
ACCESSPROV: Tracking the Provenance
of Access Control Decisions

Frank Capobianco

The Pennsylvania State University

fnc110@cse.psu.edu

Christian Skalka

The University of Vermont

skalka@cs.uvm.edu

Trent Jaeger

The Pennsylvania State University

tjaeger@cse.psu.edu

Abstract
Access control protects security-sensitive operations from

access by unauthorized subjects. Unfortunately, access con-

trol mechanisms are implemented manually in practice,

which can lead to exploitable errors. Prior work aims to

find such errors through static analysis, but the correctness

of access control enforcement depends on runtime factors,

such as the access control policies enforced and adversary

control of the program inputs. As a result, we propose to

apply provenance tracking to find flaws in access control

enforcement. To do so, we track the inputs used in access

control decisions to enable detection of flaws. We have de-

veloped ACCESSPROV, a Java bytecode analysis tool capa-

ble of retrofitting legacy Java applications with provenance

hooks. We utilize ACCESSPROV to add provenance hooks

at all locations that either may require access control en-

forcement or may impact access control policy decisions.

We evaluate ACCESSPROV on OpenMRS, an open-source

medical record system, detecting access control errors while

incurring only 2.1% overhead when running the OpenMRS

test suite on the instrumented OpenMRS program.

1. Introduction
Access control provides a line of defense to prevent exploits

by blocking unauthorized access. However, implementing

access control correctly is a complicated task. Programs that

implement an access control mechanism must achieve the

requirements of the reference monitor concept [2], which

demands complete mediation of all security-sensitive oper-

ations among other requirements. In addition, each deploy-

ment must enforce an access control policy that enforces the

security intentions of that deployment.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page.

TaPP 2017, June 22-23, 2017, Seattle, Washington.

Copyright remains with the owner/author(s).

Since both the access control mechanisms and policies

are implemented manually, there is the possibility of ex-

ploitable errors. However, systems tend to assume that ac-

cess control is implemented correctly, so forensic analysis

often does not focus on limitations in access control enforce-

ment. As a result, forensic analysis may miss the root cause

of an attack that occurred because the access control imple-

mentation was incorrect, which may leave the vulnerability

to enable further exploits.

Researchers have proposed to improve the effectiveness

of forensic analysis by building systems that track whole-

system provenance [3, 6, 12]. Whole-system provenance

typically tracks the system calls performed by programs to

collect information about the accesses to system objects.

However, if the program being tracked is trying to restrict

use of such objects itself by enforcing its own access control

policy, errors in such enforcement will be missed.

In this paper, we explore mostly-automated methods to

track the provenance of access control decisions. First, we

propose to log the inputs to access control decisions. We pro-

pose a static analysis to construct access dependence graphs
(ADGs), which relate all the inputs that may impact ac-

cess control decisions for related security-sensitive opera-

tions. Second, we propose to record the possible sources of

such inputs in the log. We then use the ADGs to instrument

programs to log inputs and their possible sources. Third,

instrumented programs generate access provenance graphs
(APGs) upon execution, recording access decision inputs

and relating them to the ADGs. We find that using ADGs

supports forensic analysis, enabling analysts to compare op-

erations authorized by the same hooks (or not mediated) and

compare related operations authorized by different hooks.

We developed a system called ACCESSPROV to perform

the above steps, which is applied to OpenMRS [11], an

open-source medical record system implemented in Java

and deployed throughout the world. OpenMRS implements

its own access control enforcement, but we identify sev-

eral cases where the enforcement may be insufficient de-

pending on the deployment’s policy and intended security

goals. ACCESSPROV instruments OpenMRS to log the in-

puts to access control decisions and their possible sources.

1

Running the OpenMRS test suite on the instrumented Open-

MRS produces a log of 2.6MB of information, only cost-

ing 2.1% overhead over the base implementation. Using the

ADGs to guide analysis of the resulting log, we find evi-

dence that three ambiguous cases of access control enforce-

ment are flawed.

