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1. INTRODUCTION

The Linux Security Modules (LSM) project aims to provide a generic framework
from which a wide variety of authorization mechanisms and policies can be en-
forced. Such a framework would enable developers to implement authorization
modules of their choosing for the Linux kernel. System administrators can then
select the module that best enforces their system’s security policy. Typically, the
aim is to enforce a mandatory access control policy in addition to the traditional
UNIX discretionary policy to enable containment of compromised system ser-
vices. The LSM framework has been accepted into the mainline Linux kernel
(www.kernel.org) as of version 2.6 along with the SELinux and Linux capability
LSMs.

The LSM framework implements a reference monitor interface [Anderson
1972] by inserting a set of authorization hooks as necessary the Linux kernel.
These hooks define the types of authorizations that a module can enforce and
their locations. Placing the hooks in the kernel itself rather than at the system
call boundary has security and performance advantages. The main problem is
that in several system calls the name of an object, rather than its reference, is
passed from the user-level process to the kernel (e.g., open). First, system call
interposition must resolve the object name to an object reference to authorize
it. Since the kernel also performs this resolution, so there is an unnecessary
performance overhead. Second, and more importantly, the mapping between
the object name and the object reference may be changed between the autho-
rization and the kernel resolution, resulting in an unauthorized access. Thus,
system call interposition is said to be susceptible to time-of-check-to-time-of-use
(TOCTTOU) attacks [Bishop and Dilger 1996], where another object is swapped
for the authorized object after authorization.

One of the key aspects of a reference monitor interface is that it ensures
that all controlled operations (i.e., those operations whose control is necessary
for security) are authorized before they are run. While placing the LSM ref-
erence monitor’s authorization hooks in the kernel can improve security, it is
more difficult to determine whether the hooks mediate and authorize all con-
trolled operations. The system call interface is a nice mediation point because all
the kernel’s controlled operations (i.e., operations that access security-sensitive
data) must eventually go through this interface. Inside the kernel, there is no
obvious analogue for the system call interface. Any kernel function can contain
accesses to one or more security-sensitive data structures. Thus, any medi-
ation interface is at a lower level of abstraction (e.g., inode member access).
In addition to mediation, it is also necessary to ensure that the proper access
control policy (e.g., write data) is enforced for each security-sensitive operation.
If there is a mismatch between the policy enforced and the controlled operations
that are executed under that policy, unauthorized operations can be executed.
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We believe that manual verification of the correct authorization of a low-level
mediation interface is impractical.

Recently, a variety of work has demonstrated the possible effectiveness of
static source-code analysis for the discovery of security bugs [Engler et al. 2000;
Larochelle and Evans 2001; Shankar et al. 2001] and even the verification
of some security properties within some reasonable assumptions [Chen and
Wagner 2002; Zhang et al. 2002].

In other work, we have developed a static analysis approach that enables
comprehensive verification that the variables used in security-sensitive oper-
ations have been authorized [Zhang et al. 2002]. However, it is more difficult
to determine if all variables used in security-sensitive operations have been
authorized for all the necessary operations. First, we need a model to help us
predict when we have identified the necessary authorizations. Second, we need
an analysis approach to enable us to verify this model. One insight that we
found useful is that many LSM authorization hooks are correctly placed, so in-
consistencies in authorization requirements are often indicative of a problem.
Another insight we have found is that consistency in authorization is context-
dependent, so we need some way to express and test contexts in which we expect
consistent authorization. We found it easier to explore possible analysis options
using a run-time analysis tool, so we describe the nature of such a tool here.
However, we have ultimately found that this approach can also be leveraged
by a static analysis approach, so we briefly describe this prototype. Thus, we
provide insight into developing analyses via run-time tools and examining their
application in static analysis tools.

In this paper, we present a consistency analysis approach to assist the LSM
community and Linux kernel developers in verifying that the LSM authoriza-
tion hooks completely authorize accesses. We also present implementation of
this approach, using both run-time and static analysis techniques. In both cases,
the implementation consists of two parts: (1) a data collection tool that gen-
erates system logs containing the events relevant to measuring consistency
and (2) a consistency analysis tool that identifies the consistency between the
controlled operations and LSM hooks. System log generation is done either
via run-time instrumentation of the Linux kernel or by static analysis of the
Linux kernel source code. Run-time collection is accurate, but misses many of
the possible execution paths, so we have implemented a static analysis col-
lection mechanism that generates compatible logs. The consistency analysis
finds hook placement errors from this collected data by identifying inconsisten-
cies where consistent authorizations are expected. We have designed a filtering
language for describing contexts in which consistent authorization is expected.
Our analysis tools generate two different representations that we used to find
inconsistencies: (1) authorization graphs that display the consistency between
the execution of a controlled operations and its authorizations, and (2) sensi-
tivity class lists that show the attributes of controlled operations to which the
authorization consistency is sensitive.

Using this approach, we have found three bugs in LSM hook placement in
the file system that have since been fixed, and another anomaly that resulted
in significant discussion. While the approach we use at present is not complete
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(i.e., some bugs may be missed), we are encouraged by our ability to find bugs
using these tools. We demonstrate the use of these tools on a LSM-patched
Linux kernel version 2.4.16.

The remainder of the paper is structured as follows. In Section 2, we define
the general hook placement problem. In Section 3, we develop an approach
to solving the general hook placement problem. In Section 4, we outline the
implementation of the run-time data collection and consistency analysis tools
and discuss the analyses performed and their results. In Section 5, we describe
how static analysis can be used for log collection. In Section 6, we describe
issues related to the use of such tools, such as regression testing. In Section 7,
we conclude and describe future work.

2. GENERAL HOOK PLACEMENT PROBLEMS

2.1 Concepts

We identify the following key concepts in the construction of an authorization
framework:

—Security-sensitive Operations: These are the operations that impact the
security of the system.

—Controlled Operations: A subset of security-sensitive operations that me-
diate access to all other security-sensitive operations. These operations define
a mediation interface.

—Authorization Hooks: These are the authorization checks in the system
(e.g., the LSM-patched Linux kernel).

—Policy Operations: These are the conceptual operations authorized by the
authorization hooks.

Correct authorization hook placement must ensure that the authoriza-
tion hooks authorize all security-sensitive operations. Such authorizations test
whether the system’s authorization policy permits the requesting principal to
execute the particular security-sensitive operations. It is more convenient to
express authorization policy at a higher level (e.g., file read or write), so rather
than authorizing the individual security-sensitive operations we authorize con-
ceptual operations, which we call policy operations. Further, since the number
of security-sensitive operations can be large, it is preferable to authorize them
once at an interface that mediates all the security-sensitive operations. The set
of controlled operations defines such a mediation interface. Thus, we define our
problem to verify that all controlled operations are authorized for the expected
policy operations using the LSM authorization hooks.

Identifying the controlled operations is more difficult for the in-kernel me-
diation of LSM than for the system call mediation mechanisms of the past. As
shown in Figure 1, the system call interface is well known for providing me-
diation of all the security-sensitive operations in the system call. Therefore,
the system call interface can be used both as the controlled operations and the
policy operations.
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Fig. 1. Comparison of concepts between system call interposition framework and LSM.

When authorization hooks are inserted in the kernel, a mediation interface
is no longer obvious, so the controlled operations and their mapping to policy
operations are no longer so easy to identify. For example, rather than verifying
file open for write access at the system call interface, the LSM authorizations for
directory (exec), link (follow link), and ultimately, the file (write) are performed
at the time these operations are to be done. This approach has the benefits of
eliminating susceptibility to TOCTTOU attacks [Bishop and Dilger 1996] and
redundant authorization processing, but in order to verify the hook placement
more work is necessary to identify the controlled operations, the policy oper-
ations they correspond to, and verify that the authorization hooks authorize
them properly.

2.2 Relationships to Verify

Figure 2 shows the relationships between the concepts.

