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1. INTRODUCTION

SELinux seeks to fully specify the principle of least privilege on modern operat-
ing systems (OSs) using a Mandatory Access Control (MAC) security policy. To
accomplish this goal, the SELinux policy system has combined three different
policy models: Role-based Access Control (RBAC), Type enforcement (TE), and
Multilevel security (MLS).

The traditional RBAC model associates users with roles (i.e., a user is autho-
rized to act in a specific set of roles) and then assigns permissions to each role.
The SELinux RBAC model associates users with roles and roles to TE domains,
meaning that a given role is authorized to access a specific type. While the TE
policy can be used to control the integrity of information flows [Jaeger et al.
2003] (i.e., where information flows from), an MLS policy is designed to control
the confidentiality of information flows (i.e., where information flows to). In
particular, an MLS policy is meant to prevent the leakage of information from
more secret sources to less secret channels. Protecting against such a leakage
of information is especially important to nearly all government and military
sectors, who widely use the MLS model. With the widespread occurrence of
electronic data theft, costing individuals and institutions billions of dollars in
damages and lawsuits, MLS policies may find increasing use in other sectors
as well.

Perhaps anticipating such a broad usage, the MLS policy language in
SELinux is general enough to express a wide variety of confidentiality poli-
cies. The problem is that the MLS policy language is so broad that it is not easy
to determine exactly what information-flow goals are enforced by a given policy.
For example, in a given policy, it is important to know that all possible infor-
mation flows are constrained by the policy (there should be no unconstrained
way to read or write data). Also, it may be important to know that the policy
faithfully implements standard high-level goals, such as the simple security
condition (no read-up) or the �-property (no write-down) as defined by Bell and
Lapadula [1973]. Finally, there are cases in which it is valuable to know that
one MLS policy is compliant with another. For example, in a distributed system,
when a new machine joins a trusted group, it is important to determine that
the new machine will faithfully enforce the policy goals of the group [Jaeger
et al. 2006]. Thus, a policy compliance test is warranted.

Performing such an analysis is not easy. The standard SELinux MLS refer-
ence policy contains hundreds of lines of policy statements, constraining access
of some 40 kernel objects that may be accessed in almost 50 modes. A manual
analysis of this policy is impractical. This is further complicated by the lack of
any formal logic presentation of the semantics of the policy. While the RBAC
and TE models have existed in SELinux for many years and have been stud-
ied at length [Guttman et al. 2005; Jaeger et al. 2002, 2003; Smalley 2002;
Sarna-Starosta and Stoller 2004; Zanin and Mancini 2004], the MLS model in
SELinux is quite new [Hanson 2006]. Since the MLS model is largely orthogo-
nal to the TE model, existing analyses for TE cannot be applied to it. What is
still needed are a formal policy semantics by which we can reason about MLS
policy and an analysis tool to aid in this process.
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Consequently, in this article, we present the first logical specification for
modeling SELinux MLS policy. We use this specification to develop analyses for
determining (i) all information flows allowed in a given policy and (ii) whether
one policy is compliant with another. Finally, we implement the specification
and analyses in Prolog in an analysis tool called PALMS (for Policy Analysis
using Logic for MLS in SELinux). PALMS takes two policies in SELinux MLS
policy syntax and automatically determines all the information flows allowed
in the policies as well as whether one policy is compliant with the other.

We have found PALMS to be valuable for various tasks. First, we were
able to determine that the reference MLS policy covers all possible classes of
objects and modes of access (i.e., there are no unconstrained information flows).
Second, we have used this analyzer for determining compliance of the SELinux
reference policy with a standard military policy implementing the �-property
and simple security condition. Third, we have also used this analysis tool for
determining the compliance of an application’s MLS policy with the MLS policy
of its host OS.

In the next section, we provide background information on SELinux policy
and a general introduction to MLS policy as well as a motivating example and
some related work. In Section 3, we give a logical specification for an SELinux
MLS policy model. We use this model in Section 4 to describe some algorithms
that determine information flows for a given policy and also check compliance
between two policies. In Section 5, we describe our implementation of the model
in the tool PALMS. In Section 6, we test PALMS, namely we check that the
reference MLS policy for SELinux is, in fact, compliant with the standard �-
property and simple security condition. We also explore another application
of our tool in determining policy compliance between an application and a
particular OS. We conclude in Section 7.

2. BACKGROUND AND RELATED WORK

2.1 SELinux

Current OSs that implement MAC policies aim to support the principle of least
privilege by limiting the set of rights an application is assigned [Loscocco et al.
1998].

The foundation of security-enhanced Linux (SE)Linux [National Security
Agency 2009] can be found in the Flask architecture [Spencer et al. 1999],
which has been integrated into Linux through the Linux Security Module
(LSM) [Smalley et al. 2001]. This module is now being shipped as part of
the mainstream kernel in the 2.6 series and enabled by default in Redhat
distributions since Fedora Core 5. Other work in OSs with MAC security
includes Trusted Solaris [Sun 2009], Solaris Trusted Extensions [Sun 2010],
TrustedBSD [FreeBSD 2010] and SEDarwin [Vance et al. 2007]. MAC OSs
require that all subjects and objects are labeled and all security-sensitive op-
erations are hooked with runtime checks. These checks query a security policy
to determine whether the operation is allowed, based on the subject and object
labels.
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SELinux implements three security models: type enforcement (TE), role-
based access control (RBAC) and multilevel security (MLS) [Smalley 2005].
First, every element in the system is associated with a class (file, tcp socket,
ipc, process, etc.) and security sensitive operations are divided into modes of
access (read, write, open, connect, getattribute, etc.). Both the TE and MLS
models use these classes and modes to determine what accesses are granted or
denied.

The RBAC model has been used minimally in SELinux security, while the
TE model has been the predominant focus. The TE model further associates a
security type with every element in the system and manages an access-control
matrix based on the type of the subject that makes a request and the type of
the target object which is being accessed (as well as the class and mode of the
target object).

The current MLS model was recently developed by Trusted Computer Sys-
tems (TCS) [Hanson 2006]. It is largely orthogonal to the TE model meaning
there is practically no interaction between the two. It associates an MLS level
with every element in the system. On every security-sensitive operation, a set
of MLS constraints is checked based on the MLS level of the subject and the ob-
ject as well as the object class and mode of access. There is a standard reference
MLS policy provided in the SELinux distribution, which seeks to implement a
confidentiality policy in accordance with the definitions by Bell and Lapadula
[1973]. An overview of this model is provided in the next section, and a logical
specification of the syntax and semantics is given in Section 3.

2.2 MLS Security Model

While TE policies attempt to enforce the principle of least privilege, multilevel
security was formalized by Bell and Lapadula [1973] in order to control how
information is allowed to flow between subjects in a system. These subjects are
given a sensitivity level or security clearance, and objects are also given a similar
security classification. MLS policies attempt to restrict how information may
flow between designated sensitivities. As an example, consider a military appli-
cation with four sensitivities, ordered from least to most sensitive: Unclassified
(UC), Confidential (CO), Secret (S), and Top Secret (TS); TS dominates S. Note
that in this example, the sensitivities form a total ordering; each sensitivity is
either higher, lower, or equal to another. This is not always the case.

Typically, MLS defines information-flow policies, based on two properties: the
simple security condition and and the �-property. The simple security condition,
sometimes described as “no read-up,” requires a subject Sto dominate an object
O to have read rights, meaning the subject’s security clearance dominates the
object’s security classification. The �-property, described as “no write-down,”
requires the object’s classification to dominate the subject’s clearance for the
subject to have write rights.

To allow finer granularity of information control than just a few sensitivity
levels, the MLS model was expanded by adding categories to the security level.
These categories serve to group information of the same kind so that access
may only be granted to subjects on a need-to-know basis. Categories provide a
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way to allow access to certain types of data, while staying within the confines of
the sensitivity restrictions. A subject must then have a superset of the object’s
categories to dominate the object. To illustrate this, let us take subject S with
sensitivity Secret and categories {Nuclear, Military, Domestic}, and object O
with sensitivity Confidential and {Military, Domestic} as categories. Since S
has a higher sensitivity and a superset of O’s categories, it is said to dominate
O, and O is said to be dominated by S. In nearly every practical MLS policy,
this would equate to subject S being able to read from object O. Now if S did
not have Domestic as a category, it would no longer dominate O; the two would
be incomparable.