2. Problem Definition
Typically, provenance methods assume that the application

of access control is correct, capturing the system calls exe-

cuted that may have led to a problem. However, the problem

itself may be caused by errors in the access control imple-

mentation, enabling processes that should not have been au-

thorized in the first place to modify or access data objects

being tracked. Thus, we argue that the provenance of access

control decisions should also be tracked.

Errors in access control are possible because access con-

trol enforcement is implemented and configured manually.

While the reference monitor concept [2] specifies the re-

quirements for deploying access control correctly, some of

the requirements necessitate judgments on the part of pro-

grammers. For example, consider the requirement that the

reference monitor be invoked for each security-sensitive
operation. Programmers have to determine which of their

program statements imply security-sensitive operations, and

add a call to the reference monitor, called an authorization
hook, to mediate all accesses to all security-sensitive oper-

ations. If every one of a program’s security-sensitive oper-

ations is preceded by an authorization hook that invokes a

reference monitor, the program enforces complete media-
tion.

To make these notions concrete, we examine the imple-

mentation of the OpenMRS system [11], an open-source

medical records system. OpenMRS enables remote users to

request access to medical records in a back-end database.

To control access to the database, OpenMRS implements a

reference monitor that mediates access to database opera-

tions on medical records. If we assume that any database op-

eration may be a security-sensitive operation, we find that

OpenMRS exhibits three types of ambiguities in its ref-

erence monitor implementation. First, OpenMRS performs

some database operations that are not mediated by any au-

thorization hook. While one may jump to the conclusion that

such code patterns are vulnerable, the operation may be se-

cure if: (1) no untrusted subject can actually request the op-

eration; (2) all subjects would be authorized to perform the

operation (i.e., no security checking is needed if all are au-

thorized); or (3) these database resources are not security

sensitive. Second, OpenMRS reuses mediation for one oper-

ation for other database operations. Whether such mediation

is sufficient depends on whether the first authorization hook

blocks all of the unauthorized subjects for the second opera-

tion. Third, OpenMRS may mediate two distinct operations

using the same permission. As these two operations differ,

one might assume that using the same permission would lead

to a vulnerability, but this form of mediation is secure if the

same set of subjects is always authorized for both operations.

If any of the requirements are violated in the ambigu-

ous cases above, then there is an error in the access control

enforcement that may be exploited. Such errors cannot be

identified statically from source code [5, 7, 14–16, 18], as

they depend on access policies at the deployment sites and

the intentions of the policies that are not typically expressed

explicitly [10]. As a result, provenance may be useful for

enabling analysts to detect such errors, either as part of run-

time testing of a deployment or as part of forensic analy-

sis after an exploitation. However, current provenance sys-

tems [3, 6, 12] typically focus on operations on system ob-

jects, such as the database operations in the case of Open-

MRS, so they would miss whether an error in access con-

trol was the original cause that allowed the exploit to occur.

In this paper, we propose that programs that enforce access

control should also track the provenance of their access con-

trol decisions to enable explanation to analysts when exploits

occur to detect errors.

3. Design Overview
The goal of this work is to record the provenance of ac-

cess control decisions to enable analytics to detect errors.

Figure 1 shows the architecture of our proposed solution

ACCESSPROV. First, given a program, ACCESSPROV com-

putes the program statements that affect access control de-

cisions and organizes statements related by control and

data flow as access dependence graphs (ADGs). Second,

ACCESSPROV uses ADGs to instrument the program to

record provenance events. When the program is run prove-

nance events are saved in access provenance graphs (APGs).

Third, analytics apply the ADGs to pick out the relevant

events from the APGs to present to analysts to detect errors.

The first challenge is to compute how the various program

statements that affect access control decisions are related. In

general, subjects provide inputs to the program (e.g., an ac-

cess request) that should be mediated before the program

performs a security-sensitive operation. So, the statements

associated with receiving inputs (e.g., system calls), medi-

ation (e.g., authorization hooks), and security-sensitive op-

erations will be identified as events impacting provenance.

