
1

Long-Span Program Behavior Modeling and Attack
Detection

XIAOKUI SHU, IBM Research
DANFENG (DAPHNE) YAO, Virginia Tech
NAREN RAMAKRISHNAN, Virginia Tech
TRENT JAEGER, Pennsylvania State University

Intertwined developments between program attacks and defenses witness the evolution of program anom-
aly detection methods. Emerging categories of program attacks, e.g., non-control data attacks and data-
oriented programming, are able to comply with normal trace patterns at local views. This paper points out
the deficiency of existing program anomaly detection models against new attacks and presents long-span
behavior anomaly detection (LAD), a model based on mildly context-sensitive grammar verification. The key
feature of LAD is its reasoning of correlations among arbitrary events occurred in long program traces. It ex-
tends existing correlation analysis between events at a stack snapshot, e.g., paired call and ret, to correlation
analysis among events historically occurred during the execution. The proposed method leverages special-
ized machine learning techniques to probe normal program behavior boundaries in vast high-dimensional
detection space. Its two-stage modeling/detection design analyzes event correlation at both binary and quan-
titative levels. Our prototype successfully detects all reproduced real-world attacks against sshd, libpcre,
and sendmail. The detection procedure incurs 0.1~1.3ms overhead to profile and analyze a single behavior
instance that consists of tens of thousands of function call or system call events.
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1 INTRODUCTION
Attacks to programs are one of the oldest and fundamental threats to computing systems, which
evolve and constitute latest attack vectors and advanced persistent threats. Anomaly-based intru-
sion detection discovers aberrant executions caused by attacks, misconfigurations, program bugs,
and unusual usage patterns. The approachmodels normal program behaviors instead of the threats.
It does not bear time lags between emerging attacks and deployed countermeasures as standard
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defenses do, which are built upon retrospects of inspected attacks. The merit of program anomaly
detection is its independence from attack signatures. This property potentially enables proactive
defenses against new and unknown threats.

The detection accuracy of program anomaly detectionmethods relies on the precision of normal
program behavior description and the completeness of the training [54]. Primitive program attacks,
e.g., return addresses manipulation and library/system call injection, result in great variation from
normal behaviors. Thus, they can be distinguished from relatively imprecise descriptions of normal
program behaviors, e.g., n-gram system call anomaly detection [12].
Program anomaly detection models evolve as attacks share more and more similarities with nor-

mal behaviors. Attacks using explicit control flow manipulation, e.g., tampering with return ad-
dresses on the stack, are no longer effective due to the deployment of standard defensemechanisms
such as non-executable stack, address space layout randomization, and control-flow integrity. New
program attacks utilize indirect means of control flow manipulation, e.g., data-oriented program-
ming [25], or abuse programs within legal control flows, e.g., denial of service attacks. The emerg-
ing stealthy attacks diminish the effectiveness of existing anomaly-based intrusion detection mod-
els to distinguish them from normal program executions.

Take the remote authentication subroutine in sshd as an example, an attacker can launch a
stealthy attack by overwriting a flag variable recording authentication results in the authentication
subroutine. The overwriting prior to specific authentication operations enables the attacker to
bypass critical security control and log in after a failed authentication. There is no illegal control
flow or short abnormal system call sequences in this attack. Therefore, it is difficult for existing
models to detect. The sshd attack involves breaches of data integrity for altering the execution
path. However, this is not necessary. Denial of service attacks and some data retrieval attacks
leverage legal-but-unusual execution patterns to fulfill effective attacks. Such attacks can only be
detected by existing anomaly detection methods to some extent.

Program anomaly detection utilizes execution traces to describe program behaviors and search
for anomalous behaviors [52]. They can be abstracted as former grammar parsers to validate
program traces, and existing models are restricted to regular grammar parsers [11, 12, 28] and
context-free grammar parsers [10, 19, 30, 49]. Some comprehensive approaches extend determin-
istic language parsers to probabilistic ones [15, 22, 36, 63], verify some additional data-flow infor-
mation [3, 18, 19, 38] or perform simple frequency analysis [14, 15, 61]. However, none of them is
designed to represent a context-sensitive grammar parser, which is able to better recognize normal
program behaviors and detect aforementioned attacks.

The key difference between a context-sensitive grammar model and existing (regular or context-
free grammar) models is the ability to correlate arbitrary events in a long program trace. Two seg-
ments of code executed during a run may correlate by specific control or data links. Context-
sensitive grammar parsing enables the mining of event correlations in long program traces. The
correlations reveal specific behavior properties of normal executions, which could distinguish
them from anomalous runs and attacks. For instance, the aforementioned sshd attack breaks the
correlation between the authentication result and the login operation.

The complete context-sensitive analysis is impractical to reach by a real-world detection tool
due to non-polynomial training complexity [54]. However, it is possible to construct parsers that
recognize context-sensitive properties in the traces yet avoid the impractical complexity of com-
plete context-sensitive grammars.

We present long-span behavior anomaly detection (LAD) – a mildly context-sensitive grammar
program anomaly detection model to characterize program behaviors and detect stealthy attacks.
We approach the anomaly detection problem from the machine learning perspective and blueprint
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a two-stage data mining solution for event correlation analysis in long program traces. LAD can
be abstracted as a stochastic mildly context-sensitive language parser. It consists of a training
phase (the stochastic language construction procedure) and a detection phase (new behavior/trace
testing). The context-sensitive property enables the model to learn correlations between events
that are millions of events away in the trace. The stochastic language estimates proper boundaries
of normal behaviors in a high-dimensional detection space and mitigates potential oversensitive
detection due to insufficient training samples.

Our approach overcomes two major challenges in constructing a context-sensitive grammar
model for program anomaly detection.

Training scalability challenge: the complete event reasoning in extremely long trace segments
forms a vast detection space, the size of which is exponential to the length of the training trace
segments. It requires exponential training time to converge. Insufficient training results in high
false positive rates as tested in many n-gram methods with n > 40 for long segment analysis. Our
approach reduces the potential exponential-size space to a constant-size high-dimensional detec-
tion space by profiling program behavior instances into fixed size matrices. The matrix profiles are
initialized by static program analysis and filled by program behavior instances (dynamic traces).

Behavior diversity challenge: various functionalities in real-world programs lead to diverse pro-
gram behaviors. Diverse normal data points in the high-dimensional detection space make it diffi-
cult to seek a hyperplane in traditional classifiers, e.g., one-class SVM, for precisely distinguishing
anomalous behaviors from normal ones. Stealthy attacks can often exploit the imprecision of nor-
mal boundaries generated by traditional classifiers and subvert the detection. Our two-stage design
recognizes diverse normal behaviors in clusters and performs precise characterizations of normal
behaviors inside each cluster.

The contributions of our work are summarized as follows.

• We identify the need to correlate events in long program traces for the detection of stealthy
program attacks that alter execution paths instead of control flows. We formalize a stochastic
mildly context-sensitive language model for mining arbitrary event correlations in long pro-
gram traces and estimating normal boundaries in a high-dimensional detection space.
• We embody the proposed mildly context-sensitive language model with a two-stage data min-
ing approach, which consists of a constrained agglomerative clustering algorithm for address-
ing the behavior diversity challenge and a combination of probabilistic and deterministic mod-
els for precise intra-cluster behavior modeling. The two-stage detection approach mines event
correlations from fixed-size matrix profiles of program behaviors, which addresses the training
scalability challenge.
• We prototype our program anomaly detection approach on Linux and evaluate its detection
capability, accuracy, and performance with sshd, libpcre, and sendmail. Our prototype is
trained with over 22,000 normal profiles and detect over 800 reproduced real-world attacks.
High detection accuracy is demonstrated against four categories of synthetic anomalies, and
the testing of a single program behavior profile with 1k to 50k function/system call events
incurs only 0.1~1.3ms.