(1) Identify Controlled Operations: Find the set of operations that define
a mediation interface through which all security-sensitive operations are
accessed.

(2) Determine Authorization Requirements: For each controlled opera-
tion, identify the authorization requirements (i.e., policy) that must be au-
thorized by the LSM hooks.

(3) Verify Complete Authorization: For each controlled operation, ver-
ify that the correct authorization requirements are authorized by LSM
hooks.

(4) Verify Hook Placement Clarity: Controlled operations implementing
a policy operation should be easily identifiable from their authorization
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Fig. 2. Relationships between the authorization concepts. The verification problems are to: (1)
identify controlled operations; (2) determine authorization requirements; (3) verify complete au-
thorization; and (4) verify hook placement clarity.

hooks. Otherwise, even trivial changes to the source may render a hook
inoperable.

The basic idea is that we identify the controlled operations and their au-
thorization requirements, then we verify that the authorization hooks mediate
those controlled operations properly. First, we need to identify the representa-
tive controlled operations in the kernel. Second, because the controlled opera-
tions are at a lower level than the policy operations (i.e., authorization require-
ments), we need an approach by which the authorization requirements of each
controlled operation can be determined. Third, we need to compare the LSM
hook authorizations made to the expected authorization requirements. These
tasks are complex for in-kernel authorization, so it is obvious that automated
support is required.

The mapping of controlled operations to authorization requirements is not
necessarily static. For example, a number of the same operations may be ex-
ecuted on a file open for reading as on a file open for writing. Thus, context
also is a determining factor in mapping controlled operations to authorization
requirements. Our approach must enable context-dependencies to be managed
effectively, such that the expected relationships between controlled operations
and authorization requirements can be tested.

2.3 Related Work

Recently, static analysis to verify security properties has shown promise. First,
existing program analysis tools have been used to find common security errors,
such as buffer overflows and printf vulnerabilities [Ball et al. 2003; Das et al.
2002; Larochelle and Evans 2001; Shankar et al. 2001; Wagner et al. 2000].
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Second, specialized tools have been developed for finding security vulnerabil-
ities, such as xgcc [Engler et al. 2000], ITS4/RATS [Viega et al. 2000], MOPS
[Chen and Wagner 2002], MAGIC [Chaki et al. 2003], and so on [Ganapathy
et al. 2003].

Static analysis tools are based on formal properties of programming lan-
guages, so they can be used for complete analysis (i.e., no false negatives).
However, static program verification is computationally expensive, so simplifi-
cations are often made in the analysis models. These simplifications can result
in more conservative analyses (i.e., more false positives) or abstraction of cer-
tain properties (i.e., false negatives). Also, static analysis tools can require a
significant amount of effort for code annotation, which is necessary to build the
desired analysis model.

Specialized analysis tools focus on specific types of bugs. Engler et al. enables
extension of GCC, called xgcc, to do source analyses, which they refer to as
meta-compilation [Ashcraft and Engler 2002; Engler et al. 2000; Hallem et al.
2002]. A rule language, called metal, is used to express the necessary analysis
annotations in a higher-level language. Rather than annotate the code directly,
the metal specifications define finite state automata that guide the analysis
engine. Since the rules match multiple statements, the amount of annotation
effort is reduced. A variety of software bugs, including security vulnerabilities,
have been found by this tool [Ashcraft and Engler 2002].

Most of the specialized analysis tools lack completeness (i.e., may result in
false negatives), but MOPS specifically aims for ease of specification and com-
pleteness of analysis [Chen and Wagner 2002]. Using MOPS, security proper-
ties are expressed as finite state automata and programs are represented as
pushdown automata. Data flow is not represented, so aliasing and value re-
lationships are ignored. However, for many analyses useful bugs can still be
found [Chen et al. 2004], and it is often possible to show that many data flow
relationships do not exist via other means [Zhang et al. 2002].

In another effort, we use one program analysis tool, CQual [Foster et al.
1999], in an approach to finding LSM hook placement bugs statically [Zhang
et al. 2002]. Using GCC analysis to automate CQual annotation, we can then
perform a CQual analysis that verifies that all controlled operations are medi-
ated by at least one LSM hook. In general, we also want to verify that a con-
trolled operation is only run when its required authorization hooks have been
checked. CQual provides a type lattice that could be used for defining expected
authorizations, although it is conceptually complex to get it right. Further, the
context-dependency on the relationship between controlled operations and au-
thorization requirements is beyond what CQual can handle.

A Java static analysis tool, called JaBA [Koved et al. 2002], has been used
to collect the actual authorizations on controlled operations for Java. For our
purposes, this approach has two shortcomings: (1) it does not analyze the C
code of the Linux kernel and (2) it does not provide guidance about whether the
authorizations made were correct. On the first point, we have actually defined
a translation from C to JaBA analysis concepts [Zhang et al. ], and built a
prototype implementation. On the second point, JaBA does provide a context-
sensitive control flow graph and a context-sensitive data flow graph that can
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be leveraged for any analysis. Thus, we will examine use of these graphs in
generating an analysis log in Section 5.

Due to the complexity of using these approaches, we found that run-time
data collection assisted us in getting accurate data quickly, so that we could ex-
plore possible analysis options. From examining the data collected, we have
developed a consistency analysis approach that we describe in this paper
that enables us to determine whether the appropriate authorization hooks
are checked for controlled operations. Ultimately, the approach is indepen-
dent of whether we do consistency analysis on data collected at run-time or
via a static analysis of the code. In this paper, we examine both means of data
collection.

Another related problem is the certification of systems. Historically, the
Orange Book [NCSC 1985] was used for guidance in the construction of secure
operating systems, but this is now being supplanted by the Common Crite-
ria [ITSEC 1998]. However, the certification task is ad hoc and laborious, and
has generally not been successful in improving the security of commonly used
operating systems. Gutmann argues in his thesis [Gutmann 2000] that certi-
fication approaches, including formal verification tools, are doomed to failure
unless they represent concepts at the level of the source code. Gutmann also
advocates a combination of static and run-time analyses. The approach that we
use differs from certification in the sense that it checks for particular errors
rather than providing a top-down assurance that the overall system meets its
requirements. An interesting research question is whether a sufficient breadth
and depth of such checks could provide a confidence comparable to certifica-
tion. Unlike certification, such confidence could be maintained as the source
code evolves.

3. SOLUTION DESCRIPTION

The key insight we leverage in run-time analysis for the LSM framework is that
the LSM authorization hook placement is largely correct, such that cases that
are inconsistent with respect to the norm are likely to be indicative of an error.
For example, it would be considered unusual if a particular controlled operation
has different authorization requirements on different runs of the same system
call. While this insight does not guarantee that we find all LSM hook placement
bugs (see Section 6), it has enabled us to identify some bugs and has served as
a valuable guide for the tool development.

In all of the discussion below, we use the following assumptions. First, we
leverage an assumption that the objects in controlled operations are handled in
a type safe manner in the kernel. This does not invalidate any of the errors we
find, but there could be other errors as well. Second, we assume that accesses to
objects of the authorized data types define the set of controlled operations (i.e.,
the mediation interface). These data types are the ones that correspond to sys-
tem call concepts (e.g., files, inodes, sockets, skbuffs, ipc message queues, and
so on). Access to kernel data is designed to go through these data structures.
While we have not explicitly validated this, we have done a more detailed anal-
ysis presented elsewhere [Edwards et al. 2001].
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3.1 Authorization Consistency

We first define consistency between a controlled operation and a set of autho-
rization requirements.

Definition 1 (Authorization Consistency). The relationship between a con-
trolled operation and a set of authorization requirements (i.e., policy opera-
tions that are authorized) is consistent if whenever the controlled operation is
executed authorization hooks associated those authorization requirements are
called.

We find that this form of consistency is not absolutely required. Execution
of a controlled operation may occur in the context of a different system call,
which has different authorizations. Clearly, in this case the authorization re-
quirements met will be different.