2.3 Example

The number and complexity of MLS constraints for a standard SELinux policy
make manual analysis impractical. Here, we present a motivating example of
the difficulty, based in our own experience.

A brief study of the hundreds of policy statements in the reference SELinux
MLS policy gave the appearance that it might be possible to violate the standard
MLS information-flow-goal preventing write-downs. One complication is that
SELinux uses an expanded form of the standard MLS model, allowing a range
of levels to be associated with a subject (this will be introduced more formally
in Section 3.1), as in the DG/UX System [Data General Corporation 1996]. At
first glance, the policy prevents a process from reading data out of a file at a
high level and writing to a lower level. At the same time, it seemed that it
might be possible simply to relabel a file and downgrade it using a process with
a particular MLS range. Thus, unlimited downgrading would be possible for
an unprivileged user.

Even a more thorough study of all the constraints applied to the file class did
not reveal a counterexample. In this case, in order to disprove our hypothesis,
we had to construct an experiment on an actual SELinux system and read
the audit logs to determine our mistake. In our study, we had overlooked a
different permission, the mlsvalidatetrans permission that is only minimally
documented in the literature. Even discovering that was difficult because the
audit logs were vague about which constraint was violated.

With our analysis tool, PALMS, it is simpler to undertake such investigations
and also more informative with regard to what constraints are violated or which
information flows are allowed in a given situation.

2.4 Related Work

Multiple general models have been proposed to represent security policies and
reason about their features. Each model defines a set of components that need
to be considered when translating a policy to an intermediate representation
for the analysis. Cholvy and Cuppens [1997] proposed a model that supports
permissions, obligations, and prohibitions, and provides a mechanism to check
consistency; Bertino et al. [2001, 2002] proposed a model that supports subjects,
objects, and privileges as well as the organization of these components in a
hierarchical structure that also defines derived rules. Koch et al. [2001] focus
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on processes, users, objects, and edges that represent rules and the constraints
that apply to the system. The advantage of general models is that they allow
the representation and comparison of various policy models. However, for this
work, we want to analyze properties that are specific to the SELinux MLS
model, and we cannot represent such properties in a natural way with these
models.

Previous frameworks developed to help in the analysis of SELinux security
policies include Gokyo [Jaeger et al. 2002, 2003], SLAT [Guttman et al. 2005],
PAL [Sarna-Starosta and Stoller 2004], APOL [Tresys 2010] and SELAC [Zanin
and Mancini 2004]. Gokyo assesses access control policies based on access con-
trol spaces; such spaces define sets of assigned permissions (prohibited, permis-
sible, and unknown spaces). Their approach was used to evaluate the integrity
of the Apache Web server in the context of the entire SELinux policy. More pre-
cisely, they determined whether low-integrity subjects (subjects outside Apache
who are not high-security trusted subjects) are allowed to write data that the
Apache administrator read.

Another framework is SLAT (security-enhanced linux analysis tool)
[Guttman et al. 2005]. It provides a systematic scheme for defining OS security
goals. The authors define that a system’s security goals depend on the configu-
ration of the system and the interaction between the system and trusted pieces
of software. Their goal is to reduce the number of trusted pieces of software to
as small a set as possible. SLAT is implemented using model checking.

Sarna-Starosta and Stoller [2004] used the information-flow model defined
in SLAT [Guttman et al. 2005] to implement another framework for analyzing
configuration policies in SELinux; it is called PAL (Policy Analysis using Logic
Programming). PAL creates a logic program based on an SELinux policy that
make it possible to run queries to analyze the policy. PAL is implemented
on XSB, a logic-programming system based on tabled resolution [Computer
Science Department of the Stony Brook University 2009]. The use of queries
based on logic programming makes the PAL system more flexible and easier to
use than the SLAT system [Sarna-Starosta and Stoller 2004]. PAL provides a
starting point for our own analysis. We capitalize on their logic-based system,
although it was necessary for us to provide a new set of rules to PAL for
analyzing SELinux MLS policy.

APOL is a tool developed by Tresys Technology to analyze SELinux configu-
ration policies [Tresys 2010]. Among its multiple features, it includes forward
and reverse domain transition analyses, direct and transitive information flow
analysis, relabel analysis, and type relationship analysis. It is a robust tool for
analyzing TE policies, but has no support for the SELinux MLS rules.

Zanin and Mancini [2004] define a formal framework called SELAC
(Security-Enhanced Linux Access Control) for analyzing a SELinux policy con-
figuration. They give a semantics for the SELinux RBAC and TE rules (but not
the MLS rules). Their semantics facilitates the modeling of complex and subtle
rule interactions. Capitalizing on the concept of accessibility spaces, as defined
in Jaeger et al. [2002, 2003], they are able to develop an algorithm in their
model that verifies whether a subject is allowed to access a particular object in
a given mode, under a specific SELinux policy configuration. Their semantics
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was an inspiration for our work; our first step was to extend their semantics
with a new semantics for MLS rules.

Unfortunately, none of these existing approaches handle with MLS in any
way. Each of the previously mentioned analyses handles only SELinux-type
enforcement policies, and what effect the resultant properties of these policies
have on the system. What is needed is a semantics for understanding the
SELinux MLS policy language and an analysis to analyze what properties
result from a given policy configuration. We take the semantics of Zanin and
Mancini [2004] as a starting point and the logic-based analysis framework of
Sarna-Starosta and Stoller as a foundation for our own analysis. The result is
a semantics for formally understanding SELinux MLS policy and a tool that
can determine the properties of a given policy configuration.

3. SELINUX MLS MODEL

In this section, we give a semantics for SELinux MLS policy rules. We begin
with an informal description of SELinux policy rules in general followed by the
MLS model in particular, and then proceed to give a formal semantics for the
MLS rules.

3.1 Extended Security Context

An SELinux security context in a system that enables the MLS extension im-
plemented by TCS [Hanson 2006] adds a fourth field to the three fields, user,
role, and type (which are all used for the RBAC and TE models described in
Section 2.1): an MLS range defined by a low and a high MLS level. Each level
is composed of a sensitivity level and an optional set of category compartments.
Sensitivity represents an MLS clearance (on subjects) or classification (on ob-
jects), while categories represent a set of non-hierarchical compartments to
which the subject may have access.

The following example is an SELinux security context in a sys-
tem with the MLS extension disabled, it includes user, role, and
type: staff u:staff r:staff t An MLS-enabled SELinux system contains
one additional field, as shown in the next example: staff u:staff r:
staff t:s0-s2:c0.c15.

Most of the objects in the system have the same value for their low and
high levels (they are single-level); there are some exceptions like multilevel
directories. On the other hand, it is not unusual for subjects to have different
low and high levels. The low level means the current security clearance and the
high level represents the upper bound security clearance for the same subject.
In the following example s0 is the low level and s15 is the high level, in addition
s15 has access to compartments c0 thorough c15: s0-s15:c0.c15.

3.2 MLS Model

Although an SELinux policy includes thousands of statements that define the
MAC rules for a particular system (implementing the RBAC and TE models),
the focus of this work is the behavior of an SELinux MLS policy. Therefore,
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the input of our model is the set of MLS-specific statements: sensitivity,
category, level, dominance, mlsconstrain, and mlsvalidatetrans. All defini-
tions given in this section and Sections 4 and 5 use the notation presented in
the following text.

s: Security context for a given subject o: Security context for a given object
c: Object class p: Mode in which an object may be accessed
C: Set of classes P: Set of modes in which an object may be

accessed
u: User r: Role
t: Type sl: Sensitivity level
ca: Category exp: Boolean expression
stmt: Policy statement Policy: Set of SELinux statements and rules

(TE and MLS) that define a policy

3.2.1 Syntax. In this section, we present a brief description of MLS
statements: sensitivity, category, level, dominance, mlsconstrain, and
mlsvalidatetrans. At the end of every paragraph, we give the concrete syntax
used in SELinux.