2 SECURITY MODEL
We discuss stealthy attacks that do not directly alter control flows, point out the need of event
correlation analysis in long program traces, and present a mildly context-sensitive grammar parser
for the detection of such attacks.
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1: void do_authentication(char *user, . . . ) {
2: int authenticated = 0;

. . .
3: while (!authenticated) {
4: type = packet_read();
5: switch (type) {

. . .
6: case SSH_CMSG_AUTH_PASSWORD:

. . .
7: if (auth_password(user, password)) {
8: memset(password, 0, strlen(password));
9: xfree(password);

10: log_msg(". . . ", user);
11: authenticated = 1;
12: break;

}
13: memset(password, 0, strlen(password));
14: debug(". . . ", user);
15: xfree(password);
16: break;

. . .
}

17: if (authenticated) break;
. . .

Fig. 1. sshd flag variable overwritten attack.

2.1 Aberrant Path Attack
We study a category of stealthy attacks – aberrant path attacks, which contain infeasible, incon-
sistent, or aberrant execution paths, but they obey legitimate control-flow graphs. Aberrant path
attacks can evade existing detectionmechanisms because of the following properties of the attacks:

• not conflicting with control-flow graphs
• not incurring anomalous call arguments
• not introducing unknown short call sequences

Aberrant path attacks are realistic threats and gain in popularity since primitive attacks are less
effective due to memory protection, e.g., address space layout randomization (ASLR) [50]. A popu-
lar example is the sshd flag variable overwritten attack first described by Chen et al. [6]. The attack
takes advantage of an integer overflow vulnerability found in several implementations of the SSH1
protocol [35]. Illustrated in Figure 1, an attacker can overwrite the flag integer authenticated
when the vulnerable procedure packet_read() is called. If authenticated is overwritten to a
nonzero value, line 17 is always True and auth_password() on line 7 is no longer effective.
Aberrant path attacks do not only allow the attacker to bypass authentication procedures, but

can also be leveraged to cover Turing-complete operations as control flow manipulation attacks.
We list four common types of aberrant path attacks as follows.
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(1) Non-control data attacks that reorganize existing control flows to create new execution paths
fall into the categories of aberrant path attacks1. The attacks hijack programs without ma-
nipulating their control data (data loaded into program counter, e.g., return addresses). It is
named by Chen et al. [6] and generalized by Hu as data-oriented programming [24, 25]. Hu
utilizes compromised variables to construct loop trampolines and achieve Turing-complete
functionalities without directly tampering control data.

(2) Workflow violation attacks exploit weak workflow enforcements of a system. The attacker
usually executes part of the program to bypass access control [7], leak critical information,
or disable a service (e.g., trigger a deadlock). One example is presentation layer access control
bypass in web applications. If the authentication is only enforced at the presentation layer,
which is not securely coupled to its underlying business logic layer, an attacker can directly
access the business logic layer and read/write data.

(3) Exploit preparation is a common step preceding the launch of an exploit payload. It usually
utilizes legal control flows to load essential libraries, arranges memory space (e.g., heap feng
shui [55]), seeks addresses of useful code and data fragments (e.g., ASLR probing [50]), and/or
triggers particular race conditions.

(4) Service abuse attacks do not take control of a program. Instead, the attacks utilize legal con-
trol flows to compromise the availability (e.g., Denial of Service attack), confidentiality (e.g.,
Heartbleed data leak [23]), and financial interest (e.g., click fraud) of target services.

2.2 Security Goal: Event Correlation Mining in Long Program Traces
The key to the detection of aberrant path attacks is the knowledge of instruction correlations in
a long program trace. Even legal control flows are preserved, the execution paths of the program
under attacks are different than normal. Therefore, the attacker can achieve their attack goals.

Taking the sshd flag variable overwritten attack (Figure 1) as an example, normal execution
paths should contain line 8-12 if line 17 is True (a shell is spawned afterward). The attack trace, on
the contrary, contains the shell spawn procedure (line 18-) without the the execution of line 8-12.
Co-occurrence between instructions in an execution can be analyzed to detect such an attack.

Another example is the loop trampoline proposed by Hu to construct a Turing-complete non-
control data attack [25]. In this attack, a vulnerable variable in a loop branch is exploited to prepare
a gadget – a fraction of the malicious payload. The attacker executes the loop trampoline at an
unusual pattern to chain a string of gadgets together and achieve Turing-complete operations. The
attack reflects an unusual pattern of the loop usage because of the gadget construction. It could
also result in broken co-occurrence among instructions in normal runs.

The goal of the detection is to learn event correlations in long program traces. Events refer to
function calls, jumps, or even generic instructions in a program trace. The correlations append
additional information to control flows, making it possible to enforce co-occurrences of branches
as well as different portions of a process.

We define event correlation in two levels.
(1) Event co-occurrence denotes the binary relation between co-occurred events in a long pro-

gram trace. Repeating events should be deduplicated, and event appearances are studied in
binary forms.

(2) Event occurrence frequency relation denotes quantitative relation among event occurrence
frequencies in a long program trace. It provides more fine-grained knowledge about the
execution path than event co-occurrences.

1Simple non-control data attacks that only exploit arguments of legitimate exec system calls may not result in explicit
aberrant path attacks.
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call s1

0<x<n
no

call s2

0<x<n
no

call s3

0<x<n
no

yes

yes

yes

Fig. 2. An example of event relation restricted by induction variables.

2.3 Security Model: A Stochastic Mildly Context-Sensitive Language
We first define a program trace as the building block to formalize program anomaly detection
models. Then we present a mildly context-sensitive language model for characterizing event co-
occurrences and event frequency relations in a long program trace.

Definition 2.1. A program traceT is the sequence of all instructions executed in an autonomous
portion of a program execution.

T records the sequence of all executed instructions (addresses and arguments). In real-world
detection systems, select instructions are used to represent all instructions in the construction of
T . The simplification sacrifices precision for practicality, e.g., smaller tracing and modeling over-
head. For example,T only contains system call instructions, e.g., SYSENTER, in system call anomaly
detection systems.

To build practical detection systems,T can be a long portion of a finite or infinite2 program trace.
In practice, T is partitioned from an entire trace based on boundaries of program functionalities
to represent program behaviors with semantic meanings. Examples of partitioning for security
analysis include i) critical subroutine call/return, ii) threads creation/termination, or iii) the entire
execution of a small program.

Given a set of normal program traces (generated from dynamic or static/synthetic program
analysis), a program anomaly detection system forms a formal grammar to accept all normal traces
and reject others. The detection system can be written as the set of all normal program traces, i.e.,
a formal language: L = {T | T is normal}.

To fulfill the security goal of describing arbitrary event correlations in long program traces, one
needs a context-sensitive language model to parse program traces.

Theorem 2.2. A program anomaly detection model describing arbitrary event correlations in a
long program trace is a context-sensitive language model.

Proof. We prove the contrapositive of Theorem 2.2: a context-free language cannot model ar-
bitrary event correlation in a long program trace.

Figure 2 illustrates a simple block of code that results in a strong relation of the occurrence
frequencies of system calls s1, s2 and s3 in an execution trace. The traces of the program can be
described as a language L̇ = {· · · sn1 sn2 sn3 · · · } = {· · · s1s2s3 · · · , · · · s1s1s2s2s3s3 · · · , . . . }. It is proved
that the formal language L̈ = {sn1 sn2 sn3 } is not a context-free language – L̈ does not satisfy the
pumping lemma property shared among all context-free languages [2]. Therefore, L̇ (a superset of
L̈) is not a context-free language. □
2A program could run continuously and yield an infinite trace.
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Table 1. An Example of L̃

Σ = {s1, s2, s3} program behavior modeled by three system calls

T ∈ Σ∗ a trace is an arbitrary combination of items in Σ

fi = T .count (si ) | 1 ≤ i ≤ 3 fi represents the frequency of si in T

P (T ) =
0 f1 , f2

min( f3/f1, 1) f1 = f2
probability generation

η = 0.5 string probability threshold

The detection system in this example accepts program traces with equal numbers of s1
and s2 and some s3 that occur more than half times of s1.

Long program traces modeled as strings establish a high-dimensional space for modeling, which
makes the training of a generic context-sensitive language model impractical. When processed as
strings, each position in the traces, e.g., the ith item, establishes one dimension in the detection
space. The dimensionality of the space equals to the length of the longest trace.