ACCESSPROV uses a static analysis to collect such state-

ments and the control-flow relationships among these state-

ments into access dependence graphs (ADGs).

The second challenge is to determine what information

to record at each provenance event to instrument the pro-

gram to collect that information. The goal is to tell analysts

about what is possible at each decision point to enable ana-

lysts to detect whether the access control implementation has

considered the possible executions of the program. For ex-

ample, rather than simply telling analysts the specific object

accessed in a security-sensitive operation, analysts may want

2

Figure 1: Design overview for proposed solution.

to know what objects may have been accessed at that opera-

tion to determine whether a hook is necessary to control that

operation. ACCESSPROV logs program data flows, external

inputs, and/or authorized objects to each object logged, to

help the analysts as part of the access provenance graphs
(APGs) collected by running instrumented programs.

The third challenge is to winnow the APG traces down to

information relevant for analysts to detect errors. We pro-

pose for ACCESSPROV to apply the ADGs to match the

events in the APG that are relevant to access control deci-

sions that we want to compare. For example, when the pro-

gram chooses no mediation for an operation, ACCESSPROV

can collect all executions that run that operation to show an-

alysts the subjects who had access to the operation (e.g., to

determine whether an untrusted subject may perform the op-

eration) and the objects they could access through that oper-

ation (e.g., to determine whether all untrusted subjects will

be permitted access). In addition, ACCESSPROV can present

ADGs for different operations that may be related, such as

checking for the same permission, accessing objects of the

same type, or accessing the same or intersecting sets of fields

in the objects.

4. Design
In this section, we detail a design for the proposed approach

outlined above.

4.1 Building Access Dependence Graphs
To instrument access control decisions, ACCESSPROV iden-

tifies and relates events upon which the decision may de-

pend. We define an access dependence graph (ADG) as a

graph G = (V,E), where v 2 V are vertices that represent

events that impact access control decisions and E = (u, v)
are directed edges that represent program-flow dependence
of event v upon event u. We identify two types of events of

interest. First, there are events related to subjects request-

ing potentially security-sensitive operations. Subjects pro-

vide input, and the program performs operations that may

be security-sensitive using those inputs. We want to capture

both the input events (i.e., to identify subjects) and operation

events (i.e., to identify objects and the impact of the opera-

tion). Second, there are events related to mediating security-

sensitive operations. These correspond to the existing autho-

rization hooks placed in the program.

The ADG edges show that their is both a control-flow de-

pendence between the program statements and data-flow de-

pendence between variables in those statements. Examples

are shown in Figure 2, where operations lack mediation or

are mediated differently. Similarly, Figure 3 shows the same

two operations being authorized using different permissions

in the authorization hook. In all cases, there is a control-flow

dependence and data-flow dependence corresponding to the

edges.

Figure 2: Access dependence graph example where opera-

tions are unmediated.

Figure 3: Access dependence graph example showing the

same two operations being mediated using hooks checking

for different permissions.

3

ACCESSPROV computes ADGs using static analysis. Ex-

ternal inputs and authorization hooks can be identified syn-

tactically, but identifying security-sensitive operations in

programs has found to be a complex problem [4, 9, 14,

15, 18]. Researchers have proposed both syntactic methods,

such as code patterns, and semantic methods, based on static

taint tracking, to identify security-sensitive operations. Since

there is no one solution, ACCESSPROV supports apply-

ing modules to identify security-sensitive operations using

static analysis. In our approach, applied to OpenMRS [11],

we identify database operations as security-sensitive opera-

tions [15] and identify operations on objects returned from

the database as security-sensitive operations [9].

4.2 Instrumenting Programs Using ADGs
Once ACCESSPROV computes ADGs for programs, it is

clear where to put instrumentation to collect provenance

regarding enforcement of access control, but we still have

to define what information ACCESSPROV should collect.

The aim is to help analysts determine the permissions (i.e.,

objects and accesses to those objects) available to subjects

authorized to perform a security-sensitive operation.

