy into a binary
executable and the hash of the binary can be cached for
future executions. Checking the hash is almost an order
of magnitude faster than validating the jar signature and
checking compliance (32.368633 ms vs. 252.830086 ms
averaged over 100 runs).

5.3 Practicality/usability

What we have implemented is a prototype using Jif as
a basis for trust when constructing trusted applications
for a secure operating system. The guarantees that we
are capitalizing on are not specific to Jif, but are part of
the static type analysis that Jif implements for security
types. Jif has some problems. For example, Jif is built
on Java and requires that the JVM be loaded. This may
not be desirable for some applications. Furthermore, the
JVM introduces a large amount of code into the trusted
computing base. Fortunately, this is not an inherent limi-
tation to our approach because the security-type analysis
we depend on is orthogonal to the JVM (and any security
goals it may implement).

Another limitation is that Jif is not easy to program
in. Some of this is inherent in the fact that it must be
thorough about checking all information flows. For ex-
ample, it requires all exceptions to be handled, including
NullPointerExceptions, and it tracks implicit, con-

trol flows, which can be difficult for a programmer to
follow. On the other hand, we believe that much of the
burden can be alleviated through some semi-automated
labeling and through the development of other tools and
programming patterns [1, 12]. We are currently inves-
tigating these avenues. In the meantime, it is also im-
portant that the development of these tools be guided by
practical experience and some knowledge of how they
can be deployed. That is what we have described in this
paper.

6 Related work
This research considers the intersection of two areas of
related work: 1) secure systems development, particu-
larly mandatory access controls and 2) language-based
security, particularly security-typed languages.

Mandatory Access Controls The foundation of our
OS work comes from the Flask architecture [34], which
has been integrated into Linux through the Linux Se-
curity Module (LSM), giving Security Enhanced (SE)
Linux [32]. This is now being shipped as part of the
mainstream kernel in the 2.6 series and turned on by de-
fault in Redhat distributions since Fedora Core 5. Other
work in operating systems with MAC security include
Trusted Solaris [21], Solaris Trusted Extensions [20],
TrustedBSD [9] and SEDarwin [35].

MAC Operating Systems require all subjects and ob-
jects are labeled and all security-sensitive operations are
hooked with runtime checks. These checks query a pre-
viously configured security policy to determine whether
the operation is allowed, based on the subject and object
labels.

These policies have been used to implement vari-
ous high-level information flow properties across a dis-
tributed system. Recent research has shown that this ba-
sic mediation (called Type Enforcement or TE) can be
used to enforce integrity constraints on data [15]. More
recently added multi-level security (MLS) labels can be
used to enforce confidentiality [11]. A major limitation
in all this work is that it only observes security-sensitive
operations from outside of applications; it cannot peer
into application code to catch data leaks.

Security-typed languages Security-typed languages
have their heritage in the information flow policies of
Bell & LaPadula [3] with extensions to lattices as de-
scribed in [7]. This led to the concept of noninterfer-
ence [10], in which modifications of high security data
cannot be observed in any way through low security data.
Thus, two execution traces with different high security
inputs yield the same low security outputs. In their sem-
inal work, Volpano, Smith and Irvine [36], showed how
these information flow policies could be encoded into
types and noninterference could be determined through

a type analysis. The first language to implement this
was a variant of Java, called Java + Information Flow
(Jif) [22], which uses labels based on the Decentralized
Label Model (DLM) [24].

Jif remains the most mature security-typed language,
although there is much activity in the field (see a recent
survey for more details [27]). Other security-typed lan-
guage projects include functional, [26], assembly [5]
and web scripting [17] languages, as well as language
features for multiple threads of execution [33] and dis-
tributed systems [18]. Other recent work has studied in-
tegrity information flow [4, 6] in the context of replica-
tion and partitioning [37]. Much of the work in security-
typed languages has been theoretical, but some recent
work demonstrated that these languages can also produce
real-world applications [12].

A recent project, called GIFT [16], implements a more
general, but less rigorous approach to tracking data flows
within C applications. This language framework may be
another useful target for our architecture.

7 Conclusion
In this paper, we have described an important problem in
secure systems development, namely the inability of an
OS-level reference monitor to look inside a multi-level
application. We have provided an architecture to solve
this problem by using security-typed languages to track
secure data flows within applications. We implemented
this architecture for the security-typed language, Jif, and
the MAC operating system, SELinux. Through the ap-
plications, logrotate and JPmail, we showed that our
approach is secure, flexible and efficient.