To build a practical detection mechanism, we modify the generic context-sensitive language to
avoid exponential training convergence time and oversensitive detection caused by sampled normal
behaviors in training. The former refers to the exponential number of traces/objects to model re-
garding the length of the traces. The latter refers to false positives caused by unsampled normal
behaviors/traces that are recognized incorrectly by the detection system.
• The key to our non-exponential time solution is to focus on the event relational informa-
tion other than the order information among events in traces. We build a restricted context-
sensitive language that only characterizes the relation quantitatively among events, but not
the order of events in long traces. Our language is a generalization of the context-sensitive
language Bach [47]. The latter only characterizes strings with equally occurred symbols.
• Our solution to the oversensitive detection issue is a stochastic language L̃ = {T | P (T ) >
η}, which estimates proper boundaries of normal behaviors from training samples. In our
stochastic language, each tested trace T yields a probability showing how likely T can be
accepted by L̃. A threshold η ∈ [0, 1] is used to decide the acceptance of the trace by L̃.

Our program anomaly detection model is defined as a stochastic mildly context-sensitive lan-
guage L̃ in Definition 2.3.

Definition 2.3. L̃ = {T |(T ∈ Σ∗) ∧ (P (T ) > η) ∧ (S ⇒+ T )} where Σ = {e0, e1, e2, . . . } is the set of
all events monitored; S ⇒+ T is the string generation operation that appends a symbol to the left
or right of an existing string/trace; all strings start from an empty string S = {ϵ }; the acceptance
of a string/trace is checked by P (T ) > η, which verifies event frequency relation in a string.

We give an example of L̃ in Table 1. The detection system accepts program traces as normal
when i) the trace contains same numbers of s1 and s2, and ii) the number of s3 in the trace is higher
than half of the number of s1. The acceptance rule of a specific language is customized by the P (T )
function, which can characterize both the event co-occurrence relation and the event occurrence
frequency relation.

3 LAD SYSTEM OVERVIEW
We present long-span behavior anomaly detection (LAD), a detection system to embody the sto-
chastic mildly context-sensitive language L̃ discussed in Section 2.3. The goal of the detection
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system is to fulfill both the (binary) event co-occurrence analysis and the (quantitative) event oc-
currence frequency analysis supported by L̃.

We present an overview of LAD for analyzing long program traces in this section. We develop
a constrained agglomerative clustering algorithm to overcome the behavior diversity challenge.
We develop a compact and fixed-length matrix representation to profile long program traces. The
matrix representation only records relational information among events. It is an implementation
to avoid exponential training convergence time as discussed in L̃.

3.1 Profiling Program Behaviors
We describe the profiling procedure in LAD using the example event set: {call, ret3}4. call
and ret expose user-space program activities and provide a more detailed understanding of the
program execution than system calls. Function calls are exposed in some automata-based methods,
e.g., Dyck model [19], but for a different purpose, i.e., eliminating non-deterministic paths.
We denote the overall activity of a programwithin a long trace segmentT 5 as a behavior instance

b. Instance b recorded in T is profiled in two matrices:

Definition 3.1. An event co-occurrence matrix O is an m × n Boolean matrix recording co-
occurred call events in a behavior instance b. oi, j = True indicates the occurrence of the call from
the i-th row symbol (a routine) to the j-th column symbol (a routine). Otherwise, oi, j = False.

Definition 3.2. A transition frequency matrix F is anm × n nonnegative matrix containing oc-
currence frequencies of all calls in a behavior instance b. fi, j records the occurrence frequency of
the call from the i-th row symbol (a routine) to the j-th column symbol (a routine). fi, j = 0 if the
corresponding call does not occur in O .

Om,n =


o1,1 o1,2 · · · o1,n
o2,1 o2,2 · · · o2,n
...

...
. . .

...
om,1 om,2 · · · om,n


Fm,n =


f1,1 f1,2 · · · f1,n
f2,1 f2,2 · · · f2,n
...

...
. . .

...
fm,1 fm,2 · · · fm,n


For one specific b, O is a Boolean interpretation of F that

oi, j =

{
True if fi, j > 0
False if fi, j = 0 (1)

O and F are succinct representations of the dynamic call graph of a running program.m and n
are total numbers of possible callers and callees in the program, respectively. Row/column symbols
in O and F are determined through static analysis. m may not be equal to n, in particular when
calls inside libraries are not counted.

Bitwise operations, such as AND, OR, and XOR apply to co-occurrence matrices. For example,
O ′ ANDO ′′ computes a new O that oi, j = o′i, j AND o

′′
i, j .

Profiles at different granularities Although designed to be capable of modeling user-space pro-
gram activities via function calls, LAD can also digest coarse level program traces for learning
program behaviors. For example, system calls can be traced and profiled into O and F to avoid
3ret is paired with call, which can be verified via existing CFI technique. We do not involve the duplicated correlation
analysis of ret in our model, but we trace ret to mark function boundaries for long trace partitioning (discussed in
Section 5 and Section 6.1).

4Σ is larger than the set of two because call/ret with different addresses are different events/symbols in Σ.
5The definition of T should be specified by security analysts or software developers. Automatic definition construction
could be developed to accelerate the deployment of the system.
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Fig. 3. Information flows among operations in two stages and two phases of LAD.

excessive tracing overheads in performance-sensitive deployments. The semantics of the matrices
changes in this case; each cell inO and F represents a statistical relation between two system calls.
The detection is not as accurate as our standard design because system calls are coarse descriptions
of program executions.

3.2 Architecture
LAD consists of two complementary stages of modeling and detection for event co-occurrence
analysis and event occurrence frequency analysis, respectively.
The first stagemodels the binary representation of event co-occurrences in a long program trace
via event co-occurrencematrixO for event co-occurrence analysis. It consists of a training operation
Behavior Clustering and a detection operation Co-occurrence Analysis.
The second stage models the quantitative frequency relation among events in a long trace via
transition frequency matrix F for event occurrence frequency analysis. It consists of a training op-
eration Intra-cluster Modeling and a detection operation Occurrence Freqency Analysis.
We illustrate the architecture of LAD in Figure 3 and brief each operation below.

1. Behavior Profiling recognizes target long trace segments {T1,T2, . . . } in raw traces and pro-
files b from eachT intoO and F . Symbols in F andO are retrieved via static program analysis
or system call table lookup.

2. BehaviorClustering is a training operation. It takes in all normal behavior instances {b1,b2, . . . }
and outputs a set of behavior clusters C = {C1,C2, . . . } where Ci = {bi1 ,bi2 , . . . } and bi_ ∈
{b1,b2, . . . }.

3. Intra-cluster Modeling is a training operation. It is performed in each cluster. It takes in
all normal behavior instances {bi1 ,bi2 , . . . } for Ci and constructs one deterministic model and
one probabilistic model for computing the refined normal boundary in Ci .

4. Co-occurrence Analysis is an inter-cluster detection operation that analyzesO (ofb) against
clusters in C. If behavior instance b is normal, it reduces the detection problem to subproblems
within a set of behavior clusters Cb = {Cb1 ,Cb2 , . . . }, in which b closely fits.
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5. Occurrence Freqency Analysis is an intra-cluster detection operation that analyzes F (of
b) in each Cb . Behavior instance b is normal if F abides by the rules extracted from Cb and F
is within the normal boundary established in Cb .

4 INTER-/INTRA-CLUSTER DETECTION
We detail the two stages of the training and modeling procedures in LAD. The first stage contains
a constrained clustering algorithm, which differentiates diverse program behaviors, divides the
detection problem into subproblems, and performs the first round dimensionality reduction. The
clustering enables inter-/intra-cluster detection in the first/second stage, respectively.

4.1 Behavior Clustering (Training)
We develop a constrained agglomerative clustering algorithm that addresses two special needs to
handle program behavior instances for anomaly detection: i) long tail elimination, and ii) border-
line behavior treatment. Agglomerative clustering is a bottom-up hierarchical clustering strategy
that merges nearest clusters till stopping criteria, e.g., distance of clusters, number of clusters. It
requires little konwledge about the results before operating, and the algorithm is flexible to adjust.
Standard agglomerative clustering algorithms result in a large number of tiny clusters in a long-tail
distribution (shown in Section 6.1). Tiny clusters do not provide sufficient numbers of samples for
statistical learning of the refined normal boundary inside each cluster. Standard algorithms also
do not handle borderline behaviors, which could be trained in one cluster and tested in another,
resulting in false alarms.

