Taming the Costs of Trustworthy Provenance through Policy
Reduction

ADAM BATES, University of Illinois at Urbana-Champaign
DAVE (JING) TIAN, University of Florida

GRANT HERNANDEZ, University of Florida

THOMAS MOYER, MIT Lincoln Laboratory

KEVIN R. B. BUTLER, University of Florida

TRENT JAEGER, Pennsylvania State University

Provenance is an increasingly important tool for understanding and even actively preventing system intru-
sion, but the excessive storage burden imposed by automatic provenance collection threatens to undermine
its value in practice. This situation is made worse by the fact that the majority of this metadata is unlikely
to be of interest to an administrator, instead describing system noise or other background activities that are
not germane to the forensic investigation. To date, storing data provenance in perpetuity was a necessary
concession in even the most advanced provenance tracking systems in order to ensure the completeness of
the provenance record for future analyses. In this work, we overcome this obstacle by proposing a policy-
based approach to provenance filtering, leveraging the confinement properties provided by Mandatory Access
Control (MAC) systems in order to identify and isolate subdomains of system activity for which to collect
provenance. We introduce the notion of minimal completeness for provenance graphs, and design and imple-
ment a system that provides this property by exclusively collecting provenance for the trusted computing
base of a target application. In evaluation, we discover that, while the efficacy of our approach is domain
dependent, storage costs can be reduced by as much as 89% in critical scenarios such as provenance track-
ing in cloud computing data centers. To the best of our knowledge, this is the first policy-based provenance
monitor to appear in the literature.

General Terms: Provenance, Integrity, Program Analysis
Additional Key Words and Phrases: Provenance, Mandatory Policy, Integrity, TCB

ACM Reference Format:

Adam Bates, Dave (Jing) Tian, Grant Hernandez, Thomas Moyer, Trent Jaeger, and Kevin R. B. Butler,
2016. Taming the Costs of Trustworthy Provenance through Policy Reduction ACM Trans. Internet Technol.
0, 0, Article 0 (0), 20 pages.

DOI:

1. INTRODUCTION

Data provenance, the history of data as it is processed on a system, has proven invalu-
able in protecting data integrity, conducting forensic analysis, and ensuring regula-
tory compliance. Automatic provenance-aware systems collect and maintain metadata
about every data processing event on the system, allowing developers to invest less
time into making applications provenance-aware while still leveraging the benefits of
data provenance. However, one major drawback of automatic provenance-aware sys-
tems is the sheer volume of data that is collected. Unchecked, such systems have been
known to generate gigabytes of provenance in just minutes under heavy system load

The Lincoln Laboratory portion of this work was sponsored by the Assistant Secretary of Defense for Re-
search & Engineering under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions
and recommendations are those of the author and are not necessarily endorsed by the United States Gov-
ernment.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).

© 0 Copyright held by the owner/author(s). 1533-5399/0/-ART0 $15.00

DOI:

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 0.

[Bates et al. 2015; Gehani and Tariq 2012; Muniswamy-Reddy et al. 2006]. This not
only imposes an excessive storage burden, but also impedes the performance of subse-
quent analyses of the provenance.

Systems like Linux Provenance Modules (LPM) [Bates et al. 2015] and ProTracer
[Ma et al. 2016] collect provenance on every interaction in the system, even if such
information is later determined to be of no value to the administrator. Ideally, it would
be possible to record only the provenance of system events that are interesting and
important. Unfortunately, without additional context it is difficult, if not impossible, to
determine ahead of time whether or not the provenance of a particular system event is
important. For example, the provenance of a system library may have little value until
such time as it is rewritten by an adversary, at which point the history of the library
becomes key to understanding the attack. As a result, past provenance-aware systems
have needed to record every system event. To address this concern, existing efforts have
looked for ways to efficiently compress provenance information [Xie et al. 2013], prune
the information after collection [Lee et al. 2013b], or condense provenance records
through taint propagation [Ma et al. 2016]. While these approaches show promise, they
rely on post-facto analysis to reduce the amount of data that is ultimately stored, and
do not provide a general solution for the removal of unimportant events. Additional
work aims to address a related problem of dependency explosion in provenance logs
[Lee et al. 2013a], but requires dynamic analysis of the target application before use,
and depends on the integrity of the application in order to function correctly. Instead,
what is needed is a mechanism that allows the system to filter provenance at the time
of collection while maintaining the desired properties of a secure provenance system.

In order to safely filter provenance, the system requires some context about the
current and future relationships between objects. One source of such context is the
security policy that the system is enforcing, such as the Mandatory Access Control
(MAC) policy, which explicitly defines permissible actions on the system. By analyz-
ing this policy as an information flow graph, and identifying the provenance-sensitive
objects for an application within the graph, it is possible to exclude events from the
provenance log that cannot impact a particular application. In this way, we can collect
provenance only for those objects that reside in an application-specific trusted com-
puting base (TCB). If the enforced security policy prohibits the flow of data between
an object outside of an application’s TCB to one within, then the object outside of the
TCB cannot impact the application, and can therefore be excluded from the recorded
provenance. In a recent position paper [Bates et al. 2015], Bates et al. suggested that
MAC-aware provenance collection was a possible means of reducing storage burden;
however they did not demonstrate methods of achieving this goal, define or prove the
desired system properties, or design and evaluate an actual system.

In this work, we introduce PROVWALLS, a provenance monitor that analyzes a sys-
tem’s MAC policy to identify the security labels that can flow into a target application.
These types represent an application-specific TCB, which is used by PROVWALLS as a
provenance policy to generate finely-scoped data provenance. We first consider means
of mining MAC policies to identify application-specific TCBs, then demonstrate that
tracking the system objects within this TCB generates provenance graphs that are
both complete and minimal with respect to a target application. We then consider a
number of forensic scenarios where provenance-aware systems may be deployed. In
evaluation, we discover that our system imposes just 1.5% runtime overhead under
realistic workloads, and show that depending upon the deployment scenario storage
overheads can be reduced by at least 36% and up to 89%. We also consider how further
optimization is possible through deploying existing reduction techniques in tandem
with PROVWALLS. Our contributions are summarized as follows:

WasGeneratedBy

Activity

— WasControlledBy

Fig. 1: An example provenance graph represented in the W3C PROV specification.
Data objects are referred to as Entities, Processes as Activities, and Users as Agents.
PROV defines edges that encode relationships between vertices. This particular graph
depicts the history of the Qutput object, Entity C.

— Provenance Completeness: We present a formal definition for completeness in
provenance graphs, and introduce relaxed definitions for selective and minimal
completeness that facilitate a trade-off between the size and expressivity of prove-
nance.

— Policy-Reduced Provenance: We design and implement PROVWALLS, a policy-
based provenance monitor, and demonstrate that security mechanisms in the oper-
ating system can be leveraged by the provenance layer to reduce log growth. Our
work extends past techniques in MAC analysis to identify a partition of security
labels that satisfies the minimal completeness property for a target application.

— Evaluation & Case Studies: We perform an extensive performance evaluation of
PROVWALLS to determine that it imposes as little as 1.5% overhead under realistic
conditions. We go on to consider several deployment scenarios, and find that our
system reduces provenance storage costs by at least 36% and as much as 89%.

2. BACKGROUND
2.1. Data Provenance

Data provenance is the practice of recording the history of data as it is processed and
accessed on a computer system. Provenance has been shown to be of value to funda-
mental security considerations such as access control [Bates et al. 2013; Nguyen et al.
2012; Ni et al. 2009; Park et al. 2012], conducting forensic analysis [Bates et al. 2014;
Gehani et al. 2010; Tariq et al. 2011; Zhou et al. 2011; Zhou et al. 2010], enforcing regu-
latory compliance [Aldeco-Pérez and Moreau 2008; Bates et al. 2013], and establishing
the confidentiality and integrity of data [Acar et al. 2012; Cheney 2011],.