Sensitivity. Sensitivities in an MLS model represent security clearance
for subjects or security classification for objects. The set of sensitivity state-
ments define the set of valid sensitivities in a particular SELinux system.
sensitivity id [ alias id set ];

Category. Categories expand an MLS model by making it possible to
represent different families of data associated with each sensitivity. For exam-
ple, categories allow us to make a distinction between Top Secret (sensitivity),
Nuclear (category) data, and Top Secret Political (another category) data.
category id [ alias id set ];

Level. MLS levels define legal combinations of sensitivities and category
sets. level sl : [ ca set ];

Dominance. MLS sensitivities are organized into a hierarchy; higher
sensitivities represent higher security clearances or higher security classifica-
tion. The first sensitivity in the dominance statement is assigned the lowest
position in the hierarchy; the last element is assigned the highest position.
dominance { sl1sl2...sln }

Mlsconstrain. This statement restricts access rights assigned in an SELinux
policy, based on the relationship between the security context of the subject
that requests access and the security context of the target object, exp, the class
of the target object, C, and the mode in which the subject wants to access the
object, P. Objects are classified into classes (filesystem,file,dir,. . . ); for each
class, a set of access modes is defined (read,write,create,. . . ). mlsconstrain C
P exp;
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The Boolean expression exp in the previous statement expresses the
constraint that the security contexts of the involved subject and object must
satisfy. exp supports the operators NOT, AND, and OR.
NOT (exp)
(exp) AND (exp)
(exp) OR (exp)
Since a MLS context includes user, role, type, and MLS range, exp supports
evaluation on these values, whether they are equivalent, not equivalent, one
dominates the other one, one is dominated by the other one, or they cannot
be compared (operators ==,!=,dom,domby,incomp, respectively). For example,
(t1==t2) tests whether the type in the security context of the subject is
equivalent to the type in the security context of the object. By definition,
numbers 1 and 2 associated to the field represent the subject and the object,
respectively. t means type, u means user, r means role, l means low mls level,
and h means high mls level.

Mlsvalidatetrans. This statement restricts the ability of a subject to change
the security context of a target object, according to relationships among the
new context, the old context and the security context, of the subject that
requests the change exp, and the class of the target objectC. mlsvalidatetrans
C exp;

The Boolean expression exp in the previous statement expresses the constraint
that the security contexts of the involved subject, object’s new context and
object’s old context must satisfy. The syntax is the same one presented
in the case of mlscontraint with one difference. Since mlsvalidatetrans
involves three different contexts, by definition numbers 1, 2, and 3 as-
sociated to security context fields are associated to object’s old context,
object’s new context, and subject, respectively. For example, (t1==t2) tests
whether the type in the old context is equivalent to the type in the new
context.

The following set of statements define a possible MLS setting. The rules
define sensitivities s0 to s3, the lattice over those elements, and the set of
legal categories and levels. We give an example of a constraint for controlling
the relabeling of files. The first constraint says that in order for a subject to
relabel a file, the file’s sensitivity level must be a single level (not a range)
(i.e., l2 = h2). The second constraint says that an object’s sensitivity level can
only be raised if the high level of the subject’s sensitivity level range (h1) high
level of an object’s sensitivity level range h2.

sensitivity s0; sensitivity s1; sensitivity s2; sensitivity s3;

dominance { s0 s1 s2 s3 }
category c0; category c1; category c2;

level s0:c0.c2;

level s1:c0.c2;

level s2:c0.c2;
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level s3:c0.c2;

mlsconstrain { file lnk file fifo file } { create relabelto } ( l2 eq h2 );

mlsconstrain { dir file lnk file chr file blk file } relabelto ( h1 dom h2

);

3.2.2 Semantics. In this section, we present the analytical model we de-
veloped to understand the meaning of a set of MLS statements. The following
paragraphs present the components of such a model.

This part of the section presents four operators to handle MLS statements:
name, classes, modes, and expr. name gets the name of a given statement,
classes gets the set of classes a statement applies to, modes gets the set of
modes a statement applies to, and expr gets the Boolean expression a state-
ment is based on. Not all the operators are defined for all the MLS statements;
classes and expr are defined only for mlsconstrain and mlsvalidatetrans, and
modes is defined only for mlsconstrain. Examples of the described operators
are provided in the following text.

name (sensitivity s1) = sensitivity
name (category c0) = category
name (level s1:c0,c1,c2) = level
name (dominance { s1,s2,s3,s4 }) = dominance
classes (mlsconstrain file {create relabelto} (l2 eq h2)) = {file}
modes (mlsconstrain file {create relabelto} (l2 eq h2)) = {create
relabelto}
expr(mlsconstrain file {create relabelto} (l2 eq h2)) = (l2 eq h2)

The operators classes and modes also apply to a Policy. In that case, they
return all the classes declared and all the modes in which objects may be
accessed regarding a given Policy, respectively.

The model also includes operators to get the components of a given security
context: getu, gett, getr, getl, and geth. They take a security context (u,r,t,(l,h)),
where the pair (l,h) represents an MLS range, and they return the components
of the tuple.

getu((u,r,t,(l,h))) = u getr((u,r,t,(l,h))) = r
gett((u,r,t,(l,h))) = t getl((u,r,t,(l,h))) = l
geth((u,r,t,(l,h))) = h

SELinux has a dominance rule that defines a total order over the MLS
sensitivities. When combined with category and level rules, a partial order is
defined. The partial ordering is always defined such that two levels can only be
compared (for dominance) when the category set of one is a subset of the other
(see the definition of dom and domby below for a precise definition). If there are
no category or level rules, the ordering of levels is always total.

dominance(sl1, sl2, ..., sln) ≡ induces a total order,�
over the elements sl1, sl2, ..., sln s.t. sl1 � sl2 � ... � sln.
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level(sl1 : ci1 , ..., cin, sl2 : c j1 , ..., c jn) ≡ induces a partial order,�
over the elements sl1 : ca1, sl2 : ca2, where

ca1 ∈ ℘({ci1 , ..., cin}), ca2 ∈ ℘({c j1 , ..., c jn}) s.t.

sl1 : ca1 � sl2 : ca2 iff sl1 � sl2 and ca1 ⊆ ca2.

The model includes operators to get the components of a given MLS level:
getsens and getcat. The following examples illustrate their use.
getsens(s1:c0,c1) = s1 and getcat(s1:c0,c1) = {c0,c1}

The model also includes operators to compare two MLS levels: ==, !=, dom,
domby, and incomp. The result of a comparison is based on the partial order
defined by the dominance statement for sensitivities and the set defined by the
categories associated to each level.

opl(==, l1, l2) = (l1 = l2)

opl(!=, l1, l2) = (l1 �= l2)

opl(dom, l1, l2) = (getsens(l2) � getsens(l1)) ∧ (getcat(l2) ⊆ getcat(l1))

opl(domby, l1, l2) = (getsens(l1) � getsens(l2)) ∧ (getcat(l1) ⊆ getcat(l2))

opl(incomp, l1, l2) = ¬(opl(dom, l1, l2)) ∧ ¬(opl(domby, l1, l2))

Dominance over roles is defined in a way that is analogous to the dominance
over levels, thus the operators dom, domby, and incomp also apply. Roles are
not directly related to MLS policies, but they are used to express some MLS
statements. Because of that, the meaning of roles is included in our framework.
Details are presented in the following text.

dominance(r1, r2, . . . , rn) ≡ induces a total order,�
over the elements r1, r2, . . . , rn s.t. r1 � r2 � ... � rn.

opr(==, r1, r2) = (r1 = r2)

opr(!=, r1, r2) = (r1 �= r2)

opr(dom, r1, r2) = (r2 � r1)

opr(domby, r1, r2) = (r1 � r2)

opr(incomp, r1, r2) = ¬(r1 � r2) ∧ ¬(r2 � r1)

We define an operator to generate the set of all valid ranges in a given Policy.
Some subjects and multilevel objects require access to multiple MLS levels;
SELinux makes this possible through MLS ranges, but not every range is
allowed.

ranges(Policy) = {(l1, l2) | (getsens(l1) � getsens(l2)) ∧ (getcat(l1) ⊆ getcat(l2))}
The definitions of the previous operators are straightforward. They serve pri-
marily to support the main definition, which consists of the operators γMLS

and γMLSvt. These operators determine the result of applying all relevant con-
straints to a particular subject, object, object class, and access mode. If the
result of applying all relevant constraints (a possibly empty set) is true, then
the result for the operator is true, otherwise it is false.
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Definition 3.1. γMLS detects and evaluates the MLS constraints that apply
when a subject is trying to access a given object. It returns TRUE if the set of
all mlsconstrain statements that are relevant to the given 4-tuple of subject,
object, class, and mode are FALSE when evaluated, or FALSE otherwise. In
other words, γMLS is true when the constraints relevant to the 4-tuple are
all satisfied. γMLS is vacuously true when there are no constraints for the
4-tuple.