Thus, it is necessary to be able to define contexts in which consistency is
expected. In general, contexts can be arbitrary, but our experience is that three
types of contexts matter: (1) system call; (2) system call with specific inputs
(e.g., flags); and (3) a specific set of controlled operations. In the first case,
the authorization is for the system call at large (e.g., fcntl). Such authoriza-
tions apply to all the controlled operations in the system call. In the second
case, the authorizations depend on some parameter to the system call, usu-
ally a flag (e.g., open for read). Thus, some system calls come under one con-
text and some under another. In the third case, the appearance of the set of
controlled operations, independent of the system call in which they appear re-
quires specific authorizations (e.g., the operations associated with accesses to
the set owner fields). In these cases, the consistency ignores the system call
information.

Definition 2 (Execution Context). An execution context defines a set of ex-
ecution paths. An execution context can be defined by (1) a system call (all
executions); (2) a system call with particular argument values (or ranges of
values); and (3) a set of controlled operations (all paths that include them).
Other context definitions are possible.

Our solution must support the description of contexts where we expect con-
sistent authorization. Typically, context-sensitive data flow in static analy-
sis refers to distinguishing between different inputs to the same function.
In this case, context sensitivity is much narrower (depends only on the sys-
tem call) or may ignore large parts of the remaining context (for the con-
trolled operation set). Such analyses require significant amounts of annotation
for a static analyzer and may depend on variables outside the understand-
ing of the static analyzer (e.g., user-supplied flags). For example, JaBA com-
pletely ignores the values of primitive types, but clearly those can influence
analysis.

3.2 Authorization Consistency Levels

An execution context usually consists of many controlled operations, so it is
helpful to aggregate controlled operations that are consistent in the same way.
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Table I. Authorization Consistency Levels: Names and Effects on Authorizations

Level Authorizations
System call All controlled operations in system call
Syscall inputs All controlled operations in same system call with

same inputs
Data type All controlled operations on objects of the same data type
Object All controlled operations on the same object
Member All controlled operations on same data type, accessing

same member, with same operation
Function All same member controlled operations in same function

Intrafunction Same controlled operation instance
Path Same execution path to same controlled operation instance

For example, if all the controlled operations in a context have the same autho-
rizations, then we can view consistency relative to the context at large rather
than the individual operations.

We find that we can describe the consistency between each controlled op-
eration and the authorization hooks that are called when it is executed in a
particular context by a set of discrete values we call consistency levels. Further,
the consistency levels form a total-order as follows.

Definition 3 (Consistency Level Total Order). If two different controlled op-
erations are authorization-consistent for the same value of level i, then they are
authorization consistent for any value of level j where i ≥ j in the consistency
level total order (see Table I).

If two different controlled operations are executed on the same object, but
they have consistent authorizations, then the values of the member and access
for those operations do not affect the consistency. For example, if all controlled
operations on a particular object have the same authorization requirements,
then it does not matter what the member access is. Table I lists the discrete
consistency levels. We refer this group of levels collectively as the authoriza-
tion consistency levels. These levels include various aspects of a controlled op-
eration’s execution, including the context under which it was executed (system
call, system call inputs, function, location in function, path to controlled opera-
tion), the object it was executed upon (data type and object), and the operation
performed (member and access).

The consistency levels aggregate controlled operations into a consistency
class where all the controlled operations have the same authorization hooks
called given the current placement.

Definition 4 (Consistency Classes). Two different controlled operations be-
long to the same consistency class for an execution context, if they have the
same authorization hooks called every time they are executed in that context.

3.3 Authorization Consistency Impact

The classification of controlled operations by their authorization consistency
divides the controlled operations into two categories: (1) known anomalies
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and (2) consistency classes whose authorization requirements need verifica-
tion. In the first case, we consider some of the authorization consistency lev-
els to be illegal. We define invariants below for these cases. In the second
case, we must determine whether the maximal consistency level for each con-
trolled operation in an execution context indicates acceptable authorization
requirements or not. For example, if a controlled operation belongs to a group
of controlled operations at an object consistency level, this indicates that all
the controlled operations on the object have the same authorizations checked.
It is then a manual task to determine if this is correct. However, the num-
ber of consistency aggregates indicates a partition the controlled operations
into maximal-sized classes with the same authorizations. These classes en-
able verification of authorization requirements and identification of anomalous
classifications.

3.3.1 Anomalies. The consistency of authorizations to the levels below the
double line in Table I, intrafunction and path, are always considered to be
anomalous. Sensitivities of these types mean that the execution path (path)
or location within a function (intrafunction) determines the authorization re-
quirements of a particular controlled operation on the same member.

The following invariant formally expresses our path inconsistency invariant.

Definition 5 (Path Inconsistency Invariant).

∀c1, c2 ∈ C, e1, e2 ∈ E, (c1 = c2) ∧ (e1 = e2)→ R(c1, e1) = R(c2, e2) (1)

This invariant states that the same controlled operation (c1 = c2) run in the
same event (e1 = e2 defined by the system call and its inputs) must have the
same authorization requirements (defined by the function R). That is, the exe-
cution path within an event cannot affect a controlled operation’s authorization
requirements.

Similarly, we define an invariant for intrafunction inconsistency.

Definition 6 (Intrafunction Inconsistency Invariant).

∀c1, c2 ∈ C, e1, e2 ∈ E, (F (c1) = F (c2)) ∧
(M (c1) = M (c2)) ∧ (e1 = e2)→ R(c1, e1) = R(c2, e2) (2)

In this case, two controlled operations in the same function (computed by
the function F ) and which make the same member access (computed by the
function M ) must have the same authorization requirements R.

3.3.2 Authorization Consistency Classes. For the other cases, we cannot
easily identify them as errors. Instead, we partition the controlled operations
into their authorization consistency classes and determine whether their au-
thorization requirements are correct.

The authorization consistency class computation is as follows. For each con-
sistency level starting at the highest (system call), we partition the controlled
operations into consistency classes where all controlled operations have the
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same value for the consistency level, then we test whether the class also has
the same authorizations. If not, then we try the next lower level and parti-
tion based on both levels and test again. This approach repeats until we have
assigned every controlled operation to a consistency class.

Classifications are defined by consistency levels. For the system call level,
all the controlled operations of a system call are in one class. For system call
inputs, all controlled operations of the same system call and with the same
type of inputs are aggregated (see Section 3.4). For the data type level, the
controlled operations are classified by the system call, inputs, and data type of
the operation’s object. Thus, successively finer partitions are created in each
step of the analysis.

A classification succeeds (i.e., is x-consistent where x is the level) if it is
the first level in which all the controlled operations in that class have the
same authorizations. Note that other classes at the same consistency that have
the same authorizations are aggregated to form the maximal-sized classes.
Once the classes are created it is a manual process to verify that the autho-
rizations for each class are correct. For the file system, the number of classes is
small enough that manual verification is practical.

As an example, consider the read system call. File operations are data-type
consistent because all controlled operations on file objects are authorized for
read. Manual verification involves checking that read permission for files is
sufficient. Since the read authorization also is intended for the file’s inode, we
mark the file’s inode as authorized for read as well. However, after classification,
one inode’s controlled operation is not authorized. It is on a different object, so
inode operations may be object-consistent. This is an operation on the directory
inode of the file to determine whether a signal should be sent as a result of a
read in this directory.1

Other than, when an authorization completely missing, the most common
way for identifying an error is to find two classifications (i.e., two aggre-
gates with different authorizations) that perform an important common op-
eration. This situation occurred in fcntl where two different classifications
(based on different system call inputs) operate on the same f_owner field (see
Section 4.2.4).

3.4 Necessary Data Collection

By logging system call entry/exits/arguments, function entry/exits, controlled
operations (i.e., object, data type, member, and operation), and authorizations,
we collect all the necessary values for the consistency levels. All the information
can be easily logged, but the identification of meaningful object identifiers and
system call input changes need some further analysis.