Our algorithm (Algorithm 1) clusters program behavior instances based on the co-occurred
events in behavior instances. Our algorithm handles the borderline behavior issue – behavior in-
stances on the borderlines are randomly selected into clusters – with a two-step process:

(1) generate scopes of clusters in an agglomerative way (line 11-25)
(2) add behavior instances to generated clusters (line 27-39)

Our algorithm initializes clusters as individual behavior instances (line 2 to line 10), then the
nearest clusters are merged (line 11 to line 25) till stopping criteria are reached (line 13) in the first
step. The scope of each cluster is calculated in the first step, but not the items in each cluster. Step
two fills each cluster with behavior instances and handles borderline behavior (line 27-39).

We use a lazily updated heap h in Algorithm 1 to minimize the calculation and sorting of dis-
tances between intermediate clusters. Each entry in h contains the distance between two clusters,
and h is sorted based on the distance. The design of the lazily updated heap ensures that a previ-
ously merged cluster is not removed proactively in h until the entry containing it is popped and
abandoned. Algorithm 1 performs lazy removal of dead clusters in h. Dead clusters refer to the
clusters that are merged into others and no longer exist.

The scope of a cluster C = {bi | 0 ≤ i ≤ k } is represented by its event co-occurrence matrix
OC .OC records occurred events in any behavior instances inC . It is defined in (2) whereObi is the
event co-occurrence matrix of bi .

OC = Ob1 OR Ob2 OR . . . OR Obk , 0 ≤ i ≤ k (2)

The distances between i) two behavior instances, ii) two clusters, and iii) a behavior instance
and a cluster are all measured by their co-occurrence matrices O1 and O2 in (3) where |O | counts
the number of True in O .

dist (O1,O2) =
Hamming(O1,O2)

min( |O1 |, |O2 |)
(3)
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ALGORITHM 1: Constrained Agglomerative Program Behavior Clustering
Input: a set of normal program behavior instances B and a termination threshold Td .
Output: a set of behavior clusters C.

1 h ← ∅heap ; v ← ∅hashtable ; V ← ∅set ;
2 for b ∈ B do
3 O ← Ob ;
4 v[O]← v[O] + 1;
5 for O ′ ∈ V do
6 dp ← dist (O,O ′) × pen(v[O],v[O ′]);
7 push ⟨dp ,O,v[O],O ′,v[O ′]⟩ onto h;
8 end
9 add O to V ;

10 end
11 while h , ∅heap do
12 pop ⟨dp ,O1,vO1 ,O2,vO2 ⟩ from h;
13 break if dp > Td ;
14 if O1 ∈ V and O2 ∈ V then
15 continue if vO1 < v[O1] or vO2 < v[O2];
16 O ← O1 OR O2;
17 v[O]← v[O1] +v[O2];
18 remove O1 from V ; remove O2 from V ;
19 for O ′ ∈ V do
20 dp ← dist (O,O ′) × pen(v[O],v[O ′]);
21 push ⟨dp ,O,v[O],O ′,v[O ′]⟩ onto h;
22 end
23 add O to V ;
24 end
25 end
26 w[O]← ∅set for all O ∈ V ;
27 for b ∈ B do
28 O ← Ob ;m ←MAXINT;
29 for O ′ ∈ V do
30 if O OR O ′ = O ′ then
31 if dist (O,O ′) < m then
32 m ← dist (O,O ′);
33 V ′ ← {O ′};
34 else if dist (O,O ′) =m then
35 add O ′ to V ′;
36 end
37 end
38 add b tow[O] for all O ∈ V ′;
39 end
40 C← {w[O] for all O ∈ V };

dist (): distance function between behaviors/clusters. pen (): penalty function for long tail elimination.

Hamming distance alone is insufficient to guide the cluster agglomeration: it loses the semantic
meaning of O , and it weighs True and False the same. However, in co-occurrence matrices, only
True contributes to the co-occurrence of events.
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For example, given four Os

O1 =

[
1 1
1 1

]
,O2 =

[
0 1
1 1

]
,O3 =

[
0 0
1 1

]
,O4 =

[
0 0
0 1

]
,

O1 andO2 are nearer thanO3 andO4 (dist (O1,O2) = 33% < dist (O3,O4) = 100%), while their pure
Hamming distances are equal (Hamming(O1,O2) = Hamming(O3,O4) = 1).
We explain the unique features of our constrained agglomerative clustering algorithm over the

standard design as follows.
• Long tail elimination: A standard agglomerative clustering algorithm produces clusters with a
long tail distribution of cluster sizes – there are a large number of tiny clusters, and the unbal-
anced distribution remains at various clustering thresholds. Tiny clusters provide insufficient
number of behavior instances to train probabilistic models in Intra-cluster Modeling.
In order to eliminate tiny/small clusters in the long tail, our algorithm penalizes dist (O1,O2)
by (4) before pushing it onto h. |Ci | denotes the size of cluster Ci .

pen( |C1 |, |C2 |) = max(log( |C1 |), log( |C2 |)) (4)

• Penalty maintenance: The distance penalty between C1 and C2 changes when any size of C1
andC2 changes. In this case, all entries in h containing a cluster whose size changes should be
updated or nullified.
We use a version control to mark the latest and deprecated versions of clusters inh. The version
of a clusterC is recorded as its current size (an integer). It is stored inv[O]whereO is the event
co-occurrence matrix ofC .v is a hashtable that assigns 0 to an entry when the entry is accessed
for the first time. A heap entry contains two clusters, their versions and their distance when
pushed to h (line 7 and line 21). An entry is abandoned if any of its two clusters are found
deprecated at the moment the entry is popped from h (line 15).
• Borderline behavior treatment: It may generate a false positive when i) dist (b,C1) = dist (b,C2),
ii) b is trained only inC1 during Intra-cluster Modeling, and iii) a similar behavior instance
b ′ is tested againstC2 in operationOccurrence Freqency Analysis (intra-cluster detection).
To treat the borderline behaviors correctly, our clustering algorithm duplicates b in every clus-
ter, which b may belong to (line 27-39). This operation also increases cluster sizes and results
in sufficient training in Intra-cluster Modeling.

4.2 Co-occurrence Analysis (Detection)
This operation performs inter-cluster detection to seek event co-occurrence anomalies. A behavior
instance b is tested against all normal clusters C to check whether the co-occurred events in b
are consistent with co-occurred events found in a single cluster. An alarm is raised if no such
cluster is found. Otherwise, b and its most closely fitted clusters Cb = {C1, . . . ,Ck } are passed to
Occurrence Freqency Analysis for intra-cluster detection.

An incoming behavior instance b fits in a cluster C if (Ob OR OC = OC ) ∧ (Ob AND O∗C = O∗C )
whereOC andOb are the event co-occurrence matrices ofC and b, andO∗C is a feature ofC defined
in (5). We define the fitting test to fulfill the event co-occurrence analysis and detects anomalous
behaviors with fabricated or broken co-occurrences.

O∗C = Ob1 AND Ob2 AND . . . AND Obk , 0 ≤ i ≤ k (5)

The detection process searches for all clusters in which b fits, i.e., Cb . If Cb , ∅, distances between
b and each cluster in Cb are calculated using (3). The clusters with the nearest distance (|Cb | ≥ 1)
are selected as Cb .
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4.3 Intra-cluster Modeling (Training)
Within a cluster C , LAD analyzes behavior instances through their transition frequency matrices
{Fb | b ∈ C}. The matrices are vectorized into data points in a high-dimensional detection space
where each dimension records the occurrence frequency of a specific event across profiles. Two
analysis methods reveal relations among frequencies.