γMLS(s, o, c, p) = ({stmt | stmt ∈ Policy, name(stmt) = mlsconstrain,

c ∈ classes(stmt), p ∈ modes(stmt), ‖ expr(stmt) ‖s,o = FALSE} = ∅)

Next, we present an inductive definition for the semantics of ‖ expr(stmt) ‖s,o

in γMLS. s represents the subject that is requesting the operation that initiates
the check of the constraint, and o is the object that s attempts to access. opt
represents any of the operators defined to compare MLS levels (i.e., ==, !=, dom,
domby, and incomp).

‖ not(exp) ‖s,o = ¬ (‖ exp ‖s,o )

‖ expa and expb ‖s,o =‖ expa ‖s,o ∧ ‖ expb ‖s,o

‖ expa or expb ‖s,o =‖ expa ‖s,o ∨ ‖ expb ‖s,o

‖ u1 == u2 ‖s,o = (getu(s) = getu(o))

‖ u1 != u2 ‖s,o = (getu(s) �= getu(o))

‖ r1 operator r2 ‖s,o = opr(operator, getr(s), getr(o))

‖ t1 == t2 ‖s,o = (gett(s) = gett(o))

‖ t1 != t2 ‖s,o = (gett(s) �= gett(o))

‖ l1 opt l2 ‖s,o = opl(opt, getl(s), getl(o))

‖ l1 opt h2 ‖s,o = opl(opt, getl(s), geth(o))

‖ h1 opt l2 ‖s,o = opl(opt, geth(s), getl(o))

‖ h1 opt h2 ‖s,o = opl(opt, geth(s), geth(o))

‖ l1 opt h1 ‖s,o = opl(opt, getl(s), geth(s))

‖ l2 opt h2 ‖s,o = opl(opt, getl(o), geth(o))

In addition, the values of the fields user, role, and type from the subject’s se-
curity context or the object’s security context may be tested against predefined
values.

‖ u1 == userset ‖s,o = (getu(s) ∈ userset)

‖ u1 != userset ‖s,o = (getu(s) �∈ userset)

The same operations may be evaluated for u2 (object’s user), r1 and t1
(subject’s role and type), and r2 and t2 (objects’s role and type), supported by
the operators getr and gett.
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‖ u2 == set ‖s,o = (getu(o) ∈ userset) ‖ u2 != set ‖s,o = (getu(o) �∈ userset)
‖ r1 == roleset ‖s,o = (getr(s) ∈ roleset) ‖ r2 == roleset ‖s,o = (getr(o) ∈ roleset)
‖ r1 != roleset ‖s,o = (getr(s) �∈ roleset) ‖ r2 != roleset ‖s,o = (getr(o) �∈ roleset)
‖ t1 == typeset ‖s,o = (gett(s) ∈ typeset) ‖ t2 == typeset ‖s,o = (gett(o) ∈ typeset)
‖ t1 != typeset ‖s,o = (gett(s) �∈ typeset) ‖ t2 != typeset ‖s,o = (gett(o) �∈ typeset)

Example 3.2. The following example shows the behavior of γMLS(s, o, c, p).
A user with MLS range s1-s2 has a file with MLS level s1, the user
tries to upgrade his file to s2. All of the rules that handle the access
modes required by an operation on the objects being operated on must be
checked. In this case, that requires checking three sets of rules involving
files: mlsconstrain rules for the access mode relabelto, mlsconstrain rules
for the access mode, and relabelfrom and the rules for mlsvalidatetrans on
files.
Step 1: relabelto rules. The following mlsconstrain rules are checked when
accessing a file in mode relabelto

mlsconstrain { file lnk file fifo file } { create relabelto }
( l2 eq h2 );

mlsconstrain { dir file lnk file chr file blk file } relabelto
( h1 dom h2 );

The evaluation of these constraints gives:

γMLS( staff u:staff r:staff t:s1-s2:c0.c2,

staff u:object r:user home dir t:s2, file, relabelto) = TRUE

Step 2: relabel from rules. The following mlsconstrain rule is also checked.

mlsconstrain { file lnk file fifo file }
{ write create setattr relabelfrom rename }
( (l1 eq l2) or
((t1 == mlsfilewritetoclr) and (h1 dom l2)
and (l1 domby l2)) or
(t1 == mlsfilewrite) or
(t2 == mlstrustedobject)
);

The evaluation of this constraint gives:

γMLS( staff u:staff r:staff t:s1-s2:c0.c2,

staff u:object r:user home dir t:s1, file, relabelfrom) = TRUE

Step 3: mlsvalidatetrans rules. The evaluation of mlsvalidatetrans rules
depends on γMLSvt. Therefore, we present that definition in the next paragraphs
and complete the test afterward.

Definition 3.3. γMLSvt detects the result of the constraints that apply when
a subject is trying to change the MLS level assigned to a given object. Like
γMLS, γMLSvt is true only when all the mlsvalidatetrans constraints relevant
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to the 4-tuple (o1, o2, s, c) are satisfied and vacuously true if there are no
mlsvalidatetrans constraints for the 4-tuple.

γMLSvt(o1, o2, s, c) = ({stmt | stmt ∈ Policy, name(stmt) = mlsvalidatetrans,

c ∈ classes(stmt), ‖ expr(stmt) ‖o1,o2 ,s = FALSE} = ∅)

Next, we present an inductive definition for the semantics of ‖ expr(stmt) ‖o1

,o2 ,s in γMLSvt. These definitions look similar to the ones presented for
mlsconstrain, though an important difference is that mlsvalidatetrans takes
three inputs instead of two. The input o1 is the old security context, o2 is the
new security context, and s is the security context of the process that requests
the transition. In the Boolean expression, elements indexed with 1 (u1,r1,t1)
make reference to o1, elements indexed with 2 (u2,r2,t2) make reference to
o2, and elements indexed with 3 (u3,r3,t3) make reference to s.

‖ not(exp) ‖o1,o2 ,s = ¬ (‖ exp ‖o1,o2 ,s )

‖ expa and expb ‖o1,o2 ,s =‖ expa ‖o1,o2 ,s ∧ ‖ expb ‖o1,o2 ,s

‖ expa or expb ‖o1,o2 ,s =‖ expa ‖o1,o2 ,s ∨ ‖ expb ‖o1,o2 ,s

Next, we define the meaning of Boolean expressions for mlsvalidatetrans.

‖ u1 == u2 ‖o1,o2 ,s = (getu(o1) = getu(o2))

‖ u1 == u2 ‖o1,o2 ,s = (getu(o1) = getu(o2))

‖ u1 != u2 ‖o1,o2 ,s = (getu(o1) �= getu(o2))

‖ r1 opt r2 ‖o1,o2 ,s = opr(opt, getr(o1), getr(o2))

‖ t1 == t2 ‖o1,o2 ,s = (gett(o1) = gett(o2))

‖ t1 != t2 ‖o1,o2 ,s = (gett(o1) �= gett(o2))

‖ l1 opt l2 ‖o1,o2 ,s = opl(opt, getl(o1), getl(o2))

‖ l1 opt h2 ‖o1,o2 ,s = opl(opt, getl(o1), geth(o2))

‖ h1 opt l2 ‖o1,o2 ,s = opl(opt, geth(o1), getl(o2))

‖ h1 opt h2 ‖o1,o2 ,s = opl(opt, geth(o1), geth(o2))

‖ l1 opt h1 ‖o1,o2 ,s = opl(opt, getl(o1), geth(o1))

‖ l2 opt h2 ‖o1,o2 ,s = opl(opt, getl(o2), geth(o2))

Notice that, as previously indicated, elements indexed with 1 are linked to
o1 and elements indexed with 2 are linked to o2. Also, opt represents any of the
operators define to compare roles and MLS levels.

Similar to the mlsconstrain semantics, the values of the fields user, role,
and type from the involved security contexts may be tested against predefined
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values.