During execution, objects are referenced via function pointers, but this is not
necessarily a sufficient identification of an object. For example, an inode has a
persistent identifier (i.e., device, inode number) that is used in authorization.
Therefore, for each data type we define a specific approach for computing their

1Actually, this object should also be authorized by the read LSM hook, so we add it to the set of
objects authorized by this hook.
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Table II. Log Record Types

Record Type Data

Controlled operation Context ID Controlled operation ID OID
Authorization Context ID Authorization ID OID
Function entry Context ID Instruction address
Function exit Context ID

object identifiers. These identifiers are used for determining all operations and
authorizations on an object.

Across system call instances, we assume objects that are used in the same
variable have the same authorization requirements. To simulate this, we use
the first controlled operation in which an object appears as an identifier. If
two objects are first accessed in the same controlled operation they must be
assigned to the same variable (since the variable would be the same in the
two controlled operations). However, different execution paths may result in
the same variable being used in a different controlled operation first. However,
aggregation of classes with the same authorization requirements will merge
these cases, so this assumption has proven effective.

The system call arguments change on almost every call, but only a few of the
arguments really impact authorizations (e.g., the access flag on open). There-
fore, we collect the arguments, but only use the arguments that we have found
impact authorization requirements to do partitioning. Only a few system calls
that we have examined have different authorizations based on their input ar-
guments, such as open, ioctl, and fcntl. Because different authorizations are
used based on different inputs, these system calls are more complex, and hence,
more prone to errors.

4. RUN-TIME IMPLEMENTATION

Run-time analysis of complete authorization consists of two steps: generation
of a kernel execution log and its offline analysis for consistency. This section
describes the implementation of the tool that creates the execution log, the
implementation of the log-filtering tool used to prepare and display analysis
data, and the results of our analysis.

4.1 Collecting Run-Time Information

4.1.1 Log Contents. Table II shows the information collected during run-
time analysis. Controlled operations are identified by the tuple (instruction
pointer, object type, member, access). A controlled operation ID is assigned to
each unique combination. Authorizations are uniquely identified by (LSM hook,
policy operation). Like controlled operations, a unique authorization ID is as-
signed to each. Function entry and exit are recorded as well. The function entry
address uniquely identifies the function.

For each controlled operation or authorization performed, the log must in-
clude the identity of the object (e.g., inode) involved. Object identities (OIDs) are
defined per object type, for example, inodes are identified by device ID, inode

ACM Transactions on Information and System Security, Vol. 7, No. 2, May 2004.



188 • T. Jaeger et al.

Fig. 3. Implementation architecture.

number, while tasks are identified by process-ID. OIDs are only required to be
unique within a context.

We use the concept of a context to mean the processing of a kernel event (e.g.,
a system call). Authorizations are obviously only valid in the context in which
they are executed, therefore, the log entries must also include the context of
controlled operations and authorizations.

4.1.2 Collection Overview. Figure 3 presents an overview of the tool. Cre-
ation of the log involves three stages: the required information must be gener-
ated, it must be collected, and it must be written to the log.

Information is generated in three different ways. First, authorization infor-
mation is generated by the LSM hooks. Second, controlled operation details are
generated by compiling the kernel with a modified version of GCC that identi-
fies controlled operations, and instruments the kernel with calls to a handler
function before all such operations. Control-flow information is also generated
by instrumenting the kernel at compile time. Third, context information is gen-
erated by placing breakpoints in the kernel. These three methods are discussed
in more detail in the following sections.

Fourth, kernel modules are loaded to receive the information shown in
Figure 3. These modules perform coarse-grained filtering, and arrange the in-
formation into the correct format, before passing the record to the logging mod-
ule. The logging module assigns a context ID to the incoming records and writes
the information into a buffer.
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4.1.3 Authorization Information. Hooks to log authorization information
are already provided by the LSM patch, so little additional implementation
is required. The authorization filter is simply an LSM module that adds a
log entry for each authorization. These log entries identify the authorization
that was performed (e.g., RMDIR PARENT, RMDIR TARGET) and the object
authorized.

4.1.4 Controlled Operations. To log controlled operations, we first have to
locate controlled operations in the kernel, and then provide a mechanism for
detecting the execution of these operations.

Identifying controlled operations in the kernel requires source analysis.
Rather than a direct source-code analysis (which is difficult), we chose to
identify controlled operations by analyzing GCC’s intermediate tree rep-
resentation. As Linux depends on GCC extensions, a source-code analysis
would require using the GCC parser, therefore making use of the tree it al-
ready builds seems logical. To identify controlled operations, we traverse the
tree looking for expressions in which members of mediated data types are
accessed.2 When a controlled operation is detected, we insert a call to a func-
tion __controlled_op that includes the object, type, member, and access, before
the statement in which the expression exists. If the expression is the condi-
tion statement of a loop, then a call is inserted before the loop and at the end
of each iteration. This call contains all the information required to identify
the controlled operation and allow the handler to extract the identity of the
object.

A couple of accesses cause problems for this approach. First, it is possible to
modify a structure member by taking the address of a member, storing it to a
pointer, and changing the member via the pointer. Since the initial access is a
read into the pointer variable, it is possible that we may miss the subsequent
write. Rather than performing more extensive source analysis to identify these
cases, we simply detect when aliasing occurs. Second, it is also possible that we
miss accesses to controlled data structures when they are cast to a noncontrolled
type. This is also detected. Our initial analysis shows that these cases occur in
a small number of ways (although for the first, a large number of times), so they
can be handled as special cases.

4.1.5 Control Flow. Control flow information is generated by compiling
the kernel with the -finstrument-functions switch provided by GCC-3.0. This
option causes the compiler to insert calls to handler functions at the entry and
exit of every function. These handler functions then pass the information to the
appropriate module.

4.1.6 Context Information. As there may be multiple execution contexts
in the kernel at anytime, all log entries must contain a context ID, so the
analysis can tell which entries relate to one another. Unfortunately, no key is
available that will uniquely identify a single execution context, therefore, we

2These are COMPONENT REF nodes where the resultant type of the first operand is a mediated
type.
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must choose a nonunique key and define an approach to distinguish contexts
with the same key.

We chose the base of the current kernel stack as the nonunique key as we
need a key that is at least unique among concurrently active executions, and
it would seem impossible for this property to be violated for the stack. While it
is unique among concurrently active executions, the kernel stack is not unique
per-context for three reasons: all system calls from the same process use the
same kernel stack, once a process dies its kernel stack may be reallocated to
a new process, and interrupts execute with the kernel stack of the process
they interrupt. The critical property here is that although the context key is
not unique, contexts with the same key are never interleaved. Therefore, by
recording the beginning and end of a context (and the associated key), we can
unambiguously assign log entries to contexts.

Fortunately, there are only a few points where a context can begin (all lo-
cated in entry.S), and a roughly equal number of places that contexts can end.
The exit system call is an exceptional case since it never returns, therefore, the
schedule() call in do_exit() is also identified as a context exit point. Because
the number of entry/exit points is manageable, we manually identify their lo-
cations for each kernel version and automatically insert them at run-time. To
collect this information at run-time, the context filter inserts breakpoint in-
structions into the (memory-image of the) kernel at all entry and exit points.
When a breakpoint is executed, the context filter creates a log entry containing
the context key, and whether this is the beginning or end of a context.

4.1.7 Performance. We did a simple performance check to determine the
performance degradation in the instrumented kernel. On an unmodified Linux
kernel, LMBench configured for a “fast benchmark” took 3 min 4 s to run. The
instrumented kernel took 3 min 24 s to run the same benchmark for a degrada-
tion of slightly over 10%. We believe that this overhead is quite acceptable for
such analyses. Recall, that the kernel is instrument for analysis, and the hooks
are not required for subsequent use of the kernel.