The probabilistic method.We employ a one-class SVM, i.e., ν-SVM [48], to seek a frontier F
that envelops all behavior instances {b | b ∈ C}.
a) Each frequency value is preprocessed with a logarithmic function f (x ) = log2 (x + 1) to re-

duce the variance between extreme values (empirically proved necessary).
b) A subset of dimensions are selected through frequency variance analysis (FVA)6 or principle

component analysis (PCA)7 [43] before data points are consumed by ν-SVM. This stepmanages
the curse of dimensionality, a common concern in high-dimensional statistical learning.

c) We pair the ν-SVM with a kernel function, i.e., radial basis function (RBF)8, to search for a
non-linearly F that envelops {b | b ∈ C} tightly. The kernel function transforms a non-linear
separating problem into a linearly separable problem in a high-dimensional space.

The deterministic method. We employ variable range analysis to measure frequencies of
events with zero or near zero variances across all program behaviors {b | b ∈ C}.

Frequencies are discrete integers. If all frequencies of an event in different behavior instances are
the same, PCA simply drops the corresponding dimension. In some clusters, all behavior instances
(across all dimensions) in C are the same or almost the same. Duplicated data points are treated
as a single point, and they cannot provide sufficient information to train probabilistic models, e.g.,
one-class SVM.

Therefore, we extract deterministic rules for events with zero or near zero variances. This model
identifies the frequency range [fmin , fmax ] for each of such events. fmin can equal to fmax .

4.4 Occurrence Frequency Analysis (Detection)
This operation performs intra-cluster detection to seek quantitative frequency relational anom-
alies: i) deviant relations among multiple event occurrence frequencies, and/or ii) aberrant oc-
currence frequencies. Given a program behavior instance b and its closely fitted clusters Cb =
{C1, . . . ,Ck } discovered inCo-occurrence Analysis, this operation testsb in everyCi (0 ≤ i ≤ k )
and aggregates the results using (6).

∃C ∈ C Nclt (b,C ) ⇒ b is normal (6)

The detection insideC is performed with three rules, and the result is aggregated into Nclt (b,C )
through logical conjunction of available rules9:

Nclt (b,C ) ← True iff b is tested normal by all applicable rules to C .

• Rule 1: normal if the behavior instance b passes the probabilistic model detection. The frequency
transition matrix F of b is vectorized into a high-dimensional data point and tested against the
one-class SVMmodel built in Intra-clusterModeling. This operation computes the distance
d between b and the frontier F established in the ν-SVM. If b is within the frontier or b is on

6FVA selects dimensions/events with larger-than-threshold frequency variances across all behavior instances in C .
7PCA selects linear combinations of dimensions/events with larger-than-threshold frequency variances, which is a gener-
alization of FVA.

8Multiple functions have been tested for selection.
9Not all three rules could be applicable to an arbitrary cluster C .
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the same side as normal behavior instances, then d > 0. Otherwise, d < 0. d is compared with
a detection threshold Tf that Tf ∈ (−∞,+∞). b is abnormal if d < Tf .
• Rule 2: normal if the behavior instanceb passes the deterministic model detection. Events inb with
zero or near zero variances are tested against the deterministic model built in Intra-cluster
Modeling. b is abnormal if any event frequency of b exceeds its normal range.
• Rule 3: presumption of innocence in tiny clusters. If no frequency model is trained in C because
the size of C is too small, the behavior instance b is marked as normal. This rule sacrifices the
detection rate for reducing false alarms in insufficiently trained clusters.

5 IMPLEMENTATION
We implement a prototype of LAD on Linux (Fedora 21, kernel 3.19.3). The static analysis is re-
alized through C (ParseAPI [42]). The profiling, training, and detection phases are realized in
Python. The dynamic tracing and behavior recognition are realized through Intel Pin, a leading
dynamic binary instrumentation framework, and SystemTap, a low-overhead dynamic instrumen-
tation framework for Linux kernel. Tracing mechanisms are independent of our detection design;
more efficient tracing techniques can be plugged in replacing Pin and SystemTap to improve the
overall performance in the future.

Static analysis before profiling: symbols and address ranges of routines/functions are discovered
for programs and libraries. The information helps to identify routine symbols if not found explicitly
in dynamic tracing. Moreover, we leverage static analysis to list legal caller-callee pairs.

Profiling: Our prototype i) verifies the legality of events (function calls) in a behavior instance b
and ii) profilesb into twomatrices (Section 3.1). The event verification filters out simple attacks that
violate control flows before our approach detects stealthy aberrant path attacks. We implement
profile matrices in Dictionary of Keys (DOK) format to minimize storage space for sparse matrices.

Dynamic tracing and behavior recognition: We develop a Pintool in JIT mode to trace function
calls in the user space and to recognize boundaries of long trace segmentswithin entire program ex-
ecutions. Our Pintool is capable of tracing i) native function calls, ii) library calls iii) function calls
inside dynamic libraries, iv) kernel thread creation and termination. Traces of different threads
are isolated and stored separately. Our Pintool recognizes whether a call is made within a given
routine and on which nested layer the given routine executes (if nested execution of the given
routine occurs). This functionality enables the recognition of long trace segments through routine
boundary partitioning.

We demonstrate that our approach is versatile recognizing program behaviors at different gran-
ularities. We develop a SystemTap script to trace system calls with timestamps. It enables long
trace partitioning via activity intervals when the program is monitored as a black box.

6 EVALUATIONS
We extensively evaluate the detection accuracy, capability and performance of our LAD system.
We aim to answer the following questions in this section:
1. How well does our approach detect real-world aberrant path attacks? (Section 6.2)
2. How accurate is our approach recognizing anomalous programbehavior instances? (Section 6.3)
3. What’s the advantage of our constrained agglomerative clustering algorithm? (Section 6.4)
4. How much overhead does our detection incur? (Section 6.5)

6.1 Experiment Setup
We study three programs/libraries (Table 2) in distinct categories. We demonstrate that LAD is
a versatile detection solution to be applied to programs and dynamic libraries with various event
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Table 2. The profile information of programs/libraries and statistics of normal profiles

Profile Overview Average Normal Profile

Program Version Event Set Segmentation #(N.P.) #(Sym.) #(Event) #(U.E.)

sshd 1.2.30 function calls routine boundary 4800 415 34511 180
libpcre 8.32 function calls library call 17360 79 44893 45
sendmail 8.14.7 system calls† event statistics 6579 350 1134 213

N.P., Sym., and U.E. are short for normal profile, symbol, and unique event, respectively.
An event is a function or system call (detailed in column Event Set).
A normal profile is recorded in a matrix O and a matrix F .
A symbol defines a caller or a callee of an event.
†Function calls are not traced due to its complex process spawning logic. It requires customization of
our Pintool to trace them.

ss
hd

li
bp
cr
e

se
nd
ma
il

Td 1.6 2.0 1.6
|C| 6 29 20

Table 3. Overview of program behavior clustering.

definitions and long trace segmentation means. We detail the programs/libraries and their training
dataset (normal profiles) below.
[sshd] Long trace segment definition: all function calls within routine do_authentication()
of sshd (SLOC = 19,215)10. The routine do_authentication() is called in a forked thread after a
client initializes its connection to sshd. All session activities occur within the long trace segment.
Normal runs cover three authentication methods (password, public key, rhost), each of which
contains 800 successful and 800 failed connections. 128 random commands are executed in each
successful connection.
[libpcre] Long trace segment definition: all function calls inside libpcre when a library call
is made and control flows go into libpcre (SLOC = 68,017). Library calls are triggered through
grep -P. Over 10,000 normal tests are used from the libpcre package.
[sendmail] Long trace segment definition: a continuous system call sequence wrapped by long
no-op (no system call) intervals. sendmail is an event-driven program that only emits system calls
when sending/receiving emails or performing a periodical check. We set up this configuration to
demonstrate that LAD can consume various events, e.g., system calls.We collect over 6,000 normal
profiles on a public sendmail server during 8 hours.
We list clustering threshold Td used for the three studied programs/libraries in Figure 311. |C|

denotes the number of clusters computed with the specific Td .
In operation Occurrence Freqency Analysis, the detection threshold Tf is determined by

a given false positive rate (FPR) upper bound, i.e., FPRu , through cross-validation. In the training

10The actually monitored part accessible from do_authentication() is smaller than the entire program.
11The value is empirically chosen to keep a balance between an effective recognition of diverse behaviors and an adequate
elimination of tiny clusters.
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Table 4. Overview of reproduced attacks and detection results

Attack Target Attack Settings #(A.) D.R. FPRu

FVOa sshd an inline virtual exploit that matches a username 800 100% 0.0001
ReDoS libpcre 3 deleterious patterns paired with 8-23 input strings 46 100% 0.0001
DHAb sendmail probing batch sizes: 8, 16, 32, 64, 100, 200, and 400 14 100% 0.0001
aflag variable overwritten attack.
bdirectory harvest attack.
Note:A. is short for attack attempt. D.R. is short for detection rate. FPRu is the false positive rate upper
bound (details in Section 6.1).

phase of cross-validation, we performmultiple random 10-fold partitioning. Among distances from
all training partitions, Tf is initialized as the kth smallest distance within distances12 between a
behavior instance and the ν-SVM frontier F . k is calculated using FPRu and the overall number
of training cases. The FPR is calculated in the detection phase of cross-validation. If FPR > FPRu ,
a smaller k is selected until FPR ≤ FPRu .