‖ u1 == userset ‖o1,o2 ,s = (getu(o1) ∈ userset)

‖ u1 ==userset ‖o1,o2 ,s = (getu(o1) ∈ userset)

‖ u2 ==userset ‖o1,o2 ,s = (getu(o2) ∈ userset)

‖ u1 !=userset ‖o1,o2 ,s = (getu(o1) �∈ userset)

‖ u2 !=userset ‖o1,o2 ,s = (getu(o2) �∈ userset)

‖ r1 ==roleset ‖o1,o2 ,s = (getr(o1) ∈ roleset)

‖ r2 ==roleset ‖o1,o2 ,s = (getr(o2) ∈ roleset)

‖ r1 !=roleset ‖o1,o2 ,s = (getr(o1) �∈ roleset)

‖ r2 !=roleset ‖o1,o2 ,s = (getr(o2) �∈ roleset)

‖ t1 ==typeset ‖o1,o2 ,s = (gett(o1) ∈ typeset)

‖ t2 ==typeset ‖o1,o2 ,s = (gett(o2) ∈ typeset)

‖ t1 !=typeset ‖o1,o2 ,s = (gett(o1) �∈ typeset)

‖ t2 !=typeset ‖o1,o2 ,s = (gett(o2) �∈ typeset)

Since mlsvalidatetrans involves a third security context, there are addi-
tional operators to handle it. The following paragraph presents the ways in
which this security context may be tested.

‖ u3 == userset ‖o1,o2 ,s = (getu(s) ∈ userset)

‖ r3 == roleset ‖o1,o2 ,s = (getr(s) ∈ roleset)

‖ t3 == typeset ‖o1,o2 ,s = (gett(s) ∈ typeset)

‖ u3 != userset ‖o1,o2 ,s = (getu(s) �∈ userset)

‖ r3 != roleset ‖o1,o2 ,s = (getr(s) �∈ roleset)

‖ t3 != typeset ‖o1,o2 ,s = (gett(s) �∈ typeset)

Example 3.4. Evaluating the pending step in the previous example. A
user with MLS range s1-s2 has a file with MLS level s1, the user tries to
upgrade his file to s2. We already showed the results for γMLS(s, o, c, p). Now
we show the result of γMLSvt(o1, o2, s, c). In the current policy, there is only one
mlsvalidatetrans statement. It says that special privileges are required to
relabel a file object.

# the file upgrade downgrade rule
mlsvalidatetrans
{ dir file lnk file chr file blk file sock file fifo file }
((( l1 eq l2 ) or
(( t3 == mlsfileupgrade ) and ( l1 domby l2 )) or
(( t3 == mlsfiledowngrade ) and ( l1 dom l2 )) or
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(( t3 == mlsfiledowngrade ) and ( l1 incomp l2 ))) and
(( h1 eq h2 ) or
(( t3 == mlsfileupgrade ) and ( h1 domby h2 )) or
(( t3 == mlsfiledowngrade ) and ( h1 dom h2 )) or
(( t3 == mlsfiledowngrade ) and ( h1 incomp h2 ))));

This is the result:

γMLSvt( staff u:object r:user home dir t:s1,

staff u:object r:user home dir t:s2,

staff u:staff r:staff t:s1-s2:c0.c2, file) = FALSE

Although the two γMLS(s, o, c, p) checks passed, the relabeling is stopped by
the failure of the γMLSvt(o1, o2, s, c) check. Special privileges are required for a
subject to relabel the MLS level on a file.

The formal model described in this section offers a logical framework to
analyze MLS policies. Our goal was that this work should be complementary to
existing approaches for formalizing and analyzing SELinux TE policy. In this
regard, we look back at two other works for guidance. One is that it should
follow the example of the only available semantics provided for the TE policy
model given by Zanin and Mancini [2004] in order that it could eventually be
combined with that semantics. Second, following Sarna-Starosta and Stoller
[2004], we believe it is natural to analyze the rules in a logic-based framework.

Indeed, the size and scope of the policy inhibits doing any realistic analysis
by hand, however, so we provide an automated tool to assist the analyst. We call
this tool, PALMS. It implements this model in the logic programming language,
XSB Prolog. PALMS is presented in Section 5.

4. ANALYSIS

Understanding the semantics of the SELinux MLS policy is useful for various
purposes. For example, for a given policy, it is important, to be able to determine
whether all data classes and modes are constrained by the policy. Determining
whether the policy faithfully implements basic information-flow goals, such as
the simple security condition and �-property, is also important. There are also
some practical systems reasons for analyzing the information-flow properties of
a given policy. In distributed systems, a system service may need to determine
whether two MLS policies are compliant [Jaeger et al. 2006]. In cases in which
a MAC-based OS needs to trust an application to handle multiple levels of
data, it is important that the OS can determine whether the application’s
information-flow policy complies with its own.

Policy compliance is important in a distributed system when labels are being
communicated over sockets and an SELinux machine wants to be certain that
the machine to which it is sending its data will be compliant with its own policy.
For example, when machine A connects to machine B over a socket with MLS
label s2, will machine B honor the policy of machine A and not leak data passed
through that socket to a lower level, such as s1?
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Another application of this analysis could be for applications running in
a particular OS. In some cases, it is necessary for an application to handle
multiple levels of data inputs and outputs. If the application’s flows obey a
particular security lattice, can those flows be tested for compliance against the
host OS’s MLS policy?

Throughout this section, we refer to the SELinux MLS reference policy,
meaning the policy that is distributed with latest versions of SELinux. That
MLS policy contains about 350 lines of policy statements ranging over 40 dif-
ferent kernel object classes, which can be accessed in 50 different modes. Thus,
it is not feasible to evaluate by hand the functions we give in this section. For
this reason, we have implemented these functions in an analyzer presented in
the next section.

In this section, we use the formal semantics defined in Section 3 to demon-
strate how we can determine compliance of one policy with another policy. We
give a formal presentation here, which we have implemented in Prolog. This
section serves as both a formal description and also, because the Prolog code
follows the formalism so closely, as an introduction to the implementation.
First, we give some general definitions of information flows and functions that
operate on them, and then we give some algorithms for how we instantiate
these functions for SELinux MLS policy.

4.1 Finding All Information Flows

Definition 4.1 (Information-Flow Policy). A policy consists of a set of secu-
rity levels arranged in a lattice with partial order � and a set of statements
determining each subject’s read/write permissions for a given object based on
the security levels of the subject and object (and possibly also on other factors
such as the class of the object).

Consider a typical military MLS information flow policy with no categories.
In such a policy, there are four security levels. Typically, military policies have
permissions that implement the simple security condition (ssc) and �-property.

Example 4.2 (Military MLS policy).

levels(Mil) = {unclassi f ied(UC), conf idential(CO), secret(S), topsecret(TS)}
where UC � CO � S � TS and reads and writes obey the following properties:
Simple security condition: For a subject labeled ls and an object labeled lo,
the subject can read from the object if and only if lo � ls.
�-property: For a subject labeled ls and an object labeled lo, the subject can
write to the object if and only if ls � lo.

We define an information flow in the following way.

Definition 4.3 (Information Flow). An information flow from l1 to l2 exists
in a system when a single process can read from a resource labeled with l1 and
write to a resource labeled with l2.

Example 4.4. For the military policy given in Example 4.2, there is an
information flow (UC, S), because for a subject at level CO, there is a valid read
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of an object at level UC and a valid write of that object out to S. (Note: There
are also other ways to generate this information flow, with a subject at level
UC or S, but not at TS.)

Next, we define a function that is important for proving compliance,
ALLFLOWS. Here, we give only an informal definition of what this function
should do. Later, we will instantiate it for the Mil policy and the SELinux
policy.

Definition 4.5 (AllFlows). The function

AllFlows : Policy → ℘(levels(Policy) × levels(Policy))

returns all information flows allowed in a given Policy with levels,
levels(Policy).

To instantiate this function for the Mil policy, we must find all information
flows, such that the ssc and the �-property are preserved.

Example 4.6 (AllFlowsMil).

AllFlowsMil = {(l1, l2) : l1, l2 ∈ levels(Mil) ∧ ∃ls ∈ levels(Mil).l1 � ls � l2

which would give the set

AllFlowsMil = {(UC,UC), (UC, CO), (UC, S), (UC, TS), (CO, CO), (CO, S),

(CO, TS), (S, S), (S, TS), (TS, TS)}.

4.2 Comparing Policies

In addition to determining the information flows that are allowed by a given
policy, it can also be useful to compare MLS policies. In a distributed system, for
example, it is important to know how the policies of two OSs compare, before
they start exchanging labeled data.