In this test, as in the results collection described above, we sample 1 out of 20
system calls. The reason for this is to keep the log growth rate lower than the
disk throughput rate. Since these benchmarks perform the same system calls
many times, we did not notice that we “lost” any security-relevant information.
If necessary, a policy for determining when to drop a log entry can be devised.

4.2 Log Analysis

We have also built a tool that enables log analysis for identifying consistencies
in authorization requirements as described in Section 3.2. The tool enables the
specification of rules for extracting the desired log entries, called log-filtering
rules, and computes authorization consistency given the extracted entries. We
display consistency results in two ways: (1) authorization graphs that show
the consistency between each authorization and controlled operation and (2)
consistency class lists that show the aggregation of controlled operations by
authorizations and consistency level.
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Fig. 4. Example authorization consistency filtering rules.

4.2.1 Log-Filtering Rules. The log-filtering tool takes an execution log and
set of filtering rules as input, and outputs the log entries that match the rules.
The rule language is currently rather low level, as we have been concerned
more with demonstrating feasibility rather than creating a nice high-level rule
language. However, we demonstrate the rule language to give a sense of the
types of analyses that are possible.

A rule base is defined by a set of rules that define matching requirements.
A rule consists of (1) an index; (2) a dependency specification; and (3) a set of
statements. The index identifies the rule within the rule base. The dependency
states relationships to other rules by index. We can state that a rule can only
match entries that are also matched by another rule, (D, i), where i is the in-
dex of the other rule. Also, we can state that a dependency that a rule does
not include entries matched by another rule i, as (N , i). Lastly, the statements
describe the matching conditions for entries. These are specified by identifying
the entry type (id type), and then matching type-specific levels. Entry types
include: events (CONTEXT), authorizations (SEC_CHK), functions (FUNC), and con-
trolled operations (CNTL_OP).

Figure 4 shows some example rules. The path-consistent rule finds all au-
thorizations in the context of a read system call when a controlled operation
at the specified address is run. The first line collects all context entries for a
read system call (i.e., the start of the system call). The second line collects all
entries of controlled operations at the specified location. The (D,1) means that
this statement is dependent on statement 1, so only entries within the read
system call context will be collected. The third line collects all authorizations
within the read system call context. In this case, each execution of this con-
trolled operation should have the same authorizations or there is a violation
of the path inconsistency invariant that prohibits a controlled operation from
having multiple sets of legal authorizations.

The function-consistent rule collects all authorizations and controlled oper-
ations of “read inode member i flock” within a read system call context. The
specification of (D,1) on the second line means that all controlled operations
of this type within a read system call will be extracted. If the authorizations
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associated with this controlled operation are not the same, then the member
access is consistent with its location.

The system call input-consistent rule collects all the log entries in each open
system call for read-only access. The authorizations of the open system call
depend on the access for which the file is opened, so open is system call input-
consistent. Further, we also show a negative filter in this rule that eliminates
all entries within the scope of the path_walk function. The authorizations for
file lookup, including any link traversal, can be separated from those for autho-
rizing the open of this file. Such filtering capabilities enable us to choose our
analysis scope flexibly.

The challenge is to write log-filtering rules that express a situation in which
a meaningful analysis can be performed. In general, we want the log-filtering
rules to describe a situation in which the consistency classes that result meet
our expectation. We have found that an optimistic initial assumption of consis-
tency followed by refinement works effectively for designing such rules.

We start by assuming the highest level of consistency, system call consis-
tency for all controlled operations. If all the controlled operations in the system
call execution have the same authorizations (i.e., are system call-consistent),
then we only have to verify that the authorizations are correct. If not, we ex-
amine whether we can write rules at the next level of consistency, the system
call inputs. If the inputs have no discernable effect or they do not resolve con-
sistency to our expectation (i.e., all controlled operations do not have the same
authorizations), then we go to the next level, data-type consistency, and so on.

Often, effective analysis is possible for lower levels of consistency without
changing the rules. We simply need a way to view the aggregates at the same
consistency level, such as the mapping of each data type to its authorizations
in a data-type-consistent case. We use consistency class lists to view multiple
consistency classes (see Section 4.2.3).

4.2.2 Graphical Log Analysis. The analysis tool can also generate graphs
that enable visual analysis of the filtered data. Using these graphs, it is possible
to verify the authorization consistencies by inspection, as we will describe below.
An authorization graph consists of two sets of nodes in a filtered log: (1) the
controlled operations and (2) the authorizations made. Edges are drawn from
each controlled operation to the authorizations that have been satisfied when it
is run. There are two types of edges: (1) always edges mean that the associated
authorization is satisfied every time the controlled operation is run and (2)
sometimes edges mean that the associated authorization is satisfied at least
once when the controlled operation is run.

An always edge (as well as the lack of an edge) means that the authorization
is not consistent with lower-level levels. A sometimes edge indicates an incon-
sistency. The lack of an edge where an edge would be expected would indicate
a missing authorization.

Figure 5 shows an example authorization graph. The example graph is dis-
played using the dotty graph visualization tool [Koutsofios and North]. In this
case, the authorization graph shows the controlled operations and the autho-
rizations for two types of fcntl calls: (1) fcntl(fd, F_SETOWN, pid_owner) and
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Fig. 5. Authorization graph for fcntl calls for F SETLEASE (controlled operations in lease modify

and fput) and F SETOWN (controlled operations in do fcntl and put). When command is F SETOWN

both FCNTL and SET OWNER are authorized, but only FCNTL is authorized for F SETLEASE.

(2) fcntl(fd, F_SETLEASE,F_UNLCK). The controlled operation nodes include lo-
cation (function name, file name, line number) and operation (data type, mem-
ber offset, operation type) information. The authorization nodes include the au-
thorization, command, and function containing the authorization. Always edges
are indicated by a solid line and sometimes edges are indicated by a dashed line.
If no edge exists between a controlled operation and an authorization, then that
authorization is never performed for that operation.

By visually analyzing this graph we can identify whether the invariants
described in Section 3.3 hold for the current graph or not. In this case, the
sometimes relation between fput and its authorizations may indicate a prob-
lem. Also, the fact that different sets of authorizations are made for the same
field (member offset 480 which happens to be f_owner) may be indicative of a
problem. Manual investigation is then required to identify whether any incon-
sistency is due to an error or a legitimate consistency.

4.2.3 Consistency Class Lists. The consistency class lists show partitions
of the controlled operations by consistency level and the authorization require-
ments at those levels. This partition is computed using the algorithm described
in Section 3.3. The consistency class lists provide a different view than the
authorization graphs of the same authorization results. Whereas an authoriza-
tion graph shows the relationship between each individual controlled operation
and authorization, the consistency class lists show collections of controlled op-
erations with the same authorization requirements. The consistency class lists
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Fig. 6. Consistency class list for read system call with the following fields: (1) entry type (DFN or
SFN); (2) consistency (d for data type and o for object); (3) class number; (4) data type; (5) member;
(6) access identifier.

makes more obvious the number of different authorization cases that exist in
the data. Also, the consistency class lists are easier to use in regression testing
since they are textual [Jaeger et al. 2002].

Figure 6 shows the partition of controlled operations into consistency classes
for the read system call. This partition is used as the example in Section 3.3. As
described there, the consistency class list shows two classes that are consistent
at the data type level: one for tasks and superblocks with no authorizations
and one for files with read authorization. Then, the consistency class list has
two classes that are object-consistent: one for the inode that is read authorized
and one for its directory that has no authorizations. Ultimately, we expect to
annotate current task, file’s directory, and file’s superblock as read authorized
which will result in all controlled operations having the same authorization
(i.e., being system call-consistent).