A variety of approaches have been taken to provenance collection. One option is for
applications to disclose provenance by inserting the appropriate information into a
provenance log at key points within their execution, often using libraries and APIs
[Hasan et al. 2009; Macko and Seltzer 2012; Moreau et al. 2011; Muniswamy-Reddy
et al. 2009] or automated instrumentation [Lee et al. 2013b] to simplify development.
Disclosed provenance systems assume application integrity, without which no strong
guarantees of accuracy or completeness can be assured, and are thus best suited for
benign environments. Our work focuses on the alternative, automatic provenance col-
lection, in which provenance is collected by the operating system without depending
on the cooperation of applications. These systems provide stronger guarantees about
the completeness and integrity of the provenance, but at a price — the volume of prove-
nance data often dwarfing the volume of regular data on the system.

After collection, provenance metadata can be processed into a directed acyclic graph
representing the history of system execution. This graph representation can be con-
structed using open standards such as the W3C PROV specification [Consortium et al.
20131, which permits the interchange of provenance information in heterogeneous en-

vironments. Figure 1 shows an example provenance graph in the W3C PROV model
comprised of dependences between entities, activities, and agents; these concepts can
be mapped into the operating system primitives that we consider in this work. Entities
are persistent and ephemeral data objects including files, inodes, sockets, and shared
memory. Activities are the actions performed on data in the system, which in the case
of operating systems includes user space processes as well as actions not in user space
taken by the kernel. Agents control activities, and represent users and groups in sys-
tem parlance. The PROV data model also specifies a list of relationships between ver-
tices that map to system activities. For example, reading a file corresponds to the Used
relationship, while writing a file is signified by the wasGeneratedBy relationship. As
these relationships all point backwards in time, querying the history of an object in
a provenance graph involves traversing its successors. A full description of the W3C
PROV specification can be found at [Consortium et al. 2013].

2.2. Mandatory Access Control

Access control systems are broadly broken into two categories. The first are discre-
tionary access control systems, where users have some degree of autonomy to grant
other users access to data, e.g. the standard Unix style where the owner can alter the
permissions. The second are mandatory access control systems, where the security pol-
icy is centrally managed, and users have no ability to alter, or delegate, access. While
MAC has been used as a tool to protect the trusted computing base of provenance-
aware systems, the possibility that it can be used to reduce the amount of provenance
collected has not been explored.

Our implementation makes use of SELinux as an examplar MAC system [Smalley
et al. 2002]. SELinux was originally proposed by the NSA as a MAC framework for
the Linux Kernel, where policies are written in terms of types and the operations are
permitted between types. SELinux assigns labels (types) to every subject and object
within the system, such as the files, sockets, processes, and users. These labels are
then used to determine access permissions when the subjects interact with objects.
For example, the Apache Web Server has a label httpd_t, and web content is labeled
httpd_sys_content_t. Rules within the SELinux policy then allow subjects with the
httpd_t domain to read content with the label httpd_sys_content_t. One advantage of
the SELinux model is that, by generalizing access permissions to labels, it becomes
easier add new objects to the system without extensive rewriting of policy. For ex-
ample, a new file created in the Apache web directory will automatically be labeled
with httpd_sys_content_t, and even adding another web server to the system can be
achieved by simply labeling the new server process with the httpd_t label. In this way,
the SELinux policy is not tied to specific applications and content, but to broader types,
resulting in policies that are somewhat agnostic to the particular implementation.

Although MAC systems can be used to achieve a variety of security properties, such
as enforcing least privilege and protecting runtime platform integrity, it is important
to note that MAC is not a “silver bullet” to software security. In particular, MAC cannot
prevent the exploitation of vulnerabilities in software. Once compromised, an attacker
inherits all privileges on the system that have been granted to the application by the
MAC policy. In the case of web services, this likely implies access to the most valuable
information on the system, and yet the complexity of such applications often makes it
difficult to quickly diagnose and recover from attack. It is here that data provenance
is able to provide transparency to the administrator, allowing them to respond more
quickly to intrusions. This work is motivated by the need for cost-efficient provenance
context in MAC-enabled systems.

Notation Description

A, S, 0 The sets of all access types, subjects, and objects on the system.

I The set of subjects and objects of interest to a system administrator.

(a, s, o) An access type, subject, and object that comprises a provenance event tuple.

E The set of all authorized event tuples that occur during system execution.

G A graph representation of the event tuples recorded during system execution.

P(G,z) A function that returns the event tuples in G pertaining to the provenance of x.

Ta Represents a subset of E that contains a full history of x.

MAYWRITE(z, y) A function that returns true if subject = has permission to write to y.

APP(z) A function that returns the set of helper applications for subject z.

SECURITYLABEL(x) | A function that returns the MAC label for artifact x.

L The set of security labels used in the MAC policy.

Tk The set of MAC subjects that are trusted by the kernel (T'x C L.)

Tw (s) The set of MAC subjects that have write permission on subject s’s executable (Tyy (s) € L.)
TH(s) The set of MAC subjects that are trusted by the helper applications of subject s (T sy € L.)
TCBs The trusted computing base of a target subject s (TCBs C L.)

Table I: A summary of notation used in this paper.

3. DESIGN
3.1. Threat Model & Assumptions

We consider a MAC-enabled system that is the target of a remote attacker that has
gained access to the host by exploiting a software vulnerability in a network-facing
application. Once inside the system, the attacker may take any action permitted by
the MAC policy. In an Advanced Persistent Threat (APT) scenario, the adversary will
also likely take a “low and slow” approach, meaning they will attempt to avoid taking
actions that could be observed by monitoring systems such as our provenance capture
agent. The adversary may also attempt to tamper with or disable provenance mecha-
nisms. In spite of this, our provenance capture agent must be able to maintain a fully
accurate record of attacker activities from intrusion onwards.

We make the following assumptions with regards to the system. First, we assume
that the kernel’s security subsystem is correctly implemented to enforce the informa-
tion flows specified in the MAC policy. We assume that the MAC policy protects the
runtime integrity of the kernel; however, the policy cannot completely prohibit unde-
sirable actions on the system, such as a compromised application rewriting its own files
to gain persistence on the host. We also assume that the user space utilities introduced
in our system are fully protected by the MAC policy, which is reasonable because they
only need to interact with a limited number of system objects. The trusted computing
base of our system is therefore the kernel, our own helper utilities, the provenance
storage, and the base MAC policy responsible for ensuring the integrity of the kernel.

3.2. Design Goals

Colloquially, the goal of our architecture is to allow an administrator to collect prove-
nance for all of the system activities they care about, and none that they do not. This
provenance must be accurate and complete in its description of system events, in spite
of it being collected in a malicious environment that may feature active adversaries
on the host. However, while the provenance log may prove valuable for diagnosing
system intrusions, it is also of value to the administrator for other purposes, such as
identifying benign application misconfigurations.

To arrive at a more specific description of this property, let £ be a set of all event
tuples (@ € A,s € S,0 € O) that occur during system execution, with a representing
an operation being performed by subject s on object o. Let the set C = S U O represent
all system artifacts. Let P(G, x) be a function that, given a provenance graph G and a
system artifact © € C, returns all tuples in G pertaining to the history of z. Depending
on the contents of G, this may be either a complete history of x, an incomplete but

Administrator
What applications do | want to [k Time 0 Time 1 Time 2
Collect provenance for?)
‘ eneration Phase
Provenance
o : o @) @)

b Policy

Generator

User Space
User Space
(Provenance TCB)

—
spicaion B N
........ - ® ® |®)
® ®
Reference | : Kernel @© Tracked Object ® Untracked Object

Monitor

Monitor

Fig. 3: A time-lapsed system graph
Fig. 2: Overview for the PROVWALLS demonstrating the difficulty of selec-
architecture. tive provenance collection.

non-empty history of x, or no history of z. We define a complete provenance graph G¢
as

Vz € (SUO), P(Ge,z) = Ta. 6))

Unfortunately, in such systems the consequence of capturing complete provenance
is inordinately large storage overheads, on the order of several GB per day. We ob-
serve that one source of unnecessary storage overhead stems from the fact many of the
events in E will not be of any interest to the administrator. For example, the admin-
istrator may only be interested in events that inform the execution of a single subject,
such as a web server. Let I C C where I represents those objects and activities of inter-
est to the administrator, and I is the complement of I such that TUI = C and INI = (.
A selectively complete provenance graph G possesses the following properties:

Vo e I,P(Gra)= Ta 2)

Vxef,P(GI,sc) C Ty, 3)

That is, provenance histories are complete for all objects in /, but may be incomplete
for objects in I. However, a graph G; may still contain events that are not of interest
to the administrator. For example, removing a single event tuple from the graph G¢
could be selectively complete. Therefore, we introduce a final graph G, that satisfies
the minimally complete property:

Vo€ I,P(Gu,z) = T ()

Vo e I,P(Gy,z) = Ton | P(Gu.2) (5)
z'el
That is, Gj; does not contain any extraneous provenance except for that which is
necessary to describe the set I. The goal of our system is to produce minimally com-
plete provenance records given an administrator-specified set 7, which constitutes a
provenance policy.