When comparing two information-flow policies, we require a mapping from
the levels in one policy to the levels in the other. The mapping need not be
defined for every level, but it must map the levels in policy A to a subset of the
levels in Policy B. All levels that are not shared between policy A and policy B
are mapped to ⊥ (undefined). In the following, we define both the renaming of
a single level and the renaming of a flow (overloading the name rename).

Definition 4.7 (rename).

renameA→B : levels(A) → (levels(B) + ⊥)

renameA→B : levels(A) × levels(A) → (levels(B) + ⊥) × (levels(B) + ⊥)

Definition 4.8 (Shared Levels). A level l is said to be shared between two
policies A and B if and only if renameA→B(l) �= ⊥

Compliance can then be defined for two policies by comparing the flows
allowed in one policy with the flows allowed in the other. Specifically, we are
interested in the flows between levels shared by the two policies.
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Definition 4.9 (Compliance). An information-flow policy A is said to be
compliant with an information-flow policy B, if and only if

Flows′
A ⊆ FlowsB

where

FlowsA = AllFlowsA(A)

FlowsB = AllFlowsB(B)

Flows′
A = renameA→B(FlowsA)

Although the definition of compliance implies that all flows in both policies
should be determined, in order to determine whether the flows in policy A are a
subset of policy B, only the flows of policy A need to be exhaustively determined.
Then, each flow allowed by A can be checked to see if it is also allowed in policy
B. This can lead to some performance improvement if policy B is significantly
larger than policy A (as in the case when B is an OS policy and A is only an
application policy).

4.3 Information Flows for SELinux MLS

When implementing these information-flow functions for SELinux policy, we
must make some adjustments. The first consideration is that SELinux pol-
icy parameterizes MLS access rules based on object class (c), as described in
Section 3. Thus, an information flow can occur using multiple classes, such as
by reading from a public file and then writing to a secret ipc. This requires us
to define information flows by iterating over all possible object classes.

The second consideration is that the policy also parameterizes accesses based
on the possible modes for that class. So, continuing the previous example,
information could be read from a public file using the getattribute mode and
written to a secret ipc using the open mode. We follow other systems [Guttman
et al. 2005; Sarna-Starosta and Stoller 2004] in grouping modes into “read-
like” and “write-like” modes. Some modes fall into both categories, such as dir
create which certainly is “write-like,” but is also “read-like” because it will
reveal whether the directory already existed. We extend our formal semantics
to include the functions, readlike(p) and writelike(p), which return true if the
mode p is read-like or write-like, respectively.

The algorithm AllFlows can be instantiated for SELinux MLS policy by us-
ing the constraint γMLS and accessors, classes, modes, ranges from our formal
semantics given in Section 3. The function is divided into two checks corre-
sponding to two different ways that information flows can occur. The first way
is by reading (in some mode) from some class at one level and writing (in some
mode) to some class at another level. The second way is by simply relabeling
an object from one level to another level.

Although we are not primarily concerned about general security contexts
(including user, role, and type) for our analysis of the MLS policy, γMLS does
require that the full security context of the subject and object be provided. This
is because, generally speaking, the subject might have some special privileges
that affect the MLS constraints. For this analysis, we are concerned with the
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most basic scenario, so we fix our subject and object to have a vanilla type t with
no extra privileges and to have insignificant user and role fields. For a more
thorough analysis, our MLS analysis could be combined with existing analy-
ses [Tresys 2010; Jaeger et al. 2003; Sarna-Starosta and Stoller 2004; Guttman
et al. 2005] that consider information flows introduced by type enforcement.
The orthogonality of TE policies from MLS policies, however, facilitates the ap-
proach we have taken. The only additional interaction that could be considered
is when a type transition might move the subject into a state in which it has
some additional MLS privileges. We leave the consideration of this fringe case
to future work. Thus, the set of flows can be found by generating the union of
the sets as follows.

Algorithm 4.10. [AllFlowsSELinux]

AllFlowsSELinux(Policy) = {(l1, l2) :
∃c1, c2 ∈ classes(Policy).∃p1, p2 ∈ modes(Policy).∃ls ∈ ranges(Policy).
readlike(p1) ∧ writelike(p2) ∧ s = (u, r, t, ls) ∧ o1 = (sys, obj, t, l1) ∧
o2 = (sys, obj, t, l2) ∧ γMLS(s, o1, c1, p1) ∧ γMLS(s, o2, c2, p2)}

⋃
{(l1, l2) : ∃c ∈ classes(Policy).∃ls ∈ ranges(Policy).

s = (u, r, t, ls) ∧ o1 = (sys, obj, t, l1) ∧ o2 = (sys, obj, t, l2) ∧
γMLS(s, o1, c, relabelfrom) ∧ γMLS(s, o2, c, relabelto) ∧ γMLSvt(o1, o2, s, c)}

Note that the sys user and obj role found in the object’s security context in
Algorithm 4.10 do not add anything to the analysis. They are just needed as
placeholders for any object’s user and role. SELinux always has system u for
and object’s user name and object r for its role. We mirror this in the analysis
rather than having a special security context for objects.

In the next sections, we describe the Prolog code that implements the func-
tions presented in this section. We follow that with examples that evaluate
whether the SELinux reference MLS policy meets specific properties or not.

5. IMPLEMENTATION

We implemented an analysis framework, called PALMS, based on the analyti-
cal model presented in Section 3.2. This framework allows us to evaluate the
MLS properties for a real SELinux policy. We implemented this framework
by encoding the logic into Prolog, using the XSB Prolog implementation. Al-
though the tabled resolution provided by XSB was not essential, it does serve
to improve performance. Using Prolog was beneficial for multiple reasons. One
reason is that the program encoding is directly analogous to the logical model
presented in Section 4, making it trivial to determine the correctness of the
implementation. Another is the simplicity of the Prolog code. Prolog is ideal for
implementing search algorithms, because backtracking and unification are in-
herent to the language. Thus, merely expressing the rulebase for the SELinux
policy along with some simple description of the searches is enough to imple-
ment the analysis. Only 20 lines of code are required to implement the functions
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described in Section 4 (the code for implementing the semantics in Section 3 is
longer, about 150 lines, but need not be changed to vary the queries). Thus, it
is easy to make slight modifications to the code to check different properties of
the policy. Finally, because the analyzer should only be run infrequently, time
is not a limiting factor (although, in fact, XSB Prolog is highly optimized and
the time is not prohibitive for the kinds of queries discussed in Section 4).

5.1 Analytical Model

Implementing the MLS semantics in Section 3 in Prolog is straightforward. By
way of background, variables in Prolog that begin with capital letters denote
logic variables. These variables are gradually instantiated through unification
as Prolog processes a query. For cases in which the variable could be instanti-
ated in different ways, Prolog inserts a backtracking point and tries all possi-
bilities. In this way, for example, we can implement the ranges function from
Section 3 by using the predicate valid mls. The predicate valid mls(L) is true
when L is bound to any valid MLS range.

We encode MLS labels as a 4-tuple containing the low-sensitivity level and
low-category set followed by the high-sensitivity level and the high-category
set. Thus, to denote the label s0-s3:c0.c1 we write the following.

mls(s0,[],s3,[c0,c1])

To expand this into a full security context, we use the functor sc, giving,

sc(system u,object r,user t,mls(s0,[],s3,[c0,c1]))

This particular example describes an object labeled with the type user t and
the MLS label given earlier.

The AllFlows function follows the definition presented in Section 4, with
the slight modification that it calls an auxiliary predicate hasFlows to find a
single flow and uses backtracking to find all possible flows. The code is given
in Figure 1.

5.2 SELinux MLS Policy

Since we want to analyze the MLS features of any SELinux policy and we
implemented our analysis engine in XSB Prolog, we needed a mechanism to
translate a SELinux policy into Prolog statements. We implemented a parser
based on Flex and Bison to perform this task. The grammar for SELinux rules
is provided as part of the source code of one of the utilities provided to compile
an SELinux policy into its binary representation so it can be loaded into the
kernel afterward.

Our parser takes a SELinux policy file named policy.conf and rewrites pol-
icy rules into Prolog statements according to the format we define per case.
Although we are interested only in the MLS rules, the parser also translates
other policy rules that are involved in the analysis; rules such as definition of
classes and access permissions per class.
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Fig. 1. The Prolog code for finding all information flows in a given SELinux policy.