Most of our experience is with the file system although we have also examined
task authorizations. Most objects have either one or no authorizations, so the
consistency class lists are not too complex. The system call unlink is one of the
few where an object has multiple authorizations. Using consistency class lists
it is easy to see that the directory inode has three authorizations (exec, write,
unlink dir) and the inode being removed has one (unlink file) because they are
object-consistent and placed in different classes. Thus, for the file system and
the task operations we have examined, authorization graphs and consistency
class lists have been sufficient to verify authorizations.
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Fig. 7. Rules for finding the f owner anomaly.

4.2.4 Sample Analysis. We briefly demonstrate a sample analysis for an
anomaly that we found. While the approach to finding anomalies was developed
concurrently to actually finding anomalies, we used roughly the same approach
as described although some of it was not automated. This anomaly occurs in
the fcntl system call. The consistency class list for fcntl shows that its au-
thorizations are system call input-consistent. The values of the cmd and arg
parameters to fcntl can change the authorizations that are required. We use
authorization graphs to look at the authorizations under the different inputs
since it is easier to see coarse-grained problems—lots of sometimes edges occur.

Figure 7 contains two sets of rules: (1) one which collects all authorizations
and controlled operations of the file structure field f owner in a fcntl(fd,
F SETOWN, pid owner) system call, and (2) one which collects all authoriza-
tions and controlled operations on the field f_owner in a fcntl(fd, F_SETLEASE,
F_UNLCK) system call. Note that this is same rule (less the fput controlled op-
erations) used to generate the graph in Figure 5.

In Figure 5, we see that some of the controlled operations are authorized
for the fcntl and set_fowner authorizations and some are only authorized for
fcntl. This is despite the fact that the controlled operations access the same
field, f_owner (offset 480). Given this anomaly, we examined the kernel source
to determine whether an exploit of this anomaly is possible. We discuss the
results of this analysis in the next section.

4.3 Results

We applied the December 10, 2001 LSM patch to the Linux 2.4.16 source and
compiled the kernel using our modified version of GCC-3.0.3 To create an ex-
ecution log to analyze, we executed in parallel three instances of LMBench,
the SAINT vulnerability tool (www.wwdsi.com/saint/), a kernel compile, and
some test programs that we wrote as we became suspicious of anomalies. Since
the effectiveness of run-time analysis depends on running enough code, the de-
velopment of benchmarks that cover enough of the interesting paths must be
developed. For example, LMBench only runs about 20% of the kernel code.

3Keeping up with kernel version is not a great deal of work. We have the system running on Linux
2.4.18 now, and the only thing we had to do was update our authorization filter to the current LSM
interface. However, the LSM interface is being redesigned significantly as part of its inclusion in
the main Linux kernel, so we have not yet updated for this redesign. It should not take more than
one day to update.
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We have instrumented the kernel to collect controlled operations on the major
kernel data structures: files, inodes, superblocks, tasks, sockets, and skbuffs.
So far, we have only done a detailed analysis on the file system authorizations,
and an initial analysis on task authorizations. Since the file system is fairly
well understood, we did not expect a large number of anomalies, but we found
some nonetheless.

—Member-consistent (multiple system calls): setgroups16 is one of sev-
eral backwards ABI-compatible 16-bit task operations, such as setuid16 and
setchown16. These operations usually convert their 16-bit values to 32-bit
values and call the current versions that do contain authorizations. How-
ever, since setgroups16 sets an array, it is easier not to convert the array, so
the current version (that contains a hook) is not called. We found that there
is no authorization hook in the function setgroups16, so we can reset the
task’s group set without authorization. Note that there is no setgroups16
call in the current version of libc, so we had to write an assembler program
to perform this exploit.

—Member-consistent (single system call): The f_owner.pid member of
struct file tells the kernel which process to send signals to regarding IO
on this file. Setting this field is authorized by file_ops->set_fowner if the
user tries to set it directly via fcntl(fd, F_SETOWN, pid_owner). However, if
a user removes a lease from a file via fcntl( fd, F_SETLEASE, F_UNLCK), the
owner is set to zero without the authorization being performed. Furthermore,
a process can set the owner of a Universal TUN device (drivers/net/tun.c)
to itself without the authorization being performed. To achieve this, the
process calls ioctl(fd, F_SETFL, FASYNC) on an open, attached, TUN
device.

—Member-consistent (single system call): During our investigation of the
consistency of filp.f_owner described above, we found that access to filp.
f_owner.signum (the signal that should be sent upon IO completion) can be
set without the authorization via fcntl(fd, F_SETSIG, sig).

—System call-consistent (multiple system calls): A read authorization is
performed at the beginning of every read system call. This authorization
is required since the authorization performed when the file was originally
opened may no longer be valid, due to the process changing its security levels,
the file changing its security levels, the file being used by a new process, or a
change in the security policy. This authorization, however, is not performed
during a page-fault on a memory-mapped file. Therefore, once a process has
memory-mapped a file it can continue to read the file regardless of changes
to security levels or security policy.

We engaged in a discussion with the LSM community that resulted in a
patch to all the anomalies, except the one for reading memory-mapped files.
The community decided that a file that requires read authorization must not
be memory-mapped. We are encouraged that we have been able to help find and
fix hook placement problems.
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5. EXAMINING STATIC ANALYSIS

We have now implemented a static analysis prototype using the JaBA static
analysis tool that collects logs of relevant execution paths in the Linux ker-
nel. For static analysis, full kernel execution path coverage can be more di-
rectly assessed than for run-time analysis. Unfortunately, the number of ker-
nel execution paths is exponential in general, so the model must be designed
to remove as many irrelevant paths as possible and be optimized so as many
paths can be assessed as possible. The statically generated logs can be input
into the analysis tools described in Section 4.2 as a run-time generated log
would be.

5.1 JaBA Analysis Tool

JaBA is a flow-sensitive, context-sensitive static analysis tool with pointer-
based data flow analysis [Koved et al. 2002]. JaBA has base functions that
process Java class bytecodes to build intraprocedural basic block graphs, inter-
procedural control flow graphs, and data flow graphs for variables and object
fields. We build further static analyses for the log collection using this base
analysis information as input. These analyses are procedural, as opposed to
the declarative analysis languages, such as MC [Engler et al. 2000]. We then
process these logs as described in Section 4.2.

Context-sensitive control flow in JaBA means that different paths into the
same function can be distinguished from one another, such that different input
objects into the same function can be distinguished and their relationships to
authorizations can be tracked accurately.

Context-sensitive data flow in JaBA tracks data flow from the allocation sites
in the program. For the Linux kernel, the same allocation sites are used for most
objects (e.g., files and inodes), so in a context-insensitive data flow, the same
objects would be used in all operations of that type. JaBA enables the definition
of context-sensitivity by distinguishing objects by the call site into the function
that creates the object (or arbitrary levels). The more objects created, the more
expensive the analysis becomes however.

Since the Linux kernel is obviously not in Java, we have written a transfor-
mation from C to Java bytecodes [Zhang et al.]. The transformation preserves
only the semantics of the Linux kernel that are relevant to the JaBA analy-
ses. For example, pointers to C structures are translated to arrays of size 1
containing a Java object of the commensurate type. Also, nontype safe pointer
operations are translated to the object wildPtr.

5.2 Log Generation Process

The JaBA log analysis process uses two inputs: (1) a root control flow graph
node, usually a function for a system call (e.g., sys open) and (2) the data types
of the structures whose controlled operations are being analyzed. All JaBA
analysis is restricted to the functions (i.e., CFG nodes) that are reachable from
the root node. The log generation returns a log of the form collected by the
run-time data collection tool.
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The log generation process using JaBA is as follows:

(1) Dump id to name mapping for functions, authorizations, and controlled
operations for use by log analysis tool.

(2) Collect all controlled operations on objects of the specified data types. Recall
that these data types are specified as input to the analysis process and the
scope of the collection is limited by the functions reachable from the root.

(3) Collect all authorizations on objects of the specified data types.
(4) Define a consistency context for each path, currently defined to be each in-

dividual object instance used in a system call. This context may also include
conditional branch restrictions to emulate switches due to system call flag
values.