A key question is what objects may be accessible to an

authorized subject. If there is an authorization hook, then

the requested object is accessible to all authorized subjects,

which can be determined from the access control policy di-

rectly. However, if the object is not directly authorized, then

there is a question which objects may be accessible to sub-

jects. For example, Figure 4 shows a case where the userid

object is authorized, but others that are dependent on it are

not. The analyst may not be able to determine the values

of other objects, so they cannot determine whether someone

authorized to get user information is always authorized to

access the loginCredential of that user as shown in Fig-

ure 4.

To solve this problem, we propose that ACCESSPROV

records the source of unmediated objects. To do this,

ACCESSPROV computes a static reverse taint slice for all un-

mediated objects. Often, an unmediated object is extracted

from a field of another object that may itself be mediated.

Nonetheless, the possible values of the unmediated object

may vary depending on how the field’s values may be mod-

ified. By presenting the reverse slice, an analyst can learn

where the unmediated object value was set.

4.3 Analyzing Access Provenance Graphs
In the last step, ACCESSPROV aids analysts in assessing the

data collected at runtime. There are two aims of access con-

trol provenance. One is to learn how a particular object is

accessed in authorized (or unmediated) operations to detect

possible misuse of authorized access. The second is to ex-

amine and compare authorized operations to detect errors.

An access provenance graph (APG) is a graph G

p

=
(V

p

, E

p

), where V

p

are recorded events of the type identified

in the ADG above and E

p

= E

t

[E

o

where E

t

are edges

Figure 4: Access flow graph example depicting partial me-

diation where the first security sensitive operation has an as-

sociated hook, but the second and third operation do not.

linking each event with the preceding and following events

to form an event trace and E

o

are edges that link events

referring to events that access the same object o to form

an object trace. Object traces allow analysts to see how

a particular object of interest was accessed to assess how

authorized (or unmediated) operations may have impacted

it.

To detect errors, we propose to leverage the ADGs to

identify the events relevant to a particular scenario to com-

pare to other scenarios. Thus, ACCESSPROV records unique

identifiers for ADGs and their events with events when they

are recorded in the APG to enable these events to be found.

Thus, analysts may compare all of the events related to a par-

ticular ADG (e.g., to assess the implications of an unmedi-

ated operation, see Figure 2) and compare events related to

comparable ADGs (e.g., to compare operations mediated by

different hooks, see Figure 3).

5. Implementation
ACCESSPROV was implemented on top of Soot [17], an

open-source Java bytecode analysis framework that was

4

originally developed in the Sable Research Group at McGill

University. Soot’s intermediate representation Jimple is easy

to analyze and modify making it a suitable choice for our

analysis and injecting provenance hooks into bytecode.

In order to generate access dependence graphs, we need

to identify security-sensitive operations within the program.

We achieve this by first building a program dependence

graph (PDG) to capture all of the control and data flows

within the program. Using our PDG we compute a forward

taint analysis to track user input to identify database opera-

tions accessible to adversaries and the objects retrieved from

the database as security-sensitive operations. Once these

security-sensitive operations are identified, we use a reverse-

taint analysis to track the data dependencies for arguments to

database operations to find possible sources of those inputs.

Provenance hooks are injected into the bytecode by

adding our own Jimple instructions to the necessary loca-

tions in the bytecode. Our additions include a public Java

class that manages an internal buffer to stage the writing

provenance information. Thus, any class that imports our

buffer management class will have the necessary ability to

record provenance data. Then, at every security-sensitive

operation in the program ACCESSPROV injects a set of

instructions. First, ACCESSPROV adds an import for our

buffer management class if one does not exist. Secondly,

ACCESSPROV initializes a string variable with the prove-

nance data to be recorded. Finally, ACCESSPROV initial-

izes a buffer management variable and call the addProve-
nance() method passing along the newly created string. The

addProvenance() method internally checks the size of the

buffer and automatically writes information to a log file

when full.