Acknowledgements
A special thanks to Steve Chong for his tireless help in
providing insight about the inner workings of Jif and to
Mike Hicks for his numerous editorial comments. This
work was supported in part by NSF grant CCF-0524132,
“Flexible, Decentralized Information-flow Control for
Dynamic Environments” and NSF grant CNS-0627551,
“CT-IS: Shamon: Systems Approaches for Constructing
Distributed Trust”.

Notes
1To be complete, in addition to these five sensitivity levels there

are also category sets, but we leave them out here for simplicity of
presentation, as they do not add to the technical complexity.

2In SELinux, “MLS” has a broad meaning with the names and se-
mantics being drawn from a general policy. We consider the implica-
tions of this more in Section 4.3. The meanings of all type and MLS
level names are also defined in the policy, but typically s0 is most
public and s15 is most secret.

3Recall that logrotate var lib t:s0 is an abbreviation for sys-
tem u:object r:logrotate var lib t:s0.

4For brevity and clarity of presentation, we have given a truncated
version of the policy, but to be complete, our implementation includes

all the write-like and read-like operations necessary. For the same rea-
son, although our implementation also handles category sets, we forego
a discussion of that here.

5 wtmp is queried by the UNIX command last.

References
[1] A. Askarov and A. Sabelfeld. Secure Implementation of Crypto-

graphic Protocols: A Case Study of Mutual Distrust. In Proceed-
ings of the 10th European Symposium on Research in Computer
Security (ESORICS ’05), Milan, Italy, September 2005.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In Proceedings of the Symposium on Operating
Systems Principles (SOSP), October 2003.

[3] D. E. Bell and L. J. LaPadula. Secure computer system: Unified
exposition and Multics interpretation. Technical Report ESD-
TR-75-306, Deputy for Command and Management Systems,
HQ Electronic Systems Division (AFSC), L. G. Hanscom Field,
Bedford, MA, March 1976.

[4] K. J. Biba. Integrity Considerations for Secure Computer Sys-
tems. Technical Report ESD-TR-76-372, USAF Electronic
Systems Division, Bedford, MA, April 1977. (Also avail-
able through National Technical Information Service, Spring-
field Va., NTIS AD-A039324.).

[5] E. Bonelli, A. Compagnoni, and R. Medel. Non-interference for
a typed assembly language. In Proceedings of the LICS’05 Af-
filiated Workshop on Foundations of Computer Security (FCS).
IEEE Computer Society Press, 2005.

[6] S. Chong and A. Myers. Decentralized robustness. In Proceed-
ings of the 19th IEEE Computer Security Foundations Workshop
(CSFW), Venice, Italy, July 2006.

[7] D. Denning. A lattice model of secure information flow. Com-
munications of the ACM, 19(5):236–242, 1976.

[8] S.W. Devine, E. Bugnion, and M. Rosenblum. Virtualization
system including a virtual machine monitor for a computer with
a segmented architecture. VMWare, Inc., October 1998. US
Patent No. 6397242.

[9] FreeBSD Foundation. SEBSD: Port of SELinux FLASK and
type enforcement to TrustedBSD. http://www.trustedbsd.
org/sebsd.html.

[10] J. A. Goguen and J. Meseguer. Security policies and security
models. In Proceedings of the IEEE Symposium on Security and
Privacy, pages 11–20, April 1982.

[11] Chad Hanson. Selinux and mls: Putting the pieces together. In
Proceedings of the 2nd Annual SELinux Symposium, 2006.

[12] B. Hicks, K. Ahmadizadeh, and P. McDaniel. From Languages
to Systems: Understanding Practical Application Development
in Security-typed Languages. In Proceedings of the 22nd Annual
Computer Security Applications Conference (ACSAC 2006), Mi-
ami, FL, December 11-15 2006.

[13] B. Hicks, D. King, P. McDaniel, and M. Hicks. Trusted declas-
sification: High-level policy for a security-typed language. In
Proceedings of the 1st ACM SIGPLAN Workshop on Program-
ming Languages and Analysis for Security (PLAS ’06), Ottawa,
Canada, June 10 2006. ACM Press.

[14] Boniface Hicks, Sandra Rueda, Luke St. Clair, Trent Jaeger,
and Patrick McDaniel. A logical specification and analysis for
SELinux MLS policy. In Proceedings of the ACM Symposium on
Access Control Models and Technologies (SACMAT), Antipolis,
France, June 2007.

[15] T. Jaeger, A. Edwards, and X. Zhang. Policy management using
access control spaces. ACM Trans. Inf. Syst. Secur., 6(3):327–
364, 2003.

[16] L. Lam and T. Chiuch. A general dynamic information flow
tracking framework for security applications. In Applied Com-
puter Security Associates ACSAC, 2006.