6.2 Detecting Real-World Attacks
We reproduce three known aberrant path attacks to test the detection capability of our LAD system.
Our prototype detects all attack attempts, and the detection overview is in Table 4.

Flag Variable OverwrittenAttack (FVO in Table 4) is a non-control data attack. An attacker tam-
pers with decision-making variables. The exploit takes effect when the manipulated data affects
the control flow at some later point of execution.

We reproduce the flag variable overwritten attack against sshd introduced by Chen et al. [6].
We describe the attack in Section 2.1, bullet (a) and in Figure 1. We simplify the attack procedure
by placing an inline virtual exploit in sshd right after the vulnerable routine packet_read():
if (user[0] == 'e' && user[1] == 'v' && user[2] == 'e') authenticated = 1;

This inline virtual exploit produces the immediate consequence of a real exploit – overwriting
authenticated. It does not interfere with our tracing/detection because no call instruction is
employed. Each attack attempt is constructed with the user name "eve" and 128 random shell
commands after a successful login.

Our approach (configured at FPRu 0.0001) successfully detects all attack attempts in inter-cluster
detection (Co-occurrence Analysis)13. We present normal and attack traces inside long trace
segments (selected routine do_authentication()) in Figure 4 to illustrate the detection.
In Figure 4, the Attack and Normalb bear the same trace prior to the last line, and the Attack and

Normala bear the same trace after (including) the last line. Our approach detects the attack with
event co-occurrence analysis: the control-flow segment containing do_auth > debug should not
co-occur with the control-flow segment containing do_auth > do_authed (and following calls)
in one long trace segment.

In the traces, there are identical 218 call events including library routines (36 calls excluding
library ones) between the third line and the last line in Figure 4. We test an n-gram detection tool,
and it requires at least n = 37 to detect the specific attack without libraries routine traced. The 37-
gram model results in an FPR of 6.47% (the FPR of our approach is less than 0.01%). This indicates

12The distance can be positive or negative. More details are specified in Rule 1 (Section 4.4).
13One-class SVM in Occurrence Freqency Analysis only detects 3.8% attack attempts if used alone.
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Fig. 4. Samples of normal and anomalous sshd traces
Normal Normal Attack
(successfully authenticated) (failed authentication) (flag variable overwritten attack)
. . . . . . . . .
auth_p > xfree auth_p > xfree auth_p > xfree
do_auth > xfree do_auth > debug do_auth > debug
do_auth > log_msg do_auth > xfree do_auth > xfree
do_auth > p_start do_auth > p_start do_auth > p_start
p_start > buf_clr p_start > buf_clr p_start > buf_clr
. . . . . . . . .
phdtw > buf_len phdtw > buf_len phdtw > buf_len
do_auth > do_autd do_auth > p_read do_auth > do_autd
. . . . . . . . .

Note:“caller > callee” denotes a function call. Routine names are abbreviated to save space.

Table 5. Deleterious patterns used in ReDoS attacks

Deleterious Pattern #(Attack Attempts)

Pattern 1 ˆ(a+)+$ 15
Pattern 2 ((a+))+$ 8
Pattern 3 ˆ(([a-z])+.)+[A-Z]([a-z])+$ 23

that n-gram models with a large n is difficult to converge at training. We do not test automaton-
based detection that defines illegal transitions as anomalous behaviors. Automaton-based methods
cannot detect the attack in theory since there are no illegal function calls.

Flag Variable Overwritten Attack (ReDoS in Table 4) is a service abuse attack. It exploits the ex-
ponential time complexity of a regex engine when performing backtracking. The attacks construct
extreme matching cases where backtracking is involved. All executed control flows are legal. The
regex engine hangs due to the extreme complexity.

We produce 46 ReDoS attack attempts targeting libpcre14. Three deleterious patterns are used
(Table 5). For each deleterious pattern, attacks are constructed with an increasing length of a in
the input string starting at 6, e.g., aaaaaaaab. We stop attacking libpcre at different input string
lengths so that the longest hanging time periods for different deleterious patterns are about the
same (a few seconds). A longer input string incurs a longer hanging time; it results in a more severe
ReDoS attack than a shorter one.

ReDoS attacks are detected in intra-cluster detection operation (Occurrence Freqency Anal-
ysis) by the probabilistic method, i.e., ν-SVM. We test our LAD system with both PCA and FVA
feature selection (Section 4.3, the probabilistic method, bullet b). The detection results (Figure 5)
show that LAD configured with PCA is more sensitive than it configured with FVA. LAD (with
PCA) detects all attack attempts at different FPRs15. The undetected attack attempts (with FVA)
are all constructed with the small amount of a in the input strings, which do not result in very
severe ReDoS attacks.

14Internal deep recursion prevention of libcpre is disabled.
15No attack is detected if only Co-occurrence Analysis is performed.
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Fig. 5. Detection rates of ReDoS attacks.

Directory Harvest Attack (DHA in Table 4) is a service abuse attack. It probes valid email users
through brute force. We produce 14 DHA attack attempts targeting sendmail. Each attack attempt
consists of a batch of closely sent probing emails with a dictionary of possible receivers. We con-
duct DHA attacks with 7 probing batch sizes from 8 to 400 (Table 4). Two attack attempts are
conducted for each batch size.

Our approach (configured at FPRu 0.0001) successfully detects all attack attempts with either
PCA or FVA feature selection15. DHA attacks are detected in intra-cluster detection (Occurrence
FreqencyAnalysis) by the probabilistic method, i.e., ν-SVM. The attacks bypass the inter-cluster
detection (Co-occurrence Analysis) because invalid usernames occur in normal training dataset.
This experiment demonstrates that our LAD system can consume coarse program behavior

descriptions (e.g., system calls) to detect attacks. Most of the probing emails do not have valid
receivers. They result in a different processing procedure than that for normal emails; the batch
of DHA emails processed in a long trace segment gives anomalous ratios between frequencies
of valid email processing control flows and frequencies of invalid email processing control flows. In
sendmail, these different control flows contain different sets of system calls, so they are revealed
by system call profiles. More precise detection requires the exposure of internal program activities,
such as call, jump and return instructions in the program user space.

6.3 Systematic Accuracy Evaluation
We systematically demonstrate how sensitive and accurate our approach is through receiver op-
erating characteristic (ROC). Besides normal program behaviors ground truth (Section 6.1), we
generate four types of synthetic aberrant path anomalies. We first construct F ′ for each synthetic
anomalous behavior instance b ′, and then we use (1) to derive O ′ (of b ′) from F ′.

1. Montage anomaly: two behavior instance b1 and b2 are randomly selected from two different
behavior clusters. For a cell f ′i, j in F ′, if one of f1i, j (of F1) and f2i, j (of F2) is 0, the value of the
other is copied into f ′i, j . Otherwise, one of them is randomly selected and copied.

2. Incomplete path anomaly: random one-eighth of non-zero cells of a normal F are dropped to 0
(indicating events that have not occurred) to construct F ′.

3. High-frequency anomaly: three cells in a normal F are randomly selected, and their values are
magnified 100 times to construct F ′.

4. Low-frequency anomaly: similar to high-frequency anomalies, but the values of the three cells
are reduced to 1.
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Fig. 6. libpcre ROC of LAD (our approach) vs. basic one-class SVM. X-axis is false positive rate, and y-axis
is detection rate.