Once our hooks are in place throughout the application

we need to write the newly modified bytecode out to cor-

responding .class files. ACCESSPROV performs this step by

using Jasmin, which is an assembler for the JVM. Jasmin

comes with Soot and will automatically write all of our

changes to generate class files that are suitable for execution

and now provenance aware.

6. Evaluation
In this section we evaluate ACCESSPROV by analyzing

OpenMRS, an open source medical record system. Open-

MRS is used widely around the world. According to their

latest annual report [11] OpenMRS is used in roughly 80

countries, 1200 clinics, and manages approximately 5 mil-

lion patients’ data. Below, we examine three possible prob-

lems with the access control implementation of OpenMRS.

Note that while static analysis can identify these as issues,

analysts may not recognize problems until they see access

control actions or even perform forensic analysis.

6.1 No Mediation
One of our initial questions when analyzing OpenMRS was

whether there are operations we consider to be security-

sensitive, but the developers either felt were not security-

sensitive or forgot to place an authorization hook. In order

to identify these cases, ACCESSPROV identifies ADGs with

unmediated operations. Figure 2 shows two such ADGs; the

first shows an operation getRoleByUuid(), and the second

shows an operation getPrivilegeByUuid(), both of which are

not mediated. ACCESSPROV uses the ADGs’ identifiers and

associated events to retrieve 2 instances, for each operation,

in the APG trace that depict these operations being executed

by a subject that is not mediated. We show these cases in Fig-

ure 5. UUIDs are not treated as secret values necessarily, so

an unauthenticated user may be able to extract the OpenMRS

access policy by repeatedly querying roles and privileges for

known or guessable UUIDs to find a user with permissions

to exploit.

6.2 Consistency
In order to identify whether the developers are consistent

with their use of permissions for authorizing operations,

ACCESSPROV can retrieve ADGs that check for a particular

related permissions to compare the operations performed on

particular objects.

Within OpenMRS there are patients, users, and persons
objects, where a person can be either a patient or a user.

Examining the ADGs, we find that hooks checking for

EDIT PERSONS permissions permit a subject with this per-

mission to save a person to the database as well as void

(delete) a person from the database. Figure 3 shows the

ADGs for both of these operations. Using the ADGs, we re-

trieve 4 instances from the APG trace where an authorized

subject voids a person from the database and 6 instances

where an authorized subject saves a person to the database.

By comparing these traces to those of other ADGs

with comparable hooks for the EDIT PATIENTS and

EDIT USERS permissions, we see that a subject cannot void

a patient or user with these permissions. OpenMRS de-

velopers separated the operations to void a patient or user

with DELETE PATIENT and DELETE USER permissions

respectively, but neglected to do the same for persons. Show-

ing the analyst the difference between these ADGs in the

traces highlights the inconsistency, which might lead to a

user being given permissions to edit persons without realiz-

ing they are also giving them permissions to delete persons.

6.3 Partial Mediation
The ADG reveals an interesting case that is depicted in Fig-

ure 4. In this case, a subject that is authorized to get users

from the database (e.g the subject has the GET USERS per-

mission) is capable of querying that user’s login credentials

(including that user’s secret question) without additional au-

thorization. The test suite did not run this operation directly,

5

so we modified the test suite to perform the operation as

shown in Figure 7.

Using ADGs, we can compare this ADG to other ADGs

that operate on users’ login credentials to compare the au-

thorizations. We found another case that retrieves the login

credentials from a user object in the same way (i.e., using

the reverse slice described in Section 4.2) that requires an

EDIT USER PASSWORDS permission, while the operation

getSecretQuestion(User user) does not. Similar to the sec-

tion above we can imagine a scenario where a user is as-

signed permissions to get users from the database, possibly

to make benign modifications, but now has the capability to

leak sensitive information regarding that user’s secret ques-

tion.

6.4 Performance
OpenMRS is a mature code base consisting of approxi-

mately 110,000 source lines of code. Even though our analy-

sis is written in Java, ACCESSPROV is able to analyze Open-

MRS and generate a program dependence graph in roughly

1 minute. Identifying security-sensitive operations as well as

injecting provenance hooks takes an additional 1-2 minutes.