3.3. Design Overview

An overview for PROVWALLS architecture is shown in Figure 2. During a training
phase, the Policy Generator takes as input the system’s active Security Policy as well

6

Algorithm 1 Policy check routine for a generic record function in the kernel.

Require: a is an access type, s is a subject, o is an object
1: procedure PROVRECORD(a, s, 0)

return AUTHORIZE((a, s, 0))
end procedure

2: if POLICYMATCH(s) or POLICYMATCH(0) then
3: Result + GENERATEPROVENANCE({a, s, 0))
4: if Result # SUCCESS then

5: return DENY({a, s, 0))

6: end if

7. end if

8:

9:

as high-level Administrator Preferences (e.g., an application to track) and outputs a
Provenance Policy. At runtime, this policy is transmitted to the kernel by the Policy
Loader. As system events occur and are authorized by the system’s Reference Moni-
tor, they pass through a Provenance Monitor. The Provenance Monitor examines the
security contexts of each object involved in the access request. If any of these contexts
are included in the provenance policy, a new record is created and relayed to the Prove-
nance Recorder for storage. If the contexts do not match policy, the Provenance Monitor
does not generate any new provenance. Technical descriptions of our provenance mon-
itor, which extends LPM [Bates et al. 2015], are included in Section 5.

3.4. Provenance Collection

PROVWALLS collects provenance by defining a set of PROVRECORD functions that
are placed around the kernel such that one check is called before each operation on
controlled data types, which include files, inodes, superblocks, tasks, modules, sock-
ets, skbuffs, message queues, and shared memory [Zhang et al. 2002]. To ensure that
the provenance record is an accurate reflection of authorized operations, the record is
placed directly after system security checks. This is a common approach to provenance
collection introduced by Hi-Fi [Pohly et al. 2012]. PROVWALLS differs in that each
PROVRECORD function performs a policy check before determining whether or not to
create provenance, as shown in Algorithm 1. Given the event tuple (a, s, o), where a
represents an operation requested by s to be performed on o, PROVRECORD examines
the contexts of s and o to see if they appear in a pre-determined policy. If either ap-
pears in the policy, a new provenance record is created for the event tuple. In order to
ensure that the provenance record is complete, PROVRECORD functions also have the
ability to deny access requests, which occurs in the event that the function is unable
to generate provenance (e.g., failed to allocate memory).

3.5. Policy-Reduced Provenance

Several challenges arise when attempting to perform policy-based provenance collec-
tion. First, and most fundamentally, we require a flexible language in which to express
our collection policy. A naive approach would be to use standard Unix descriptors such
as filenames to identify the objects for which we want provenance. This approach would
lead to inordinately long policies, and would have difficulty tracking derivations of the
objects named in the policy. Instead, our language must be broad enough to concisely
describe broad classes of system objects. Second, any policy-based filtering of prove-
nance will lead to a loss of generality; because filtered provenance is not a general-
purpose tool for explaining system events, we must have a clear sense ahead of time of
exactly what we would like to collect provenance for.

Our approach must also provide assurance that the events omitted from the prove-
nance record cannot affect objects within the provenance policy. This must be true not
only at the time the event occurs; it must also be true in perpetuity. Figure 3 demon-

Algorithm 2 Policy check routine for a generic record function in the kernel.

Require: Policy is the provenance policy (a set of security labels)
Require: z is a system artifact

1: procedure POLICYMATCH(x)

| + SECURITYLABEL(x)
3 if | € Policy then
4 return true
5 else
6: return false
7
8:

end if
end procedure

MayRead

ssh_port_t
ssh_port_t

(a) Provenance Graph (b) Corresponding Information Flow Policy

tcp port 22 v0

authorized keys
/etc/shadow

MayRead

/usr/sbin/sshd

Fig. 4: Provenance objects and relations can be mapped to mandatory access control
labels and transitions, making it possible to information flow overlay to the prove-
nance graph. In the information flow plane, edges encode permissible future actions
(e.g., MayWrite), whereas in the provenance plane edges encode historic events (e.g.,
WasGeneratedBy).

strates the consequences of failing to provide this property. At Time 0, the provenance
capture agent determines that objects marked by red X’s will not affect the objects
specified in the provenance policy (tracked objects). Later, at time 2, a tracked object
comes to depend on an untracked object, resulting in an incomplete history.

We propose that Mandatory Access Control provides an environment in which these
challenges can be overcome. In a MAC-enabled system, every system object is assigned
a security label, with similar objects sharing a label, and a policy dictates the permissi-
ble interactions between different labels. Because every artifact in a provenance graph
will map to a label in the MAC policy, security labels present a general and flexible
language for our provenance policy. Finally, MAC also provides a solution to the chal-
lenge of ensuring completeness. It has been shown that MAC policies can be analyzed
in order to understand the relationships between system objects [Vijayakumar et al.
2012]. If we can identify the set of MAC labels that a particular application depends
on through similar analysis, then record provenance for all of the labels in that set,
we can be confident that that provenance of the target application will be complete in
perpetuity. Our POLICYMATCH function is defined as shown in Algorithm 2.

The intuition behind this approach is shown in Figure 4. MAC policies can be viewed
as information flow graphs that encode the permissible interactions between objects in
future system executions. Provenance graphs encode the history of actual interaction
between objects during past system executions. Due to this similar representation, in-
formation flow graphs can be overlayed onto provenance graphs, and traversal between
the information flow and provenance layers is achieved by defining relationships be-
tween system objects and their associated security labels as specified in the MAC pol-
icy. Because the MAC policy authorized all events that appear in the provenance graph
as they occurred, we can expect to see that all relationships in the provenance graph
will correspond to an authorization in the information flow graph. For example, the

8

relationship sshd_t may write ssh_port_t in the information flow plane corresponds
to a wasGeneratedBy event in the provenance plane that marks the transmission of a
network packet.

3.5.1. Provenance Walls. In this section, we present an algorithm for generating a pol-
icy that produces a minimally complete provenance graph for a subject application. We
do so by adapting Vijayakumar et. al.’s Integrity Walls algorithm [Vijayakumar et al.
2012], which was originally deployed to reason about application attack surfaces by
first identifying an application’s TCB. For subject s, TC B, describes the complete set
of subjects and objects that s depends on; in other words, 7C' B, marks the complete
set of subjects and objects that could appear in P(G¢, s). Our goal is therefore to par-
tition the set of MAC policy labels L based on whether or not s depends on the label,
ultimately creating the set TCB, C L.

To begin, we identify the TCB of the system itself. We first manually identify K, the
set of types that are critical to the operating system, which include the label for the
boot partition, system libraries, and MAC configuration files (e.g., boot_t, 1ib_t, and
selinux config t in SELinux). Write access to these types could be used to compro-
mise the kernel; as the system informs the execution of s, we must track the prove-
nance of all subjects that can write to these types. We iteratively calculate the set of
subjects that are permitted to write to these types, Tx C L, as follows:

Ty =K (6)
Tj =Ti- ' U{sy | sy € T, MAYWRITE (52, 51)} (7
Tk = |J T 8

i€ N

We also need to identify the executable writers of the subject s, Ty (s) C L:

T&/(s) =S 9)
Tiy(sy = Typ(y U {52 | 351 € Ty, MAYWRITE (s, 51)} (10)
Tws) = U TéV(s) 11

i €N

Additionally, many applications consist of multiple distinct processes that run with
different permissions. Helper subjects denote distinct processes upon which the subject
application depends; for example, Apache depends on the htpasswd process. We must
therefore compute the set of subjects that can write to helper subjects for a given
application Ty C L.