[17] P. Li and S. Zdancewic. Practical Information-flow Control in

Web-based Information Systems. In Proceedings of 18th IEEE
Computer Security Foundations Workshop. IEEE Computer So-
ciety Press, 2005.

[18] H. Mantel and A. Sabelfeld. A Unifying Approach to the Se-
curity of Distributed and Multi-Threaded Programs. Journal of
Computer Security, 2002.

[19] R. Meushaw and D. Simard. Nettop - commercial technology
in high assurance applications, 2000. http://www.vmware.

com/pdf/TechTrendNotes.pdf.
[20] Sun Microsystems. Solaris trusted extensions. http://www.

sun.com.
[21] Sun Microsystems. Trusted solaris operating environment - a

technical overview. http://www.sun.com.
[22] A. C. Myers. Mostly-Static Decentralized Information Flow

Control. Technical Report MIT/LCS/TR-783, Massachussetts
Institute of Technology, January 1999. Ph.D. thesis.

[23] A. C. Myers, N. Nystrom, L. Zheng, and S. Zdancewic.
Jif: Java + information flow. Software release. Located at
http://www.cs.cornell.edu/jif, July 2001.

[24] Andrew C. Myers and Barbara Liskov. Protecting privacy using
the decentralized label model. ACM Transactions on Software
Engineering and Methodology, 9(4):410–442, 2000.

[25] Security-enhanced Linux. http://www.nsa.gov/selinux.
[26] F. Pottier and V. Simonet. Information Flow Inference for ML.

In Proceedings ACM Symposium on Principles of Programming
Languages, pages 319–330, January 2002.

[27] A. Sabelfeld and A. C. Myers. Language-Based Information-
Flow Security. IEEE Journal on Selected Areas in Communica-
tions, 21(1):5–19, January 2003.

[28] Andrei Sabelfeld and David Sands. Dimensions and principles
of declassification. In Proceedings of the IEEE Computer Se-
curity Foundations Workshop, Aix-en-Provence, France, June
2005.

[29] G. Sally. Embedded Java with GCJ. Linux Journal, (145), May
2006.

[30] B. Sarna-Starosta and S.D. Stoller. Policy analysis for security-
enhanced linux. In Proceedings of the 2004 Workshop on Issues
in the Theory of Security (WITS), pages 1–12, April 2004. Avail-
able at http://www.cs.sunysb.edu/˜stoller/WITS2004.html.

[31] U. Shankar, T. Jaeger, and R. Sailer. Toward automated
information-flow integrity verification for security-critical ap-
plications. In Proceedings of the 2006 ISOC Networked and
Distributed Systems Security Symposium (NDSS’06), San Diego,
CA, USA, February 2006.

[32] S. Smalley, C. Vance, and W. Salamon. Implementing SELinux
as a linux security module. Technical Report 01-043, NAI Labs,
2001.

[33] G. Smith and D. Volpano. Secure Information Flow in a Multi-
Threaded Imperative Language. In Proceedings ACM Sympo-
sium on Principles of Programming Languages, pages 355–364,
San Diego, California, January 1998.

[34] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen,
and J. Lapreau. The Flask architecture: System support for di-
verse security policies. In Proceedings of the 8th USENIX Secu-
rity Symposium, pages 123–139, August 1999.

[35] Christopher Vance, Todd Miller, and Rob Dekelbaum. Security-
Enhanced Darwin: Porting SELinux to Mac OS X. In Proceed-
ings of the Third Annual Security Enhanced Linux Symposium,
Baltimore, MD, USA, March 2007.

[36] D. Volpano, G. Smith, and C. Irvine. A sound type system for
secure flow analysis. 4(3):167–187, 1996.

[37] L. Zheng, S. Chong, A. C. Myers, and S. Zdancewic. Using
Replication and Partitioning to Build Secure Distributed Sys-
tems. In Proceedings of the IEEE Symposium on Security and
Privacy, 2003, pages 236–250, 2003.

http://www.trustedbsd.org/sebsd.html
http://www.trustedbsd.org/sebsd.html
http://www.vmware.com/pdf/TechTrendNotes.pdf
http://www.vmware.com/pdf/TechTrendNotes.pdf
http://www.sun.com
http://www.sun.com
http://www.sun.com
http://www.nsa.gov/selinux

	Introduction
	Problem
	Security background
	Enforcing MAC policies within applications

	Architecture
	Process steps
	Programming infrastructure
	Specializing application policy
	Verifying run requests
	Compliance analysis

	Implementation
	Extensions to the Jif Runtime
	SIESTA
	Compliance analysis
	Sample applications
	logrotate
	Email client

	Discussion and evaluation
	Declassification
	Performance
	Sample applications
	Compliance testing

	Practicality/usability

	Related work
	Conclusion