Typically, provenance collection taxes a program with

overhead for computing the runtime information while the

program is executing. Our method aims to compute a major-

ity of the information statically. Leaving a small amount of

information (e.g input variable values, operation argument

values, etc), that cannot be computed statically, to be gath-

ered from the runtime traces using our hooks. When running

OpenMRS’s test suite, which performs 3,380 tests, we notice

a 2.1% overhead in performance, which generates 2.6MB of

provenance data (APGs).

7. Related Work
Automated provenance collection mechanisms can be im-

plemented at various layers of a system. Pohly et al. [12]

presented a kernel-level system leveraging [3] to capture

high fidelity whole-system provenance. This method creates

a provenance-aware environment that applications can run

on top of. Although applications executed in this environ-

ment are automatically provenance aware, the metadata col-

lected is at too low of a level to reason about the access con-

trol mechanisms of a specific application. SPADE [6] is a

software infrastructure that allows you to collect and man-

age provenance data. To date the most accurate method of

capturing application level provenance data is to invest in

manual provenance instrumentation within the application

itself and supplement the data with libraries such as Prov-

ToolBox [8] and systems described above. Unfortunately,

this approach is expensive and time consuming and has mo-

tivated us to develop a tool that can automatically make an

application provenance-aware.

Muthukumaran et al. [9] presents a method for automat-

ically identifying authorization hook placements within C

code, while [10] extend this work and propose algorithms to

minimize the placement to enforce a specified access control

policy. [9] also presents a method for identifying security-

sensitive operations in C code by identifying containers, but

this cannot be directly applied to Java as sensitive operations

are typically stored as fields of Java objects or as database

operations in many web-based applications.

Retrospective security methods such as [1] propose prov-

ably correct code re-writing algorithms utilizing formal log-

ging specifications. They developed their tool specifically

for OpenMRS. Additionally, [13] implement a relationship

based access control mechanism for OpenMRS to be used

in place of the current role based access control mechanism.

Although providing additional constraints on who can access

certain information, this approach does not solve the access

control problem present in applications like OpenMRS. This

in part motivates the need for a provenance based approach

to log access control information to understand the implica-

tions of currently implemented access control systems.

8. Conclusion
In this paper, we presented ACCESSPROV, a Java byte-

code analysis tool capable of retrofitting legacy Java ap-

plications with provenance hooks regarding access control

decisions. ACCESSPROV statically generates access depen-

dence graphs, which are used to inject provenance hooks that

will record access control decisions, in the form of access

provenance graphs, for retrospective analysis. We evaluate

ACCESSPROV on OpenMRS an open source medical record

system and show that our injected hooks contribute low per-

formance overhead when running OpenMRS’s test suite. We

also identify multiple cases within OpenMRS that are either

missing mediation, contain partial mediation, or are incon-

sistent with access control in other areas of the program.

References
[1] S. Amir-Mohammadian, S. Chong, and C. Skalka. Correct au-

dit logging: Theory and practice. In International Conference
on Principles of Security and Trust, pages 139–162. Springer,

2016.

[2] J. P. Anderson. Computer security technology planning study,

volume II. Technical Report ESD-TR-73-51, HQ Electronics

Systems Division (AFSC), October 1972.

[3] A. Bates, D. J. Tian, K. R. Butler, and T. Moyer. Trustwor-

thy whole-system provenance for the linux kernel. In 24th
USENIX Security Symposium (USENIX Security 15), pages

319–334, Washington, D.C., Aug. 2015. USENIX Associa-

tion.

[4] V. Ganapathy, T. Jaeger, and S. Jha. Automatic placement

of authorization hooks in the Linux Security Modules frame-

work. In Proceedings of the 12th ACM Conference on Com-
puter and Communications Security, pages 330–339, Nov.

2005.

[5] V. Ganapathy, D. King, T. Jaeger, and S. Jha. Mining security-

sensitive operations in legacy code using concept analysis. In

6

Proceedings of the 29th International Conference on Software
Engineering (ICSE), May 2007.