We run PALMS on a machine with the following characteristics: CPU Intel
Pentium 2.8GHz, 1GB Memory, OS Linux 2.6.22. To collect execution times,
we used the profiling utilities provided by XSB. Running the analysis involves
two phases: loading the module of Prolog rules and running a specific query
(e.g., to test a single instance of compliance). The load time is reduced by
compiling and caching the initial load. The XSB Prolog engine takes an average
of 161.99 seconds to load our Prolog representation of the SELinux reference
policy with 282,100 lines. This policy is generated from the reference policy,
a base SELinux policy that can be customized to create other policies. The
initial time of loading is reduced in following loads, XSB takes an average of
79.41 seconds to execute the same operation in later runs. Running the query
that generates the set of information flows allowed in the system takes an
average of 0.004 second.

While the load times are quite long and encourage preloading the rules for
anticipated tests, the query times are quite reasonable. Furthermore, we expect
that the SELinux policy is on the high end of policy sizes we would analyze.
Smaller policies, like for logrotate, load much more quickly. The logrotate policy
only takes 0.068 seconds to load the first time and 0.064 seconds to load every
successive time (after the state has been cached to the disk).

6. PRACTICAL APPLICATIONS

Useful applications of our analyzer are policy analysis and compliance evalu-
ation. For policy analysis, we can test whether a policy meets a given set of
properties. For compliance evaluation, we can test if given two policies, one is
compliant with the other one.
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6.1 Policy Analysis

Here, we give an example that shows that the current reference policy for MLS
meets the requirements of the �-property and simple security property. We do
this by limiting the SELinux policy slightly and showing it complies with the
military MLS policy given in Example 4.2.1 Since this military policy is defined
according to the ssc and �-property, if the SELinux policy is compliant with it,
we have, by implication, that it is compliant with these properties.

For our analysis, we use all the constraint rules from the reference policy,
but for clarity of presentation, we modify the available levels slightly. While
the reference policy has 16 sensitivity levels, we reduce this to the four military
levels. Also, for simplicity of presentation, we ignore category sets (note that
our analyzer handles both of these correctly). A more important consideration
is that the security properties we are interested in verifying do not consider
MLS ranges. We can still carry out the compliance check if we limit the analyzer
to check only single levels.

To summarize, we use the following renaming predicate

rename(s0,UC).
rename(s1,CO).
rename(s2,S).
rename(s3,TS).

Finally, we can run all flows to get all possible flows in the SELinux policy,
as shown in the following sample XSB execution.

?- all flows(LSet).
LSet=[(s2,s3),(s1,s3),(s0,s3),(s1,s2),(s0,s2),
(s0,s1),(s3,s3),(s2,s2),(s1,s1),(s0,s0)]

After renaming the flows given in LSet and reordering them, we can see that
the set is equal to AllFlowsMil, as show in Example 4.6.

In building the analyzer, we found it useful for analyzing SELinux policy
in other ways as well. As one example, it is not easy to tell by inspection that
the constraint rules for the MLS policy cover all possible object classes and
access modes, and since the policy specifies a default-allow, this is an especially
critical property. In fact, as we ran our analyzer, we discovered some strange
flows (e.g., from unclassified to top secret) allowed by the policy. Isolating these
flows, we reran the analyzer to recover how these flows took place and dis-
covered they were enabled through such write-channels as socket/open and
process/sigchld. Upon closer inspection, we discovered in comments that the
makers of the SELinux policy intended for these permissions to be ignored. Fur-
ther inspection revealed that they are coupled with write permissions that are
not left unconstrained. Had there been other classes/modes left unconstrained,
however, our analyzer would have caught them.

1This limitation is only for demonstration purposes. Using all 16 sensitivity levels and all category
sets only increases the analysis time, not the fundamental result.
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6.2 Compliance Evaluation

Another important use for our policy analyzer is in determining whether an
application’s security policy is in compliance with the security policy of the OS
in which it will be executed. This is especially important when an application
needs access to data with multiple security levels and the OS must, therefore,
entrust the application with special privileges. It is important in this case
that the OS can guarantee the application will not abuse those privileges by
violating the OS’s security policy.

In general, software security policy is not defined in terms of information-
flow policy, and when applications require special privileges to handle data
with multiple security levels, they are granted without any automatic policy
certification. Fortunately, new language tools are emerging that facilitate such
strong guarantees of security. Namely, applications written in security-typed
languages [Sabelfeld and Myers 2003], such as Jif [Myers 1999], tag variables
with security labels (designating flow policies) and the compiler will gener-
ate object code only so long as it can guarantee the code will never violate
its information-flow policy. Any violations cause compiler errors that the pro-
gramer must fix. In light of this new technology, an application’s security policy
can be checked, before granting special privileges, to be sure it will not violate
the OS’s security policy.

In this section, we show how to verify compliance between a security policy
written for a Jif application and an OS’s SELinux MLS policy. We then give an
example using a trusted system utility logrotate. In a recent work, we built
an automated framework that takes advantage of our compliance analysis to
serve this end [Hicks et al. 2007].

6.2.1 Jif Information Flows. The most mature security-typed language
now in existence is Jif (Java information flow) [Myers 1999], an extension of
Java that enables the association of security labels with program variables. Jif
enforces a lattice policy where information in a variable with security label �1

is allowed to flow to a variable with security label �2, only if ell2 is equal to or
dominates �2 in the lattice. For example, in a military setting, information in
�1 may flow to �2 if �2 is Top Secret and �1 is Secret. The Jif compiler checks
a given program and generates object code only if all the information flows
enabled by the program meet the security requirements established in a Jif
policy (i.e., data may never flow to unauthorized variables).

6.2.2 Jif-SELinux Compliance Problem. Mandatory access controls im-
plemented in SELinux allow the OS to control the security characteristics and
class of resources an application has access to. However, in several cases, ap-
plications require access to data with multiple security labels in order to work
in a proper way. An e-mail client, for example, needs access to all the secu-
rity levels associated with a given user. A trusted system utility may need to
operate on log files or configuration files associated with many different se-
curity levels. In general, servers, client software, and high-integrity programs
with low-integrity inputs such as network-facing daemons may all require such
privileges.
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Fig. 2. Information flows enabled by SELinux versus flows enabled by a Jif application. The Jif
compiler guarantees that flows from p1 to p2 and from p2 to p3 are allowed only if p3 dominates
p2 and p2 dominates p1 in a given Jif policy. The question is whether a flow from s1 to s2 is allowed
in a given SELinux policy.

While the OS enforces policies over applications at the granularity of inputs
and outputs, it cannot trace how information is handled within the application
domain. Therefore, applications allowed to access data with multiple security
levels may leak that data contrary to system policy. Security-typed languages
address this problem by making guarantees about the security policy that the
application enforces.

The problem becomes a problem of compliance: While Jif enforces one se-
curity policy, SELinux enforces another security policy. Since the policies are
independently developed the relationship between those policies is uncertain, a
priori. We want to automatically check whether a Jif policy is compliant with an
SELinux policy in order to prove that the application enforces system security
requirements.

Figure 2 illustrates the compliance problem. SELinux controls access to
inputs and outputs, but within the program, such resources may be managed
in multiple ways. In the example, the resources i and j in the OS are accessed
by the application. The Jif policy converts the OS levels s1 to p1 and s2 to
p3. For its part, Jif guarantees that application flows are allowed only if p3
dominates p2 and p2 dominates p1 in the application lattice. In this case, this
allows a flow from OS resource i to OS resource j. Consequently, the application
flow from p1 to p3 should only be allowed so long as the OS flow from i to j is
allowed. In other words, this application, with the policy that principals p1 �
p3 and {p1 �→ s1, p3 �→ s2}, should only be allowed to execute if the OS policy
allows flows from s1 to s2.

6.2.3 Analyzing Jif Policy in PALMS. Jif policy consists of a principal
hierarchy and the Jif policy model enforces the �-property and simple security
property over that hierarchy [Hicks et al. 2006]. The hierarchy defines a partial
order on all the principals used in a particular application. The Jif compiler
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Fig. 3. Compliance analysis for Jif policy and SELinux MLS OS policy.

ensures that a program will never introduce information flows contrary to that
policy.