(5) Identify nodes with paths that lead to either a controlled operation or an
authorization. All other nodes are irrelevant to the analysis.

(6) Generate all relevant intraprocedural paths (see below).
(7) Generate interprocedural paths from sequence of intraprocedural paths.
(8) Repeat from step 4 until no new contexts to examine.

The first step enables the log analysis tool to properly display the results
from the JaBA-generated logs by providing a mapping from numerical repre-
sentation (e.g., function CFG node number) to names (e.g., function names).

The second step collects all controlled operations for the data types of inter-
est as is done in the run-time case. In this proof-of-concept, we only collect write
accesses thus far. The collection of read accesses is necessary to find some errors
(e.g., read from f_owner field to update its members), so extension to read ac-
cesses will be necessary. While the addition of more accesses will only increase
the complexity of the analysis, we do not think the additional complexity will
be significant as discussed in Section 6.

The third step collects the authorizations for the data types of interest. In
the run-time system, we had to manually list all the objects that were thought
to have been authorized by each LSM hook. Here, we are hoping to use data
flow to more accurately describe the objects that are authorized as discussed
in Section 6. However, at present, only the direct authorizations are collected.
We are defining a mechanism to infer authorized objects from an authorization,
but this step is currently less extensive than in the run-time analysis.

The fourth step defines a set of analysis contexts. In the run-time tool, the
execution of a system call defines a context. In the static analysis, a system call
defines many paths, so we need to identify the path contexts that are worthy
of collection. We have identified a number of ways to reduce the number of
intraprocedural paths worthy of consideration (see Section 5.3), but we still
found that further reduction is necessary for a timely analysis. We follow the
lead of xgcc project where analysis automata processing is variable-dependent
[Hallem et al. 2002].

Since JaBA tracks objects rather than variables, objects define contexts. That
is, for each system call, one object is identified and only operations and autho-
rizations on that object define a context. After path analysis for that object is
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complete another object in the system call is selected and all relevant contexts
(i.e., paths) for that object are logged. This repeats until all relevant objects
(i.e., objects of the target data type) in each system call are analyzed and their
logs are collected.

The fifth step takes the context description and determines the CFG nodes
that are worthy of analysis. A node is worthy of analysis if its removal and thus
the removal of any of its descendants would result in the loss of a controlled
operation or authorization log entry. Thus, functions that call any function that
has a controlled operation or authorization relative to the current context object
are worthy of logging.

The sixth step creates all relevant intraprocedural paths for nodes worthy
of analysis. This is the key step in the analysis, and it is discussed in detail in
Section 5.3.

The seventh step combines intraprocedural paths into individual logs. Logi-
cally, it enumerates all combinations of intraprocedural logs in execution order.
In actuality, log generation is optimized to build new logs from the function
that provides the new intraprocedural path for the next combination, rather
than building each path from scratch. Logs are built by collecting a sequence of
intraprocedural paths for those functions that would be called in those paths.
On the next pass, the last function in the log that has multiple intraprocedural
paths is chosen to define the next combination. The log up to that point remains
the same, so log generation is done only from the start of the new path.

The log analysis described in Section 4.2 is performed as before on the logs
generated in step (7). The only differences in log entries are: (1) JaBA object
identifiers are used for objects rather than object-specific identifiers as defined
in the run-time and (2) primitive arguments are not captured by JaBA, so
system call flags must be represented by a conditional branch identifier which
we store in the system call arguments locations for the first four conditionals
at present.

5.3 Intraprocedural Analysis

Intraprocedural analysis defines the number of relevant paths per node. Since
intraprocedural path combination is exponential in general, all reasonable
steps should be taken to keep the number of paths as minimal as possible.
We perform both node-level and conditional-level analyses to try to eliminate
redundant paths. As a result, only one function in the Linux file system requires
more than three paths and most have only one path.

The main thing we are looking for are the relationships between controlled
operations and authorizations. Thus, if all the paths in a node result in the
same relationships, then all the paths in the node can be combined into one.
Because the number of authorizations is much smaller than the number of
controlled operations, we take an authorization-centric view: If all the paths in
a node have the same authorizations (i.e., none lead to a new authorization for
the context object), then all the controlled operations can be combined into one
path. Since the authorizations typically occur before the controlled operations,
this optimization is quite effective.
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Different paths in a function are created by its conditional statements. A
condition states that either the one of two or more paths can be taken, so each
choice forms a path. If the choice of paths does not impact the relationship
between the controlled operation and the authorizations, then these conditional
paths need not be considered independently. We refer to this process as merging.
In most functions, this results in a significant reduction in the number of paths.

For intraprocedural analysis we perform the following steps:

(1) Sort the nodes in topological order with CFG leaves first.
(2) Determine if the node calls any nodes that have authorizations. If not,

compress the controlled operations into one path.
(3) Collect node’s basic blocks into a path. If a conditional statement is found,

determine if this conditional can be “merged.” If not, choose the first path
and continue. Push the conditional on a stack for subsequent path genera-
tion.

(4) Store function call locations in path for interprocedural path generation.
(5) When an intraprocedural path is complete, rewind the conditional stack

until a conditional is found that has branches left to examine. Generate the
next intraprocedural log from this location.

The only function in the Linux virtual file system that caused difficulties was
path_walk, which has 28 relevant paths. First, this is a very long and complex
function with many possible paths. However, we believe that this function calls
subroutines that actually refer to semantically different objects from our per-
spective, so the JaBA data flow analysis does not capture the right semantics
yet. Many of the subroutines should not really be relevant to the analysis. Re-
gardless, the generation of path_walk paths take 3 min, and the generation of
interprocedural paths for system calls that use path_walk (there are plenty),
still quite on the order of seconds since most other nodes have 1 or 2 paths.

The overall processing time for the system calls over the Linux virtual file
system takes approximately 1 h, which is actually analogous to the time it
takes to put together a run-time analysis. However, we are optimistic that
static analysis performance can be improved significantly. Currently, the way
our JaBA system is architected we must recompute path_walk for each system
call in which it is used. Removing this redundant calculation will reduce the
analysis time by slightly more than 50%. Also, we can improve performance
further by starting the analysis in the node an object is first seen rather than
at the system call.

5.4 Static Consistency Results

We aim to use the JaBA consistency analysis to find both the file_ops->
set_fowner error described in Section 4.3 and the TOCTTOU vulnerability
[Bishop and Dilger 1996] that we previously found using the static analysis
tool CQUAL [Zhang et al. 2002]. Both can be categorized as consistency errors,
but the latter is difficult to find with a run-time analysis because it requires
an active successful attack to cause the inconsistency. If we already knew the
vulnerability, we would not need the tool.
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Recall that the file_ops->set_fowner error was caused because the con-
trolled operations on that field (read operations in this case) were authorized
by a set_fowner for all functions except lease_modify. The static log includes
entries for fcntl_setlease, which indicate that in some logs set_fowner is au-
thorized and in some logs it is not. Interestingly, the log does not collect log
entries for lease_modify because it is always called with the same authoriza-
tion, only fcntl. Because the relationship is fixed, we need not consider the
paths within the function. However, we do need to consider that a particular
controlled operation may be used that may identify a consistency problem, as is
the case here. In this case, we want to know that the log may call lease_modify
and other functions and execute their controlled operations. Since the relation-
ships between the controlled operations and authorizations are static, we can
aggregate all the controlled operations (i.e., merge them into one aggregate
path). Doing this would enable the Vali analysis tools to identify the lack of an
authorization in lease_modify.