[6] A. Gehani and D. Tariq. Spade: Support for provenance

auditing in distributed environments. In P. Narasimhan and

P. Triantafillou, editors, Middleware 2012, volume 7662 of

Lecture Notes in Computer Science, pages 101–120. Springer

Berlin Heidelberg, 2012.

[7] B. Livshits, A. V. Nori, S. K. Rajamani, and A. Banerjee.

Merlin: specification inference for explicit information flow

problems. ACM Sigplan Notices, 44(6):75–86, 2009.

[8] L. Moreau, T. D. Huynh, M. Jewell, A. S. Keshavarz, J. A.

Hussein, and D. Michaelides. Provtoolbox, 2014.

[9] D. Muthukumaran, T. Jaeger, and V. Ganapathy. Leverag-

ing “choice” to automate authorization hook placement. In

CCS’12: Proceedings of the 19th ACM Conference on Com-
puter and Communications Security, page TBD. ACM Press,

October 2012.

[10] D. Muthukumaran, N. Talele, T. Jaeger, and G. Tan. Producing

hook placements to enforce expected access control policies.

In International Symposium on Engineering Secure Software
and Systems, pages 178–195. Springer, 2015.

[11] Openmrs. http://openmrs.org/.

[12] D. J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler. Hi-

fi: Collecting high-fidelity whole-system provenance. In Pro-
ceedings of the 28th Annual Computer Security Applications
Conference, ACSAC ’12, pages 259–268, New York, NY,

USA, 2012. ACM.

[13] S. Z. R. Rizvi, P. W. Fong, J. Crampton, and J. Sellwood.

Relationship-based access control for an open-source medical

records system. In Proceedings of the 20th ACM Symposium
on Access Control Models and Technologies, pages 113–124.

ACM, 2015.

[14] S. Son, K. S. McKinley, and V. Shmatikov. Rolecast: finding

missing security checks when you do not know what checks

are. ACM SIGPLAN Notices, 46(10):1069–1084, 2011.

[15] S. Son, K. S. McKinley, and V. Shmatikov. Fix Me Up:

Repairing Access-Control Bugs in Web Applications. In ISOC
Network and Distributed System Security Symposium (NDSS),
2013.

[16] G. Tan and J. Croft. An empirical security study of the native

code in the jdk. In Usenix Security Symposium, pages 365–

378, 2008.

[17] R. Vall´ee-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and

V. Sundaresan. Soot-a java bytecode optimization frame-

work. In Proceedings of the 1999 conference of the Centre for
Advanced Studies on Collaborative research, page 13. IBM

Press, 1999.

[18] X. Zhang, A. Edwards, and T. Jaeger. Using CQUAL for static

analysis of authorization hook placement. In Proceedings of
the 11th USENIX Security Symposium, pages 33–48, August

2002.

7

Appendix A: Access Provenance Graphs
In this section we display our APGs that were identified from

the runtime traces generated using OpenMRS’s test suite.

These APGs are presented to the analyst to aid in under-

standing potential errors in the access control and present

information that could not be identified statically.

Figure 5: Access provenance graph example where opera-

tions are unmediated.

Figure 5 depicts two APGs. Both are cases where a sub-

ject Unknown performs an operation that is not mediated.

In both of these cases we can see the unique id that is used

to query the database for a specific role or privilege respec-

tively.

Figure 6: Access provenance graph example showing the

same two operations being mediated using hooks checking

for different permissions.

In Figure 6 we see two cases where the same subject

Admin123 is performing two different operations. The first

is to void a person from the database, while the second is

modifying an existing person in the database. We can see

that the hooks require the same sets of permissions.

Figure 7: Access provenance graph example depicting par-

tial mediation where the first security sensitive operation has

an associated hook, but the second and third operation do

not.

Figure 7 depicts a single case where a subject Admin123
uses the userid 1 to query for a user from the database

and subsequently uses that user to gather that user’s login

credentials, including their secret question.

8