T ={s11(s1 € (App(s) — {s})) A (Tw(s,) 2 (App(s) UTw(s)))} (12)
Given T, Ty (s), and Ty(s), we can then compute s’s trusted subjects T's(,) C L as

Tss) = T UTws) UTw(s) (13)

Finally, to complete TC B, we take the union of T5(,) and the set of trusted objects
of s. Trusted objects include configuration files and other data objects that exist in the
confined space of the target application.

Algorithm 3 Report z’s provenance history in G (Appears as P(G,z) in §3.2). For
readability, some PROV relationships have been omitted from Lines 17 and 19.

Require: z is a system artifact € (S U O).
1: procedure PROVENANCE(G, x)
E. + GETPARENTS(G, x)
for each (a, s, 0) € E, do
E, <+ GETPARENTS(G, s) U GETPARENTS(G, 0)
for each e € E, do
ife ¢ E, then
APPEND(E,,e)
end if
end for
10: end for
11: return F,,
12: end procedure

13:

14: procedure GETPARENTS(G, x) > Traverses 1 step back in «’s history.
15: for each (a, s, 0) € G do

16: L+ 0

17: if (0 = z and a € {wasGeneratedBy, wasDerivedFrom}) then

18: APPEND(L,{a, s, 0))

19: elseif (s = z and a € {Used, wasControlledBy}) then

20: APPEND(L,(a, s, 0))

21: end if

22: end for

23: end procedure

TCB, =Tg(s) U{o | #s1 € (L —Tg(s)), MAYWRITE(s1,0)} (14)

The label set TCB; provides a complete description of the system objects that are
permitted to flow into the subject application s. TC B, therefore constitutes a prove-
nance policy that satisfies completeness for s. In fact, because T'C' B, constitutes the
minimum trusted computing base for s, it should provide minimal completeness when
applied as a provenance policy.

4. ANALYSIS

In this section, we show that PROVWALLS satisfies the desired graph properties. To
do so, we define the function P(G, z) from Section 3.2, shown in Algorithm 3. PROVE-
NANCE is a work-list algorithm that, given a provenance graph G and a system ar-
tifact x iteratively builds the set of event tuples related to the history of x. A helper
function, GETPARENTS, moves one step back in an artifacts history by traversing the
appropriate edges depending on whether the artifact is an object (wasGeneratedBy,
wasDerivedFrom) or subject (Used, wasControlledBy).

To demonstrate these properties, we will compare the output of P(G,s) on two
graphs, G¢ and G’. Assume that G satisfies the completeness property, i.e. Go con-
tains all event tuples E that occurred during system execution. G can be captured
using provenance-aware systems such as LPM [Bates et al. 2015], or Hi-Fi [Pohly et al.
2012]; while neither provide a formal proof of completeness, capturing complete whole-
system provenance is a stated goal of both systems. Demonstrating completeness is
orthogonal to the goal of this work; rather, our aim is to demonstrate that, given the
ability to capture G, it is also possible to produce a graph G’ that exhibits application-
specific completeness properties at a reduced cost. G’ is generated over the same set
of events F as G, but by the PROVWALLS monitor configured such that Policy for the
PoLIcYMATCH function is set to T'C B, for a particular target application s.

Selective Completeness. G’ is selectively complete for s if P(G¢,s) = P(G',s).
To demonstrate, let us assume that G’ is not selectively complete for s. This means
that there exists some event tuple in I that is encoded in G¢ but not in G’. Because

10

PROVWALLS records event tuples on the basis of whether the tuple’s subject or object
is in T'C' By, for clarity we will focus on the equivalent problem of a particular system
artifact = that is absent from G’.

Jzel|xze P(Gg,s), z ¢ P(G,s)

That is, there is a particular system artifact = that appears in P(G¢,s) but not
P(G',s). Let I, be SECURITYLABEL(x). By definition [, ¢ TCB;, which means that
l, € (L—TCBs).

Case 1: ISSUBJECT(l,): If [, is a subject, then 3k € TCB, | MayWrite(l,, k) = true.
However, if k € Tk, then [, € T, because Tk is a transitive closure of the writers
of K. The same holds true if k € Ty or if k € Ty. It follows that I, € T, which
contradicts I, ¢ TCBs;.

Case 2: ISOBJECT(l,): Trusted objects are calculated in Equation 14, which states
that an object is trusted if there does not exist an untrusted subject that may
write to it. Therefore, if I, ¢ TCDB;, there exists an untrusted subject Ju, €
(L —TCBsy), MayWrite(ug,). However, for the same reason as Case 1, if s depends
on [, then u, must be a member of the transitive closure of Tk, Ty, Tx. This con-
tradicts I, ¢ TCB;.

Because [, € TCB; contradicts 3z € I |z € P(G¢,s), x ¢ P(G',s), we conclude that
P(Ge¢,s) = P(G',s). Because PROVWALLS only records provenance for events which
contain a subject or object in T'C By, it trivially follows that Vo € I, P(G,z) C T,.

Minimal Completeness. G’ is minimally complete if all system artifacts in G’ have
an associated security label in TCB,. To demonstrate, let us assume that G’ is not
minimally complete for s, which would mean

dzellzed,l, ¢ TCB;

That is, there is a particular system artifact = in P(G’,s) for which
SECURITYLABEL(z) is not in TCB,. z appears in P(G’,s) if and only if
POLICYMATCH(z) returns true, implying that [, € Policy. Because Policy = TCB;,
this contracts [, ¢ TC B;. Note that minimal completeness does not imply that all « in
G’ must appear in P(G’, s); this is because an artifact x may not currently appear in
s’s ancestry, but has the potential to eventually flow into s because [, € TCBs;.

5. IMPLEMENTATION

PROVWALLS has been implemented for Linux Provenance Modules, which is based
on Red Hat Linux Kernel 2.6.32.! Our primary development machines were running
CentOS 6.5.

Policy Generator. The tool for generating provenance policies was written in C++
using the Stanford SNAP graph library.2 It takes as input a compiled SELinux policy,
an executable-to-subject mapping, a list of kernel subjects, and a target application s.
It then generates T'C' B, as described in Section 3. The tool outputs the list of types
required to record complete provenance for the subject application. In our evaluation,
we make use of the SELinux Targeted Policy. While we confirmed that the tool also
works with the MLS and reference policies, we chose to use the targeted policy because
it is the default SELinux policy in Red Hat Enterprise Linux and is subject to less
compatibility issues. Each of the applications we evaluated ran in a confined domain.

IRed Hat has continued to use a modified version of the Linux 2.6.32 kernel through 2015. Red Hat En-
terprise Linux 6 and CentOS 6, which are both based on a 2.6.32 kernel, will not reach end of life until
2021.

2See http:/snap.stanford.edu

11

Hooks (Count) | Purpose |

Credential (5) Track Forks and Active UIDs

Inode (10) Track Inode Access, Creation, Linkage, etc.
Superblock (3) Track superblock mount, dismount

File (4) Track file access, creation, mapping

IPC (7) Track IPC over shared mem, msg queues, etc.
Network (16) Track INET and UNIX communications.

Table II: Summary of hooks implemented by PROVWALLS kernel module.

Kernel Module. The PROVWALLS Module implemented 45 hook functions for
LPM’s provenance hooks, a summary of which is shown in Table II. The provenance
policy is transmitted to kernel space by a script in rc.local once user space has loaded.
This is accomplished by writing to a directory in securityfs that is created by the ker-
nel module during startup.