Table 6. Semantics of true/false positives/negatives

Abnormal Normal
Behavior Behavior

Anomaly detected true positive false positive
No anomaly detected false negative true negative

To demonstrate the effectiveness of our design in handling diverse program behaviors, we com-
pare our LAD system with a basic one-class SVM (the same ν-SVM and same configurations, e.g.,
kernel function, feature selection, and parameters, as used in the Intra-cluster Modeling oper-
ation of LAD).

We present the detection accuracy results on libpcre in Figure 6, which has the most compli-
cated behavior patterns among the three studied programs/libraries16. In any subfigure of Figure 6,
each dot is associated with a false positive rate (multi-round 10-fold cross-validation with 10,000
test cases) and a detection rate (1,000 synthetic anomalies). We define positives and negatives as
in Table 6 – an anomaly is a positive.
16Results of the other two programs share similar characteristics as libpcre and are not presented.
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Fig. 7. Long-tail elimination with our constrained agglomerative clustering algorithm.

Figure 6 shows the effectiveness of our clustering design. The detection rate of our prototype
(with PCA17) is usually higher than 0.9 with FPR less than 0.01. Because of diverse patterns, basic
one-class SVM fails to learn tight boundaries that wrap diverse normal patterns as expected. A
loose boundary results in false negatives and low detection rates.

6.4 Constrained Agglomerative Clustering Algorithm
We illustrate the effectiveness of our constrained agglomerative clustering algorithm design to
eliminate long tails of cluster size distributions. The optimization supports adequate training in
each cluster and minimizes the use of the innocence rule in Co-occurrence Analysis (Section 4.4).
The rule may result in false negatives.

Figure 7 compares the clustering results between standard agglomerative clustering algorithm
and our constrained design regarding cluster size distribution: the dotted line denotes the results
of the standard agglomerative clustering algorithm as the baseline. The solid line denotes the re-
sults of the proposed constrained algorithm with size penalty. Our design eliminates tiny clusters
in the long tail of cluster size distributions. Tiny clusters contain insufficient numbers of behavior
instances for building probabilistic models in Intra-cluster Modeling. The constrained algo-
rithm prioritizes the merge of tiny clusters into bigger ones by giving a cluster size penalty when
calculating the distances between clusters (line 20 in Algorithm 1).

6.5 Performance Analysis
A fast runtime detection is important for enabling real-time protection and minimizing negative
user experience [39]. The overall overhead of a program anomaly detection system comes from
tracing, training and analysis in general.

We evaluate the performance of LAD analysis procedures (inter- and intra-cluster detections)
with either function call profiles (libpcre) or system call profiles (sendmail). We test the anal-
ysis on all normal profiles (libpcre: 17360, sendmail: 6579) to collect overhead for inter-cluster
detection alone and the combination of inter- and intra-cluster detection18. The analysis of each be-
havior instance is repeated 1,000 times to obtain a fair timing. The performance results in Figure 8
illustrate that
17PCA proves itself more accurate than FVA in Figure 6.
18PCA is used for feature selection. FVA (results omitted) yields a lower overhead due to its simplicity.
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Fig. 8. Detection (analysis) overhead of our LAD system.

• It takes 0.1~1.3ms to analyze a single behavior instance, which contains 44893 function calls
(libpcre) or 1134 system calls (sendmail) on average (Table 2).
• The analysis overhead is positively correlated with the number of unique events in a profile
(Table 2), which is due to our DOK implementation of profile matrices.
• Anomalies detected at Co-occurrence Analysis takes less time to detect than anomalies de-
tected at Occurrence Freqency Analysis because only the first stage is involved in the
detection.
Two major factors affect the detection time on a program behavior instance: i) the symbol set

size, which determines the size of a profile matrix; and ii) the number of unique events in a profile,
which determines the number of non-zero entries in a matrix. Our prototype is implemented using
dictionary of keys (DOK), thus the detection performance of our prototype should be affectedmore
by the number of unique events for different programs (the last column in Table 2).
Compared with the analysis procedure, dynamic function call tracing incurs a noticeable over-

head. sshd experiences a 167% overhead on average when our Pintool is loaded. A similar 141%
overhead is reported by Jalan and Kejariwal in their dynamic call graph Pintool Trin-Trin [31].
Advanced tracing techniques, e.g., Intel Processor Tracing (PT) [33], combined with the latest hard-
ware, e.g., Skylake architecture, can potentially reduce the tracing overhead to less than 5% toward
a real-time detection system [16].

Another choice to deploy LAD is to profile program behaviors through system calls as we
demonstrate using sendmail. System calls can be traced through SystemTap with near-zero over-
head [57], but it sacrifices the capability to reveal user-space program activities and downgrades
the modeling/detection accuracy.

LAD supports offline detection or forensics of program attacks, in which case accuracy is the
main concern instead of performance [56]. Our Pintool enables analysts to locate anomalies within
long program traces, and our matrices provide caller information for individual function calls.
This information helps analysts quickly reduce false alarms and locate vulnerable code segments.
For potential online detection deployment, tracing is the bottleneck as shown above. Finding a
faster way to monitor the system, e.g., Intel PT, gives more boost to the entire procedure than
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detection procedure improvements. A comprehensive benchmark is also needed to evaluate the
overall overhead of an online detection system in terms of different tracing mechanisms, different
styles of programs, and different numbers of hooks for different monitoring needs.

Although training performance is not a typical concern for program anomaly detection, the
procedure should be practical to enable the use of the approach. Our prototype shows reasonable
training time from 1 to 100 seconds in all three cases we tested. The more complicated and diverse
the behaviors are, the longer the algorithm takes to figure out the clusters. System calls in the
sendmail case characterize full-program behaviors in 8 hours, which constructs the most diverse
dataset. Over 6000 behavior instances take 86.17s to train on average. Behaviors in libpcre and
sshd are defined in a more focused manner, e.g., activities within a routine or library call. They
take 5.01s and 1.77s to train 17360 and 4800 behavior instances on average.

Summary We evaluate the detection capability, accuracy, and performance of our detection pro-
totype on Linux.

• Our approach successfully detects all reproduced aberrant path attack attempts against sshd,
libpcre and sendmail with less than 0.0001 false positive rates.
• Our approach is accurate in detecting different types of synthetic aberrant path anomalies with
a high detection rate (> 0.9) and a low false positive rate (< 0.01).
• Our approach analyzes program behaviors fast; it only incurs 0.1~1.3ms analysis overhead
(excluding tracing) per behavior instance (1k to 50k function/system calls in our experiments).

7 DISCUSSIONS
This paper aims to present a practical program anomaly detection approach at the context-sensitive
language level. It does not accomplish all context-sensitive features, e.g., order of events, yet it
correlates events far away and sheds light on the development towards more advanced context-
sensitive detection models.

Prior to and after the presented approach, several steps can be made to complete the detection,
ease the adoption, and reduce potential false positives. We first discuss potential improvements
from the deployment perspective below, and then we discuss the accuracy issues as well as poten-
tial improvements.

• Fine-grained tracing with low overhead. As shown in Section 6.5, the detection of a single be-
havior instance (>10k events) only takes 0.1~1.3ms. What impedes the approach to be used
as an online system is the tracing overhead. Practical fine-grained user-space tracing is the
bottleneck of many program anomaly detection systems based on dynamic analysis. Fast and
practical tracing mechanisms, e.g., Intel PT (discussed in Section 6.5), could open the door to
online detection leveraging the proposed approach.
• Long trace segment definition. The proposed approach recognizes long trace segments based on
the definitions specified by security analysts or software developers. In our evaluation, we use
three simple long trace segment definitions: i) subroutine boundary for sshd, ii) library call
boundary for libpcre, and iii) statistical event density for sendmail. The third is the default
choice if no specific knowledge is revealed about the program or attacks, yet it is the coarsest.
This ad-hoc procedure can be improved by developing a segment definition construction al-
gorithm. The algorithm either takes in vanilla programs plus external knowledge or compiled
programs with security tags specified by developers. It could list and rank generated long seg-
ment definitions to aid the deployment and configuration of the proposed approach.
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• False alarms with incomplete training.We recommend deploying the proposed system for mon-
itoring server programs or applications with relatively static behaviors. Complicated user ap-
plications such as browsers have a vast behavior space, which is difficult to cover by limited
training samples. False positives could be generated if normal behaviors are not present or
normal boundaries do not reach far enough to cover the tested behavior instances.
Ourmodel discards the order information between events, which projects the original behavior
space onto a lower dimensional subspace for practical modeling. However, incomplete train-
ing is still an issue for programs with dynamic behavior patterns. Further reducing the space
can result in the loss of context-sensitive information and leads to less precise context-free
language models like DFA models.