The steps for using PALMS to determine compliance between a Jif policy
and an SELinux MLS OS policy are given in Figure 3 and described in the
following text.

(1) Converting Jif policy to SELinux Policy. The first step in converting Jif
policy to SELinux policy is to create an equivalent set of SELinux principals to
match with Jif principals. Creating an equivalent hierarchy in SELinux MLS
policy would seem straightforward. If the Jif policy has some principals, p1,
p2, p3, and p1�p2�p3, then we could create an SELinux policy in which s0,
s1, and s2 correspond to p1, p2, and p3, respectively. The problem comes when
the Jif policy principal hierarchy is partially ordered, for example, p1�p3 and
p2�p3, but p1 and p2 are incomparable. To handle this, we automatically map
Jif principals to category sets, since category sets are partially ordered. In this
case, we could use the map:
p1 �→ s0:c0
p2 �→ s0:c1
p3 �→ s0:c0,c1

The next step in the conversion is creating the SELinux MLS rules to corre-
spond with Jif ’s no read-up, no write-down enforcement. Providing these rules
is mechanical and the same for any Jif policy. A more specialized conversion
could account for specific ways that Jif interacts with the OS (via files, sockets,
etc.) and develop an SELinux policy to correspond to a least-privilege applica-
tion policy. Not having this will not hamper our basic goal of determining policy
compliance, however, so we leave this to future work.

The last step in the conversion process is preparing for the compliance anal-
ysis by creating a rename function. As described in Algorithm 4.10, to compare
flows, we need to rename principals in the application policy such that they
correspond to security levels in the OS’s SELinux policy. As some applica-
tion principals may be entirely internal, not every principal will be defined
in rename. In those cases, rename will return ⊥. In other cases, the Jif policy
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must clarify how it will map internal (application) principals to external (OS)
security levels.

(2) Parsing SELinux Policy. Once the Jif policy has been converted into
SELinux policy, it can be parsed into a Prolog encoding of the rules in the same
way as the OS policy, as described in Section 5.

(3) Getting Application Flows. Once the Jif policy has been converted into
the Prolog encoding of SELinux policy rules and the rename function has been
created, the PALMS analysis may be conducted on the two sets of policy rules.
Because we are seeking to determine whether the application policy is compli-
ant with the OS policy, a slight optimization can be used. Rather than deter-
mining all possible flows in the OS policy, we can limit the analysis to flows
that begin or end with security levels that might be used in the application.
Thus, PALMS first finds all the application flows.

(4) Checking Against OS Flows. Lastly, the application’s flows are passed
through the rename function, then compared against the OS flows. The rename
function will remove all application flows including principals that are only
internal to the application. Then, for each flow, it can be checked against the
OS’s policy to see if it is allowed. If every flow in the application policy is also
allowed in the OS policy, then we have compliance. Otherwise, the flows which
are in violation of the OS policy can be displayed for the user.

6.2.4 Example: logrotate. This section illustrates the use of the presented
platform to evaluate compliance for logrotate. logrotate is an application
that handles log files; it allows automatic rotation, compression, removal, and
mailing of log files. This application requires access to files of various security
labels, since log file labels depend on the characteristics of the applications that
generates them and data they store. We implemented a simplified version of
this application in Jif and developed a realistic policy for it. We test this policy
against the SELinux reference MLS policy for compliance.

A sample, reasonable application policy is given in Figure 4. An overall goal
of this policy is to ensure the higher-security logs never leak into lower-security
logs and that no logs leak information into config files or state files. Config files
and states files may have information flowing back and forth between them.
When we deploy this application, we must establish a mapping between (some)
Jif principals and the OS security levels. This defines the rename function. Here,
the mapping makes the Jif application policy stricter than the SELinux OS
policy, as it collapses multiple application principals into a single OS security
level. For example, the application will have no flows from netinfo log into
ftp log, but this would be allowed in the OS, since they are both at security
level s0.c0.

Another noteworthy characteristic of this policy, is that there is one principal
that is strictly internal to the application, logP. None of the flows that start or
finish at this principal need to be considered, because they will not correspond
to flows in the OS.

After converting our Jif logrotate policy into SELinux rules, we have the
following mapping of Jif principals to SELinux MLS categories. The PALMS
analysis then generates the set of all flows between these principals. After
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Fig. 4. A policy diagram for logrotate. In this case, the Jif policy is more constrained than the
SELinux policy. The rename function is given as a mapping of Jif principals to SELinux OS security
levels.

calling rename, the flows beginning or ending with s0:c0.c2 are removed (since
s0:c0.c2 �→ ⊥). Then, each remaining flow in the set is checked against the
flows in the OS policy with the positive result that there is compliance (in fact,
there are flows between these principals in the OS that would not be allowed
in the application policy).

s0:c0 <-> public

s0:c0,c1 <-> config

s0:c0,c1 <-> state

s0:c0.c2 <-> logP

s0:c0.c3 <-> netinfo log

s0:c0.c2,c4 <-> ftp log

s0:c0.c4 <-> mail log

s0:c0.c5 <-> system log

7. CONCLUSION

In this article, we have given a formal semantics for the MLS policy in
the SELinux OS. We establish a formal concept of compliance between two
information-flow policies and show how we could use this formalism to prove
compliance between the MLS portion of SELinux and another information-flow
policy. We developed an analyzer in XSB Prolog that implements our formalism
and automates the finding of information flows for SELinux. Furthermore, we
show some application of our analysis. We use our analyzer to prove compliance
of the SELinux reference policy with the simple security condition and the �-
property. We also use our analyzer to determine whether an application policy
for a security-typed language is compliant with an SELinux MLS OS policy.

Several items remain for future work. Particularly important is a more care-
ful analysis of the interaction effects between TE policy and the MLS policy
in SELinux. As noted earlier, this interaction is limited to some very specific
cases, but a combination of TE analysis with our MLS analysis would pro-
duce some important results for full SELinux system security management.
Due to the similarity of the frameworks, combining our analysis with that of
Sarna-Starosta and Stoller [2004] should be particularly fruitful.
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Another important topic of future work involves a more careful analysis of
the MLS policy in light of the special privileges for declassification that can
be introduced for trusted subjects and trusted objects. These privileges include
attributes in the existing MLS reference policy, such as mlsfilereadtoclr and
mlsfilewritetoclr, which introduce additional information flows.

APPENDIX

SELinux MLS Grammar

This section presents the Backus Naur Form of part of the SELinux policy
language; the part that enables the definition of MLS statements:

mls : sensitivities dominance

opt categories levels mlspolicy

;
sensitivities : [sensitivities] sensitivity def

;
sensitivity def : SENSITIVITY identifier [alias def] ‘;’

;
alias def : ALIAS names

;
dominance : DOMINANCE identifier

| DOMINANCE ‘{’ identifier list ‘}’
;

opt categories : categories

|
;

categories : [categories] category def

;
category def : CATEGORY identifier [alias def] ‘;’

;
levels : [levels] level def

;
level def : LEVEL identifier [‘:’ id comma list] ‘;’

;
mlspolicy : [mlspolicy] mlspolicy decl

;
mlspolicy decl : mlsconstraint def

| mlsvalidatetrans def

;
mlsconstraint def : MLSCONSTRAIN names names cexpr ‘;’

;
mlsvalidatetrans def : MLSVALIDATETRANS names cexpr ‘;’

;
cexpr : ‘(’cexpr‘)’

| NOT cexpr | cexpr AND cexpr
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| cexpr OR cexpr | cexpr prim

;
cexpr prim : U1 op U2

| R1 role mls op R2

| T1 op T2

| U1 op names | U2 op names | U3 op names

| R1 op names | R2 op names | R3 op names

| T1 op names | T2 op names | T3 op names

| SOURCE ROLE names | TARGET ROLE names

| ROLE role mls op

| SOURCE TYPE names | TARGET TYPE names

| L1 role mls op L2 | L1 role mls op H2

| H1 role mls op L2 | H1 role mls op H2

| L1 role mls op H1 | L2 role mls op H2

;
op : EQUALS | NOTEQUAL

;
role mls op : DOM | DOMBY | INCOMP

;
names : identifier

| ‘{’ identifier list‘}’
| ‘*’

| ‘∼’ identifier

| ‘∼’ ‘{’ identifier list‘}’
;

identifier list : [identifier list] identifier

;
identifier : IDENTIFIER

;
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