The provenance collection logic was taken from LPM’s Provmon module, which
PROVWALLS extends by introducing policy logic. For each hook, the module extracts
the security contexts for the involved system entities, and passes them through a pol-
icy check. For example, in the inode permission hook, a policy check is performed
on both the inode and the credentials associated with the fork attempting to access
the inode. We determined which entities to check for each hook by referencing the
SELinux kernel module implementation. In the policy check, the module extracts the
security ID (sid) of the object and then translates the sid to a character string using the
selinux_sid_to_string function defined in the SELinux module. The type is extracted
from the context, and then compared to the policy entries. If there is a policy match, a
new provenance record is created and relayed to the provenance recorder. Otherwise,
the hook takes no action and returns control to the calling function.

Performing comparisons on character string security contexts, as supposed to sids, is
necessary because there is a one-to-many mapping between the type (contained in the
context) and sids. However, we implement two optimizations to reduce the burden of
performing string operations. First, after a sid has been inspected once, we cache the
result. This way, there is only a single string comparison for each sid in the system.
Second, once a specific system object’s sid has been checked, we store the result by
setting a tracking flag within the provenance/security struct of the object. In this way,
policy checks amortize to constant overhead for long-lived kernel objects. Performing
an additional policy check is only required when an event could cause a kernel object
to transition to a different sid, e.g., task_fix_setuid.

Provenance Recorder & Analysis Tool. The Provenance Recorder was written in
C++, and recorded provenance relayed from kernel space into an in-memory graph us-
ing the SNAP library.2 The Recorder is launched by initd in rc.local during the boot
process after user space is loaded. After being executed, the Recorder reads a copy of
the SELinux information flow graph into memory, as well as the active provenance pol-
icy. Because some kernel hooks are called from an interrupt context, it was important
to reduce the time taken by provenance generation to an absolute minimum. There-
fore, to reduce the size of messages, the PROVWALLS module transmits sids in the
relay instead of character string security labels. In user space, the Recorder translates
the sids back into security labels, then extracts the type. The Recorder also serves as
an analysis tool that allows us to track the number of event tuples and issue queries
to the provenance graph.

6. EVALUATION

In this section, we investigate whether PROVWALLS provides comparable performance
to a standard Red Hat kernel for CentOS 6.5 and LPM’s Provmon module. Our bench-

12

marks were run on a bare metal Dell PowerEdge R610 blade server with 12 GB mem-
ory and 2 Intel Xeon quad-core CPUs. We used the Red Hat 2.6.32 kernel, which
was compiled and installed with 3 different configurations: (1) all provenance disabled
(Vanilla), (2) LPM installed with the Provmon module enabled (Provmon), and (3) LPM
with PROVWALLS enabled.

6.1. Collection Performance

In the following benchmarks, PROVWALLS was configured to use a provenance policy
that contained 2,000 security contexts. Every file in the benchmark directories, in-
cluding the software binaries, had SELinux labels that were contained in the policy,
meaning that provenance was generated for every operation that was performed in the
evaluation. We choose to use a policy of 2,000 labels, much larger than was needed to
track the provenance of the tests, in order to ensure that any performance footprint
associated performing policy checks in the kernel would be present in the results.

6.1.1. Microbenchmarks. We used LMBench to microbenchmark PROVWALLS’s impact
on system calls, context switching, networking, file and memory latencies. Table III
shows the overhead Provmon and PROVWALLS incur against the vanilla kernel for
each microbenchmark. Our results show that for most test programs the difference
between Provmon and PROVWALLS is negligible. However, both introduce a small
overhead compared to the vanilla kernel. There are also many instances in which the
instrumented kernels marginally outperform Vanilla; this can be attributed to cache
collision anomalies [Inouye et al. 1992; Wright et al. 2002], and is consistent with the
observations of [Bates et al. 2015]. There are some test cases where the additional over-
head is noteworthy for both Provmon and PROVWALLS: null 1/ O, stat, and open / close
file in process testing, and file delete in file and memory latency testing. The overhead
in these cases is due to disproportionately higher disk I/O overhead in Provmon, an
explanation of which can be found in [Bates et al. 2015]. More importantly, each of
these tests cases shows PROVWALLS performs comparably to Provmon in spite of the
introduction of policy checks.

For our communications tests, we examined Pipe, AF UNIX, UDP, TCP, and TCP
conn (Table III, Part 3). Similar to Provmon, PROVWALLS embeds policy checks for dif-
ferent types of sockets in the system. For UNIX-domain sockets, these sockets involve
file I/O, which burdens Provmon/PROVWALLS and makes them slower than UDP/TCP
sockets. Both Provmon and PROVWALLS not only check the local sockets during cre-
ation, but also inspect the peer sockets (within the same machine) after connection.
Even though Provmon and PROVWALLS add latency in the setup phase of network
communication, Figure 5 shows the throughput of local communications stays stable
in all three kernels. Compared to vanilla, both Provmon and PROVWALLS introduce a
negligible overhead to process IPCs, sockets, file sharing, and memory operations.

6.1.2. Macrobenchmarks. To show how PROVWALLS impacts a production system, we
applied three macrobenchmarks that represent realistic system workloads. The re-
sults of these tests are summarized in Table IV. For the Kernel Compile, we fixed the
kernel configuration and rebooted the machine before each compilation to prevent any
caching effects. We used 4 threads for each compilation. Unlike the overheads in the
microbenchmarks, none of the macro tests show overheads above 2%. PROVWALLS
introduces 1.2% overhead, while Provmon imposes 0.1% overhead on kernel compila-
tion. PROVWALLS implements extra policy checking and provenance filtering in kernel
space compared to Provmon. Moreover, the overhead imposed by PROVWALLS is only
12 seconds, which is tiny compared to the time of complete kernel compilation. The
Postmark benchmark simulates the operation and workload of an email server. We
configured it to run 15,000 transactions with file sizes ranging from 4 KB to 1 MB in

13

ProvMon

ProvWall

Process tests, times in useconds (smaller is better)

0.14 (0%)
0.35 (66.7%)
4.41 (113.0%)
6.10 (103.3%)
3.47 (0%)
0.25 (0%)
1.37 (0%)
405.8 (0%)
1038.2 (3.7%)
3372.2 (4.1%)

0.14 (0%)
0.37 (76.2%)
4.02 (94.2%)
5.45 (81.7%)

3.41 (0%)

0.25 (0%)

1.39 (0%)

405.6 (0%)
1070.2 (6.9%)
3415.4 (5.4%)

File and memory latencies in useconds (smaller is better)

54.6 (0%)
17.3 (84.0%)
74.9 (0%)
19.4 (48.1%)
1056.4 (0%)
0.364 (11.0%)
0.02758 (0%)
1.534 (0%)

54.8 (0%)
16.1(71.3%)
73.3 (0%)
21.5 (64.1%)
1078.4 (0%)
0.318 (0%)
0.2740 (0%)
1.538 (0%)

Local Communication latencies in useconds (smaller is better)

Test Type Vanilla
null call 0.14
null I/O 0.21
stat 2.07
open/close file 3.00
select TCP 4.28
signal install 0.25
signal handle 1.41
fork process 407.6
exec process 1001.4
shell process 3240.6
file create (0k) 57.2
file delete (0k) 94
file create (10k) 75.0
file delete (10k) 13.1
mmap latency 1105.6
protect fault 0.328
page fault 0.02770
100 fd select 1.554
Pipe 12.02
AF UNIX 12.20
UDP 30.08
TCP 43.34
TCP conn 50.00

6000

13.28 (10.5%)
22.08 (81.0%)
33.06 (9.9%)
49.08 (13.2%)
50.00 (0%)

13.30 (10.6%)
19.06 (56.2%)
33.74 (12.2%)
47.66 (10.0%)
56.20 (12.4%)

Table III: LMBench measurements for provenance kernels (Average of 5 trials). Per-
cent overhead for modified configurations are shown in parenthesis.

5000

4000

MB/s

3000

2000

1000

)
P

Vanilla m—
ProvMon =2
ProvWall —— |

%, &

%, ",

4;\ 0 4; e,
(//1/,*'0 s’e,e:)% oY, %%y RS
(4 0‘90' o) '3/70) (4

hz,/}s

Fig. 5: LMBench throughput measurements for local communication bandwidth using
different kernels.