Since the proposed approach sacrifices precision for practicality in its design, potential mimicry
attacks could be constructed to exploit the gap between L̃ and the most precise program execution
description. Additionally, the learning-detection cycle may pose potential inaccuracy to detection
results. We discuss attacks that can potentially evade the detection of our model as well as possible
countermeasures.

• Exploiting the granularity of our model. An attacker may construct an attack: i) it consists of
control-flow segments without call instructions, and ii) it does not incur future anomalous
control flows containing call after exploit, e.g., only substituting arguments of legitimate exec
system call to invoke /bin/sh. Our current prototype does not detect such a threat. However,
this is not a theoretical defeat. The prototype can be extended to monitor and correlate non-
call instructions and subprocess behaviors for detecting this attack.
• Exploiting the orderless characteristic of our model. Our approach does not enforce the order of
events within a program behavior instance. The property could be exploited by an attacker.
Directly adding event order information on top of our model results in upgrading L̃ to a lin-
ear bounded automaton (LBA), which incurs exponential training convergence time discussed
in Section 2.3. It remains an open question to construct LBAs, probably with heuristics, for
program anomaly detection.
• Exploiting the normal boundary of our detection. We employ a stochastic language in our ap-
proach – the one-class SVM estimates a proper boundary of normal behaviors in each of the
clusters – to mitigates false positives due to insufficient training samples. The estimation opens
potential opportunities for attackers to escape the detection, i.e., false negatives.
First, an attacker can sacrifice the effectiveness of attack for not being detected. For example,
in a mild brute force SSH password attack, low frequency of attack attempts makes it unlikely
to be discovered. The parameter FPRu in our prototype establishes a balance between missing
attacks and oversensitive detection that yields false alarms. We provide a quantitative analysis
in Section 6.3 to understand the sensitivity of our prototype and this can be further improved
by choosing other boundary computation methods and parameters.
Second, if an attacker has the privilege to reach the training phase, one can potentially poison
the model and bias the system towards incorrect detection results, e.g., causative attacks where
the attacker influences the training data [41]. In theory, our detection approach is vulnerable
to this attack due to the use of a stochastic language. However, our approach is not designed
to be an online machine learning system – the model is not constantly updated – and it avoids
the problem to some extent. In general, data sanitization provides a more precise model and
reduce false negatives for any learning system. Moreover, exploration in adversarial machine
learning [26] can further enable the development of online learning algorithms for program
anomaly detection in the future.
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8 RELATEDWORK
Conventional program anomaly detection systems (a.k.a. host-based intrusion detection systems)
follow Denning’s intrusion detection vision [8]. They were designed to detect illegal control flows
or anomalous system calls based on two basic paradigms: i) n-gram short call sequence validation
that was introduced by Forrest et al. [12]; and ii) automaton transition verification, which was
first described by Kosoresow and Hofmeyr [34] (DFA) and formalized by Sekar et al. [49] (FSA)
and Wagner and Dean [59] (NDPDA).
Each path leads to a fruitful line ofmodels for detecting anomalous program behaviors. The basic

n-gram model was further studied in [11, 28] and sophisticated forms of it were developed, e.g.,
machine learning models [29, 36], first-order Markov models [64, 65], hidden Markov models [15,
61], and neural network models [17]. Call arguments were used to precisely define states in [38].
n-gram frequencies were studied in [27]. Beyond program anomaly detection, n-grams was also
used in malware detection [5].
The essence of n-gram is to model and analyze local features of program traces with a small n.

Enlarging n results in exponential convergence and storage issues [11]. However, small n (local
feature analysis) makes it possible for attackers to evade the detection by constructing a malicious
trace, of which any small fragment is normal. Wagner and Soto first demonstrated such a mimicry
attack with a malicious sequence of system calls diluted to normal [60].

The other path, i.e., automaton detection, aims to model a program not restricted to short call
sequence analysis. It builds an automaton or a pushdown automaton to read the entire trace at
a time. However, reading the entire trace is not equivalent to correlating events in the transition
history. All automatonmodels in literature are first-order and they only verify each state transition
on its own. Program counter and call stack information were used to help precisely define each
state, e.g., a system call, in an automaton [9, 10, 49]. Static analysis was used [59, 63] and Pushdown
automaton or its equivalents were employed in many advanced models [9, 19, 30, 37]. Hidden
procedure transition information is revealed by inserting flags in particular procedures [19]. Call
arguments were added in FSAmodels [18] to improvemodeling accuracy, and individual transition
frequencies had been analyzed to detect DoS attacks [14].

Some of the existing detectionmethods are context sensitive [9, 10, 19, 20, 51, 62], but they are not
context-sensitive language models. These models use calling context information to help identify
a program state, e.g., a system call. It is different from event co-occurrence analysis because the call
stack only provides details at a stack snapshot. It is not designed to record all historical execution
paths. Events are forgotten when their associated calls are popped from the stack, and they cannot
be observed by later events. Event co-occurrence analysis is also not equivalent to path sensitivity
since it does not require the analysis of the order of events.

The relation among events that occur far away has not been systematically studied in the liter-
ature. The missing analysis allows aberrant path attacks to take place. In this paper, we formalize
the problem of event correlation analysis within long program traces using a stochastic mildly
context-sensitive language and bring forward a detection system that correlates events in long
trace segments for event co-occurrence analysis and occurrence frequency analysis. Frequency
analysis has been made as extensions to existing models [14, 27], but they are restricted by the
underlying automaton/n-gram models (regular or context-free languages).
Clustering and classification techniques have been widely used in malware classification [1, 13,

32, 46]. Malware classification aims at extracting abstract malware behavior signatures and iden-
tifies a piece of malware using one or multiple signatures. However, program anomaly detection
models normal behaviors and exams an entire profile to decide whether it is normal. It is not suf-
ficient to conclude an incoming behavior is normal that one feature of it is normal.
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Correlation analysis techniques were developed to detect network intrusions. Valeur et al. de-
scribed a comprehensive framework to correlate alerts from various IDS systems [58]. Perdisci et
al. proposed 2v -gram scheme to discover related bytes v positions apart in traffic payload [44, 45].
Correlation analysis, including self-correlation, was used for detecting synchronized and repeti-
tive bot activities [21]. Zhang et al. proposed a system to infer network traffic correlation using
pre-defined rules [66] and machine learning methods [67]. These techniques were developed un-
der specific bot behavior hypotheses, e.g., temporal relations of network events. In comparison,
we address the program anomaly detection problem by developing new algorithms to overcome
the unique behavior diversity and scalability challenges.

Defenses against specific known program attacks have been investigated besides anomaly de-
tection. For example, Moore et al. introduced backscatter analysis to discover DoS attacks [40], and
Brumley et al. invented RICH to prevent integer overflow [4]. These defenses target specific attack
signatures and cannot detect unknown attacks. Therefore, they are different from general anomaly
detection approaches.

9 CONCLUSIONS AND FUTUREWORK
In this paper, we studied aberrant path attacks, formalized a stochastic mildly context-sensitive
language anomaly detection model, and presented a two-stage data mining approach to detect
these attacks in long program traces. Ourwork points out the need for a context-sensitive language
level model in response to the development of modern attacks where attackers alter execution
paths but not the control flows. Our work demonstrates the effectiveness of large-scale program
behavior modeling via event correlation analysis in long program traces and sheds light on the
future development of comprehensive context-sensitive language detection model. In future work,
we plan to adopt advanced dynamic tracing techniques and build real-time security incidence
response systems to enforce program execution security on top of our detection solution.
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