The TOCTTOU vulnerability found in Zhang et al. [2002] occurred because
the file pointer is authorized in sys_fcntl, but a new file pointer is extracted
based on the user-provided file descriptor in fcntl_getlk. Since the user can
control the mapping between the file descriptor and the file it references, a race
condition results that an attacker can leverage to perform unauthorized fcntl
operations. JaBA provides a data flow graph that tracks the possible values of
variables and fields in the program. In this case, we need to distinguish the file
pointer variables based on their source (i.e., fget from the file descriptor). The
static logs generated indicate that the file pointer object is sys_fcntl was au-
thorized in all cases, while a different file pointer object is used in fcntl_getlk
that is never authorized.

Thus, our analysis tool built on JaBA enables the construction of analyses
that can implement a more general consistency analysis than the run-time tool
that can cover our previous static analyses as well.

6. DISCUSSION

In this section, we briefly examine three issues in the use of the LSM consis-
tency analysis: (1) static analysis effectiveness; (2) verification of LSM hook
placement; and (3) use for regression testing.

6.1 Static Analysis Issues

In general, we find that we can use the described consistency analysis on
log data collected via either run-time or static methods. The current proof-
of-concept static analysis log collection takes about the same amount of time as
building and executing the run-time log collection. The same log analysis can
be performed using either tool.

Static analysis has the advantages of path coverage and accuracy of analysis.
First, it is difficult to find benchmarks that execute all relevant paths. Basi-
cally, a static analysis of the code is necessary to write the necessary bench-
marks to execute the proper paths. Second, the previous CQual static anal-
ysis demonstrated that TOCTTOU bugs could be found that cannot be found
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using run-time analysis. Finding these bugs using a run-time analysis requires
that there be an active attacker performing the TOCTTOU attack, so we would
already have to know that the attack exists.

Effective use of static analysis depends on handling all necessary controlled
operations (i.e., adding read accesses) and use of data flow to identify authorized
objects. Extending analysis for read accesses will extend the length of the log
and could increase the number of relevant paths. The relevant paths depend on
new relationships between controlled operations and authorizations, but since
the number of authorizations is small for each system call, we do not expect
this to be a problem. We can further refine the notion of a context to further
restrict the scope of log generation.

An important use for static analysis is to deduce those objects authorized
by an LSM hook. The LSM hooks do not describe explicitly the objects that
they authorize, so this must be determined. Using the run-time analysis such
properties had to be specified manually, but static analysis may enable such
properties to be inferred. In general, objects passed to the hook are authorized.
Also, objects that are referenced by the authorized objects via immutable fields
can also be assumed to be authorized. Whether the fields are immutable de-
pends on whether there is a system call that can obtain an alias to the same
object and can modify the field. Object creation calls typically do not qualify
because they create a fresh object, so they cannot modify an existing object.
While the file–file descriptor relationship can be modified by a system call, the
relationship between a file object and its inode is likely not modified once the
file object is created. We are examining data flow analyses that enable such
properties to be verified.

6.2 Verification

Most analysis work to date aims at bug finding. Although some analysis ap-
proaches are complete (i.e., no false negatives, such as MOPS [Chen and
Wagner 2002]), these tools have not been used to prove any significant, even
minor, security property. With sufficient analysis support, we would like to be
able to actually verify system security properties. We examine our status in
achieving this goal.

Our analysis enables the verification that a particular set of mediating oper-
ations (e.g., LSM hook authorizations) are consistently performed when a set of
use operations (e.g., kernel controlled operations) are executed. If the mediating
operations can be identified in advance (i.e., we can identify the authorizations
required) and they can be related to the use operations (e.g., by the objects and
operations), then this analysis is complete.

In the LSM hook analysis, the authorizations for a controlled operation are
not specified in advance, so the consistency analysis is said to determine the
required operations. There are three issues that make this assumption diffi-
cult: (1) there may be LSM hooks that are just completely missing, so there is
no inconsistency issue; (2) the context descriptions may not cover all relevant
paths; and (3) the set of objects identified by an LSM hook may not include some
objects that are implicitly authorized. In the first case, there is no inconsistency
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problem if a hook is missing in all cases. The idea is that the aggregation of the
authorization-controlled operation relationship make this verifiable manually.
However, there is the possibility for error in the manual verification. In the sec-
ond case, context specifications must ensure that consistency analysis covers
relevant log paths. To achieve this, each controlled operation must belong to
a context statement its authorization relationships are consistent and verified
against missing hooks. The simplicity of the three types of contexts (i.e., recall
system call, system call flag, and operation set) makes this coverage fairly easy
for LSM hooks. In the third case, the LSM hooks do not explicitly state the
objects that are authorized. As discussed in the previous section, we aim to use
JaBA data flow analyses to verify this property.

Thus, if we can ensure complete coverage of all kernel paths that impact con-
sistency, associate all mediated objects with their authorizations, and reliably
verify authorization requirements then we can perform effective verification.
We expect that we can verify properties such as object labeling (label before
use), object initialization, audit, and object reuse. For example, audit opera-
tions should be paired with security decisions. These are easily identified, so
this verification should be straightforward although inferring the effected ob-
jects is still an issue. For labeling, we can identify labeling operations and
determine whether they are run on all objects prior to security checks. How-
ever, objects can be relabeled. Determining whether relabeling occurs where
necessary requires defining the requirements of relabeling. That is, the medi-
ating operations that are indicative of a relabel and the controlled operations
indicative of use of a relabeled object have to be determined. Thus, the verifica-
tion of initial labeling may be possible, but the verification of correct relabeling
appears to be much more difficult.

6.3 Regression

Once a security property is verified, it is necessary to ensure that this property
is maintained as the system is updated. This process is generally referred to
as regression testing. Since updates can be made by lots of people in an open
source system, such as Linux, it is necessary for most regression to be much
simpler than the original verification. In particular, we would like to maximize
the possibility that a simple change will result in no manual examination of
regression data.

For LSM hook verification, the use of consistency classes provides some re-
silience against change. As long as the consistency class list does not change,
then the output is basically the same. Since changes in consistency are indica-
tive of placement issues, consistent consistency in regression testing indicates
effective placement. In order for this assumption to hold, we also must account
for the fact that a necessary hook may be missing in all cases. Thus, as long
as no new controlled operations are made, this regression approach works. For
the addition of new controlled operations, more needs to be done.

Examination of the other contexts in which the controlled operation appears
whether it is benign or a potential problem. In general, the larger the number
of different sets of authorizations to which a controlled operation is associated
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in consistency lists is one measure of its independence from particular autho-
rizations. This case would be considered low for requiring a new LSM hook. On
the other hand, if a controlled operation is part of a set of controlled operations
that define a context, then the likelihood of the need for an LSM hook is much
higher. We can aggregate new controlled operations based on these kinds of
criteria to indicate severity of need for deeper review.

7. CONCLUSIONS

In this paper, we presented a consistency analysis for assisting the Linux com-
munity in verifying the correctness of the LSM framework. The LSM framework
consists of a set of authorization hooks placed inside the kernel, so it is more
difficult to identify the complete mediation points. We leveraged the fact that
most of the LSM hooks are properly placed to identify misplaced hooks. We used
structure member operations on major kernel data structures as the mediation
interface and collected the authorizations on these operations. By analyzing
the output of a run-time logging tool, we identified the operations whose autho-
rizations were inconsistent. We have analyzed the file system and some task
operations and found some anomalies that could have been exploited. Working
with the LSM community, these problems have since been fixed. For example,
we found that some variants of fcntl enabled operations to be performed that
were authorized in other cases.

Ultimately, we found that consistency analysis is useful for verifying sys-
tems where a inconsistencies from the norm are likely to be errors. However,
run-time log collection has limitations in path coverage and can miss some
important errors, such as TOCTTOU, that depend on unusual input data or
contexts. We have found that this analysis approach can also be applied to exe-
cution logs collected via a static analysis. We demonstrate the use of the JaBA
analysis tool to collect such logs. Further, we discuss improvements to the over-
all analysis that can be made using the data flow analysis of JaBA. We are
actively pursuing complete, easy-to-use verification for the LSM authorization
hooks and examining verification of other security properties.
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