Test Vanilla ProvMon ProvWall
Kernel Compile 1028.5 sec 1030.0 sec (0.1%) 1040.5 sec (1.2%)
Postmark 13.6 sec 13.8 sec (1.5%) 13.8 sec (1.5%)
Blast 377.8 sec 369.4 sec (0%) 369.8 sec (0%)

Table IV: Results for various system benchmarks under 3 different kernel configura-
tion. Percent overhead for modified configurations are shown in parenthesis. Average
of 5 trials.

10 subdirectories and up to 1,500 simultaneous transactions, based on the official con-
figuration recommendations.Both Provmon and PROVWALLS imposed 1.5% overhead
on this task, which shows that PROVWALLS could be integrated into email servers run-

14

ning Provmon without reducing the performance. We then ran the Blast benchmarks to
estimate PROVWALLS’s overhead on scientific computation. Blast simulates different
biological sequence analysis workloads, collected by the National Institute of Health
(NTH). Since this workload is in user-space and CPU-bounded, neither Provmon nor
PROVWALLS display any overhead compared to vanilla, demonstrating PROVWALLS
can be deployed in scientific computation environments.

6.2. Case Studies

As PROVWALLS provides application-specific scoping for provenance collection, it fol-
lows that its storage reduction performance will also be domain-specific. To charac-
terize this aspect of performance, we now consider several enterprise deployment sce-
narios in which provenance tracking would be a helpful capability and MAC is likely
to be present. For each scenario, we generate a sizable workload for the provenance-
aware host by repeatedly performing different kinds of system access. We then ran
these workloads on a VM under two different kernel configurations. In the first trial,
we execute the workload with LPM’s ProvMon module enabled. In the second trial, we
defined a provenance policy using the algorithm described in Section 3, then repeated
the workload with PROVWALLS enabled. The remote side of the workloads were ini-
tiated by running a script on the host machine. Throughout both trials, the machine
was in a quiescent state outside of the workload; to reflect normal background noise,
we did not disable daemons and cron jobs that ran by default on CentOS, but we did
not interact with these applications in any way during the trial.
Technical details for each of the scenarios follows:

(1) Resource Access Attack: A vulnerability in lighttpd 1.4.18 and earlier gives rise
to an information disclosure vulnerability that allows an attacker to read arbitrary
system files [CVE 2008]. In this scenario, we configured PROVWALLS to run with
a policy that monitored the TCB of the lighttpd_t subject. We then launched the
attack by modifying an exploit of this vulnerability found in the Exploit Database.
To generate a sizable provenance log, we repeated the attack 1,000 times for each
kernel configuration.

(2) Remote Command Execution: A vulnerability in the mod_copy module of
ProFTPD 1.3.5 allows remote attackers to read and write to arbitrary system files
[CVE 2015]. We launched the attack by modifying an exploit of this vulnerability
found in the Exploit Database.During the trial, we loaded a policy representing the
TCB for the ftpd_t subject. The attack was launched 1,000 times for each kernel
configuration

(3) Filter Guest VM: This scenario is not motivated by a forensic investigation, but
instead considers provenance tracking in data center environments. Administrators
need a way of evaluating the configuration and integrity of their machines, but
system auditing and traditional provenance collection are ill suited to this task
because they also capture the activities of jobs being executed on the machine on
behalf of unprivileged users. In cloud environments, this is largely unnecessary;
because the virtual hypervisor enforces isolation between guest VMs and the host
machine, guest activities cannot inform the execution of the host machine.? For
this trial, we generate a policy for the gemu_t subject, but then removed the svirt_t
subject, which is assigned to the Guest VM process, from the policy. While this
label is a part of the gemu_t TCB according to SELinux, we know in practice that
this subject should not affect the TCB due to virtualized isolation. The decision

3 While possible, there are few public disclosures of exploits that allow a guest VM to break isolation and
execute code on the host machine.

15

Test Workload ProvMon | ProvWall | Reduction
lighttpd | Resource Access 120 MB 77 MB 35.5%
proftpd Command Execution 3.6 MB 1.7 MB 54.3%
gemu Filter Guest VM 79 MB 9 MB 88.5%

Table V: PROVWALLS provenance reduction compared to LPM’s ProvMon under differ-
ent workloads. Numbers represent the number of event tuples recorded by the kernel
during the trial. PROVWALLS experienced up to 89% reduction in storage overhead
compared to ProvMon.

to remove this label can be likened to the iterative refining of security policy that
is common to any MAC deployment. In the guest machine, we then ran 3,000,000
transactions with the postmark tool.

6.2.1. Performance Results. The results for each trial are shown in Table V. Unsurpris-
ingly, the reduction percentage observed varied significantly. This reflects the fact that
our approach to provenance filtering is domain-specific; effectiveness will vary based
on the percentage of system activity that is pruned by the label space partition. How-
ever, even in the worst cases, PROVWALLS enjoyed significant reductions in overhead.
In the lighttpd, and proftpd tests, system interaction was dominated by our work-
load. In spite of this, overhead was reduced by 35.5% and 54.3%, respectively. The
reason for this is twofold. First, the interactions of unrelated system processes that
are not a part of the target TCB, which represented at least 48% of the label space in
each trial, are filtered from the provenance stream. Second, the provenance of outputs
from the target application are also filtered, provided that they cannot flow back into
the TCB.

In the gemu trial, PROVWALLS was able to reduce the size of the provenance log
by 88.5%. The reason for the improved result in this trial is that we were able to
express a policy that filtered the vast majority of system activity (i.e., the postmark
workload running inside of the VM). We expect PROVWALLS to perform comparably in
any scenario in which the provenance of the target application represents a minority
of overall system activity.

7. DISCUSSION

Availability of MAC policies for use with PROVWALLS?

PROVWALLS leverages MAC’s insight into permissible future actions on the system
in order to provide finely-scoped provenance collection. It therefore requires the
presence of MAC; however, we do not consider this as a limitation to our approach, as
robust and fine-grained security policies are already effectively ubiquitous on Linux
systems. While our approach could be adapted to any MAC mechanism, we chose to
implement PROVWALLS using SELinux due to its widespread availability and the
presence of stable analysis tools. Altough there are known administrative difficulties
to configuring SELinux for custom applications, enabling SELinux for popular ap-
plications on common Linux distributions is trivial. In fact, the targeted policy we
make use of in this work is enabled by default on all Red Hat Linux distributions. The
reliance on MAC is therefore not an impediment to the use of our system.

Will MAC-scoped provenance contain valuable information?

In PROVWALLS, we provide a mechanism that facilitates a trade-off between
provenance cost and expressivity. As a consequence, provenance collected by our
system does not support arbitrary queries. Instead, the administrator must identify
ahead of time the scope of their inquiries. However, the scoping mechanism provided
by PROVWALLS is optimally conservative in identifying potentially valuable system

16

activity. This is because, through MAC policy analysis, PROVWALLS identifies every
system type that may eventually become important to the function of a particular
application. For instance, the web server policy used in our case study captures
provenance for the ftpd, firefox, and ssh applications, as each of these applications
may potentially interact with the web server. This example serves to demonstrate that
PROVWALLS does not track individual applications, but entire ecosystems of related
applications whose relationships would be difficult to manually enumerate. While
MAC is useful in protecting platform integrity following an application compromise,
the PROVWALLS mechanism is complementary in that it allows an administra-
tor to understand the nature of the attack. For example, provenance collected by
PROVWALLS could be instrumental in perfoming root cause analysis in web services
attacks such as the vulnerabilities explored in Section 6.2.

Can PROVWALLS interoperate with other provenance reduction techniques?

Past approaches to provenance reduction have exploited either graph properties
or data processing artifacts, neither of which are affected by PROVWALLS. Xie et al.
leverage web graph compression algorithms to reduce the size of provenance graphs
[Xie et al. 2011]. They specifically depend on the locality and similarity of objects in
the graph; these properties are not only preserved by PROVWALLS, but are likely
enhanced, as objects that are dissimilar from the target subject and its dependencies
are filtered from the graph. Xie extends this technique by leveraging dictionary
encoding to further reduce the size of the graph [Xie et al. 2012; Xie et al. 2013].
Relative to the size of the graph, we expect PROVWALLS to increase the frequency
of string occurrences, so dictionary encoding remains a viable approach. Rather
than relying on graph properties, Lee et al. leverage observations about common
data processing paradigms to reduce the size of provenance. Most notably, they
demonstrate that short-lived temporary files can often be pruned from the provenance
graph without loss of forensic context [Lee et al. 2013b]. These kinds of files are still
present in PROVWALLS’ provenance logs, as they can be read by subjects within the
TCB of the target application, so this technique should remain applicable. We intend
to investigate the feasibility of combining these techniques in future work.

8. RELATED WORK

PROVWALLS is a MAC-aware implementation of a provenance monitor [McDaniel et al.
2010], a provenance mechanism that satisfies the reference monitor concept [Ander-
son 1972]. The goal of the provenance monitor is to collect high integrity provenance
that cannot be manipulated by an adversary on the system. Pohly et al’s Hi-Fi is a
Linux Security Module (LSM) that collects whole-system provenance that details the
actions of processes, IPC mechanisms, and even the kernel itself (which does not ex-
clusively use system calls) [Pohly et al. 2012]. The Linux Provenance Modules (LPM)
generalizes this approach by introducing a dedicated provenance layer in the kernel
[Bates et al. 2015]. LPM has the added benefit of avoiding interference with active
security modules, such as SELinux. This interaction between the security and prove-
nance subsystems is what makes our work possible. While these past systems leverage
the security layer to ensure provenance integrity, PROVWALLS is the first provenance
monitor to leverage security guarantees to decrease the cost of provenance capture and
management.

Information flow analysis has been employed previously to reason about the se-
curity and integrity of systems. The Integrity Walls system performs static analysis
on Mandatory Access Control (MAC) policies in order to identify application attack
surfaces by differentiation between an application’s trusted inputs and adversary-

17

controlled inputs [Vijayakumar et al. 2012] The Policy-Reduced Integrity Measure-
ment Architecture (PRIMA) reduces the number of entities that need to be known and
trusted by remote verifiers of a system [Jaeger et al. 2006]. It accomplishes this by ex-
tending the Linux Integrity Measurement Architecture (IMA) [Sailer et al. 2004] and
SELinux [Runge 2004], and provides remote verifiers with the active MAC policy and
a Code-Subject mapping. This allows the verifier to confirm that all subjects permit-
ted to interact with the target are either trusted or filtered. Like remote attestation of
system integrity, in practice analyzing provenance logs can be inordinately complex,
requiring foreknowledge of all system activities. PROVWALLS leverages knowledge of
information flows on the system to reduce this cost and complexity.

Recognizing storage overhead as a fundamental challenge to automatic collection
[Braun et al. 2006], considerable attention has been paid to techniques that reduce the
storage burden of provenance through compression or filtering. Web compression and
deduplication have adapted to provenance to reach storage reduction ratios of 3.31:1
[Xie et al. 2011]; a “Web+Dictionary” technique further improves the compression ratio
up to approximately 5:1 [Xie et al. 2012; Xie et al. 2013]. The SPADE system allows
provenance to be filtered based on filename blacklists, but it is not possible to reason
formally about the completeness properties of the remaining provenance using this
approach [Gehani and Tariq 2012]. [Chen et al. 2013] considers techniques for reduc-
ing provenance storage costs through use-inspired filters, analyzing previous-collected
provenance graphs to determine which new events require provenance generation.
[Lee et al. 2013b] proposes a garbage collection technique for audit logs that remove
unreachable objects, such as temporary files, that neither influence nor are influenced
by processes besides their owner. [Danger et al. 2015] and [Cadenhead et al. 2011] con-
sider access control methods for data provenance that elide information from a graph
that a user does not have access to, but these techniques are for offline view generation
and not online filtering. In contrast to the above approaches, our work is the first to
consider how information flow policy can be leveraged to perform provenance filtering
at the time of collection.

9. CONCLUSION

Provenance can offer insight into history of objects being processed on a system, but
the post-facto nature of forensic inquiry means that large amounts of provenance
metadata must be stored indefinitely in order to ensure a complete explanation. Un-
fortunately, a means of safely removing extraneous or useless information from the
provenance record has eluded even state-of-the-art provenance systems, as doing so
requires a means of assuring that filtered provenance will not eventually flow into ob-
jects of interest on the system. In this work, we introduce PROVWALLS, a mechanism
for performing finely-scoped provenance filtering with assurances of completeness and
minimality for a targeted set of applications. We demonstrate the correctness of our
approach, and consider a variety of scenarios in which PROVWALLS could dramati-
cally improve the cost-benefit ratio of provenance collection. In evaluating our system,
we show that it introduces negligible runtime overheads for realistic workloads, and
can reduce storage costs by as much as 89%. PROVWALLS is thus a powerful new
mechanism for providing low-cost provenance to secure computing deployments.

Acknowledgements

We would like to thank Mugdha Kumar, Nirupama Talele, and Divya Muthukumaran for their
technical assistance on the LPM and Integrity Walls codebases. This material is based upon
work supported by the National Science Foundation under Grant No.s CNS-1408880, CNS-
1540216, CNS-1540217, and CNS-1657534. Authors from Penn State acknowledge support from
the Air Force Office of Scientific Research (AFOSR) under grant AFOSR-FA9550-12-1-0166.

18

References

2008. Vulnerability Summary for CVE-2008-1270. https://web.nvd.nist.gov/view/vuln/detail?vulnld=CVE-
2008-1270. (2008).

2015. Vulnerability Summary for CVE-2015-3306. https://web.nvd.nist.gov/view/vuln/detail?vulnld=CVE-
2015-3306. (2015).

Umut A. Acar, Amal Ahmed, James Cheney, and Roly Perera. 2012. Principles of Security and Trust: First
International Conference. Springer Berlin Heidelberg, Berlin, Heidelberg, Chapter A Core Calculus for
Provenance, 410-429. DOI: http://dx.doi.org/10.1007/978-3-642-28641-4_22

Rocio Aldeco-Pérez and Luc Moreau. 2008. Provenance-based Auditing of Private Data Use. In Proceedings
of the 2008 International Conference on Visions of Computer Science (VoCS’08).

James P. Anderson. 1972. Computer Security Technology Planning Study. Technical Report ESD-TR-73-51.
Air Force Electronic Systems Division.

Adam Bates, Kevin Butler, Andreas Haeberlen, Micah Sherr, and Wenchao Zhou. 2014. Let SDN Be Your
Eyes: Secure Forensics in Data Center Networks. In NDSS Workshop on Security of Emerging Network
Technologies (SENT).

Adam Bates, Kevin R. B. Butler, and Thomas Moyer. 2015. Take Only What You Need: Leveraging Manda-
tory Access Control Policy to Reduce Provenance Storage Costs. In Proceedings of the 7th International
Workshop on Theory and Practice of Provenance (TaPP’15).

Adam Bates, Ben Mood, Masoud Valafar, and Kevin Butler. 2013. Towards Secure Provenance-based Access
Control in Cloud Environments. In Proceedings of the 3rd ACM Conference on Data and Application
Security and Privacy (CODASPY ’13).

Adam Bates, Dave (Jing) Tian, Kevin R.B. Butler, and Thomas Moyer. 2015. Trustworthy Whole-System
Provenance for the Linux Kernel. In 24th USENIX Security Symposium (USENIX Security 15).

Uri Braun, Simson Garfinkel, David A. Holland, Kiran kumar Muniswamy-reddy, and Margo I. Seltzer.
2006. Issues in automatic provenance collection. In International Provenance and Annotation Workshop
(IPAW). Springer, 171-183.

Tyrone Cadenhead, Vaibhav Khadilkar, Murat Kantarcioglu, and Bhavani Thuraisingham. 2011. A Lan-
guage for Provenance Access Control. In Proceedings of the First ACM Conference on Data and Applica-
tion Security and Privacy (CODASPY ’11).

P. Chen, B. Plale, and T. Evans. 2013. Dependency Provenance in Agent Based Modeling. In IEEE 9th
International Conference on eScience.

James Cheney. 2011. A Formal Framework for Provenance Security. In 24th IEEE Computer Security Foun-
dations Symposium.

World Wide Web Consortium and others. 2013. PROV-Overview: an overview of the PROV family of docu-
ments. (2013).

Roxana Danger, Vasa Curcin, Paolo Missier, and Jeremy Bryans. 2015. Access control and view
generation for provenance graphs. Future Generation Computer Systems 49 (2015), 8 — 27.
DOI:http:/dx.doi.org/10.1016/j.future.2015.01.014

A. Gehani, B. Baig, S. Mahmood, D. Tariq, and F. Zaffar. 2010. Fine-grained Tracking of Grid Infections. In
Proceedings of the 11th IEEE | ACM International Conference on Grid Computing (GRID’10).

Ashish Gehani and Dawood Tariq. 2012. SPADE: Support for Provenance Auditing in Distributed Environ-
ments. In Proceedings of the 13th International Middleware Conference (Middleware ’12).

Ragib Hasan, Radu Sion, and Marianne Winslett. 2009. The Case of the Fake Picasso: Preventing History
Forgery with Secure Provenance. In Proceedings of the 7th USENIX Conference on File and Storage
Technologies (FAST09).

Jon Inouye, Ravindranath Konuru, Jonathan Walpole, and Bart Sears. 1992. The Effects of Virtually Ad-
dressed Caches on Virtual Memory Design and Performance. SIGOPS Oper. Syst. Rev. 26, 4 (Oct. 1992),
14-29. DOI : http://dx.doi.org/10.1145/142854.142859

Trent Jaeger, Reiner Sailer, and Umesh Shankar. 2006. PRIMA: Policy-reduced Integrity Measurement
Architecture. In Proceedings of the 11th ACM Symposium on Access Control Models and Technologies
(SACMAT ’06).

Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013a. High Accuracy Attack Provenance via Binary-
based Execution Partition. In Proceedings of the 20th ISOC Network and Distributed System Security
Symposium (NDSS).

Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013b. LogGC: Garbage Collecting Audit Log. In Pro-
ceedings of the 2013 ACM SIGSAC Conference on Computer and Communications Security (CCS ’13).

19

http://dx.doi.org/10.1007/978-3-642-28641-4_22
http://dx.doi.org/10.1016/j.future.2015.01.014
http://dx.doi.org/10.1145/142854.142859

Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. 2016. ProTracer: Towards Practical Provenance Tracing by
Alternating Between Logging and Tainting. In Proceedings of the 23rd ISOC Network and Distributed
System Security Symposium (NDSS).

Peter Macko and Margo Seltzer. 2012. A General-purpose Provenance Library. In 4th Workshop on the
Theory and Practice of Provenance (TaPP’12).

P. McDaniel, K. Butler, S. McLaughlin, R. Sion, E. Zadok, and M. Winslett. 2010. Towards a Secure and Ef-
ficient System for End-to-End Provenance. In Proceedings of the 2nd Conference on Theory and Practice
of Provenance (TaPP’11).

Luc Moreau, Trung Dong Huynh, Mike Jewell, Amir Sezavar Keshavarz, Jamal A. Hussein, and Danius
Michaelides. 2011. ProvToolbox. http:/lucmoreau.github.io/ProvToolbox/. (2011).

Kiran-Kumar Muniswamy-Reddy, David A Holland, Uri Braun, and Margo Seltzer. 2006. Provenance-
Aware Storage Systems. In Proceedings of the 2006 USENIX Annual Technical Conference.

Kiran-Kumar Muniswamy-Reddy, Uri Braun, David A. Holland, Peter Macko, Diana Maclean, Daniel
Margo, Margo Seltzer, and Robin Smogor. 2009. Layering in Provenance Systems. In Proceedings of
the 2009 Conference on USENIX Annual Technical Conference (ATC’09).

Dang Nguyen, Jaehong Park, and Ravi Sandhu. 2012. Dependency Path Patterns As the Foundation of
Access Control in Provenance-aware Systems. In Proceedings of the 4th USENIX Conference on Theory
and Practice of Provenance (TaPP’12).

Qun Ni, Shouhuai Xu, Elisa Bertino, Ravi Sandhu, and Weili Han. 2009. An Access Control Language for a
General Provenance Model. In Secure Data Management.

Jaehong Park, Dang Nguyen, and R. Sandhu. 2012. A Provenance-Based Access Control Model. In Proceed-
ings of the 10th Annual International Conference on Privacy, Security and Trust (PST).

D.J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler. 2012. Hi-Fi: Collecting High-Fidelity Whole-System
Provenance. In Proceedings of the 2012 Annual Computer Security Applications Conference (ACSAC
’12). Orlando, FL, USA.

Chris Runge. 2004. SELinux: A New Approach to Secure Systems. (July 2004).

Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn. 2004. Design and Implementation of
a TCG-based Integrity Measurement Architecture. In Proceedings of the 13th USENIX Security Sym-
posium. San Diego, CA, USA.

Stephen Smalley, Chris Vance, and Wayne Salamon. 2002. Implementing SELinux as a linux security mod-
ule. Technical Report.

Dawood Tariq, Basim Baig, Ashish Gehani, Salman Mahmood, Rashid Tahir, Azeem Aqil, and Fareed Zaffar.
2011. Identifying the Provenance of Correlated Anomalies. In Proceedings of the 2011 ACM Symposium
on Applied Computing (SAC ’11).

Hayawardh Vijayakumar, Guruprasad Jakka, Sandra Rueda, Joshua Schiffman, and Trent Jaeger. 2012.
Integrity Walls: Finding Attack Surfaces from Mandatory Access Control Policies. In Proceedings of the
7th ACM Symposium on Information, Computer and Communications Security (ASIACCS ’12).

Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg Kroah-Hartman. 2002. Linux Se-
curity Modules: General Security Support for the Linux Kernel. In Proceedings of the 11th USENIX
Security Symposium.

Yulai Xie, Dan Feng, Zhipeng Tan, Lei Chen, Kiran-Kumar Muniswamy-Reddy, Yan Li, and Darrell D.E.
Long. 2012. A Hybrid Approach for Efficient Provenance Storage. In Proceedings of the 21st ACM Inter-
national Conference on Information and Knowledge Management (CIKM ’12).

Yulai Xie, Kiran-Kumar Muniswamy-Reddy, Dan Feng, Yan Li, and Darrell D. E. Long. 2013. Evaluation
of a Hybrid Approach for Efficient Provenance Storage. Trans. Storage 9, 4, Article 14 (Nov. 2013), 29
pages. DOI:http://dx.doi.org/10.1145/2501986

Yulai Xie, Kiran-Kumar Muniswamy-Reddy, Darrell D. E. Long, Ahmed Amer, Dan Feng, and Zhipeng Tan.
2011. Compressing Provenance Graphs. In 3rd Workshop on the Theory and Practice of Provenance
(TAPP’11).

Xiaolan Zhang, Antony Edwards, and Trent Jaeger. 2002. Using CQUAL for Static Analysis of Authorization
Hook Placement. In Proceedings of the 11th USENIX Security Symposium.

Wenchao Zhou, Qiong Fei, Arjun Narayan, Andreas Haeberlen, Boon Thau Loo, and Micah Sherr. 2011.
Secure Network Provenance. In ACM Symposium on Operating Systems Principles (SOSP).

Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li, Boon Thau Loo, and Yun Mao. 2010. Efficient Querying
and Maintenance of Network Provenance at Internet-Scale. In ACM SIGMOD International Conference
on Management of Data (SIGMOD).

20

http://dx.doi.org/10.1145/2501986

	Introduction
	Background
	Data Provenance
	Mandatory Access Control

	Design
	Threat Model & Assumptions
	Design Goals
	Design Overview
	Provenance Collection
	Policy-Reduced Provenance
	Provenance Walls

	Analysis
	Implementation
	Evaluation
	Collection Performance
	Microbenchmarks
	Macrobenchmarks

	Case Studies
	Performance Results

	Discussion
	Related Work
	Conclusion

