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Abstract. One of the most di�cult challenges facing network operators
is to estimate risk and allocate resources in adversarial environments. Fail-
ure to properly allocate resources leads to failed activities, poor utilization,
and insecure environments. In this paper, we explore an optimization-
based approach to allocating resources called a mission-oriented security

model. This model integrates security risk, cost and payout metrics to
optimally allocate constrained secure resources to discrete actions called
missions. We model this operation as a Mixed Integer Linear Program
(MILP) which can be solved e�ciently by di↵erent optimization solvers
such as MATLAB MILP solver, IBM-CPLEX optimizer or CVX solver.
We further introduce and explore a novel method to evaluate security risk
in resource planning using two datasets—the Ponemon Institute cost of
breach survey and CSI/FBI surveys of security events. Data driven simu-
lations are used to validate the model robustness and uncover a number
of insights on the importance of risk valuation in resource allocation.

1 Introduction

Operators of modern networks must allocate resources such as computation,
bandwidth, storage capacity, or personnel to achieve operational goals in the
face of adversaries. Consider the deployment of a file system service within a
LAN–one could simply deploy an unauthenticated server, or use industry grade
cryptography, multifactor authentication, multiple backups, and log every packet
and filesystem event. These two deployments represent points in the spectrum in
the cost/security/reliability space. In the absence of context, both deployments
are equally appropriate. The key to secure operations is to make such a decision
by understanding the needs and risks of the environment.

Indeed, today’s operators make decisions about what is appropriate for an
environment simply from intuition and experience—and often unconsciously assess
and weigh the risks of the environment [3]. In this work, we seek to formalize this
decision-making process. We develop a mathematically rigorous decision-making
model to explore di↵erent policies by evaluating their e↵ectiveness when dealing
with di↵erent risk characteristics. Using this model, we explore the interplay



between utilization, risk, and security and develop new insights on how to allocate
resources in the face of adversaries with varying goals and strategies.

After reviewing operational best practices and work in decision theory, we have
identified several essential elements of an operationally aware decision process:
risk, cost, payout and missions. We provide intuitive definitions here (see Section 3
for formal definitions). Intuitively, the risk is a valuation of the harms that may
occur, the damage they would cause, and the probability that the harms will
occur. We refer to cost as the security cost. The cost is the required amount to
spend to achieve some level of security. The payout is the value of performing
an action (e.g., the “value” of an action to the environment)–which enables the
decision process to prioritize actions by attempting to maximize profit.

Lastly, we refer to a mission as a series of actions that leads to an objective. A
mission is defined by intent as well as how it is executed. With mission-oriented
security, we consider the overall security of a system, not a single algorithm.
Based on the risk level of a mission and the potential damage due to the risk,
a mission might be allowed to continue even though there is a chance of being
exposed to attacks or being compromised. When referring to a mission-oriented
security model, we are referring to a mathematical model to make such decisions.

Note that often when considering the security of a system, people instinctively
behave in a risk-averse fashion. However risk-averse approaches may sacrifice
the total profit of the system, particularly when the probability of undesirable
event occurrence or the damage due to these events are relatively small. On the
other hand, a system that does not account or prepare for risk may su↵er serious
consequences, particularly when the probability of undesirable events is relatively
large, or when the damage to the infrastructure or outcomes is extensive. Trading
the contextual risk against the payout is a key to making good (optimal) decisions
on resource allocations. We explore how this can be formally modeled throughout.

In general, there can be two di↵erent types of decision processes: deployment
and operational. As an example of a deployment decision, suppose we have three
missions in an enterprise: providing email service, telnet access, and wireless access.
Assume all these services are at risk for various attacks. Remediation measures
might include adding two-factor authentication for email service, adding a firewall
and VPN for telnet access, or adding a VPN for wireless access. However, due to
the limited number of available sta↵ and infrastructure, we can only perform two
out of the three remediations. The dilemma is that given attack characteristics
corresponding to each of the missions, which of these missions should be assigned
to our limited resource (sta↵). This kind of configuration or deployment decision
is closely related to security planning.

As an example of an operational decision, assume a server in networked
environment notes growing evidence of attacks (e.g., an adversary has found the
IP address behind the firewall of a server in our server farm). Furthermore, there
is a set of servers in our system which is more secure but slower. However, the
cost of migrating processes to the secure server and the limited number of secure
servers prevent us from moving all processes to those servers. The dilemma is



which processes to migrate to the secure server, and if a process is not migrated,
should we keep running that process or terminate it.

In the first part of this work, we define a cyber mission-oriented security model.
We incorporate security risk, cost, and payout into our model, and consider a
resource allocation problem where the objective is to jointly optimally allocate a
secure constrained resource to missions and to decide whether to stop missions
that do not receive the secure resources.

This formulation is the first step toward a larger body of analyses. To make
the problem mathematically tractable, we explore three simple agility maneuvers:
(i) assigning a mission to specially secured resources, (ii) continuing a mission,
or (iii) stopping a mission. Our study can be extended to include more agility
maneuvers such as reconfiguration, suspending a mission, etc.

We model the resource allocation problem as a Mixed Integer Nonlinear
Program (MINLP) [6] where the objective function is to maximize the total profit
gained from all missions. MINLP is a class of Nonlinear Programming which
consists of both integer and continuous variables where the objective function or
the constraints contain nonlinear terms. Our nonlinear programming problem
can be linearized and transformed into a Mixed Integer Linear Program (MILP)
by exploiting McCormick envelopes. Typically, a branch and bound algorithm
is used to solve MILPs. Optimization solvers such as MATLAB MILP solver,
IBM-CPLEX optimizer, or CVX commercial solver can e�ciently provide a
solution to a MILP. In this paper, we adopt MATLAB MILP solver to obtain an
optimal resource allocation strategy. The main contributions of this paper are:

1. We introduce a mission-oriented security model that integrates security risk,
cost and payout metrics, and develop a mathematical framework to optimally
allocate constrained secure resources to missions.

2. We evaluate three di↵erent policies for allocating the constrained resources
in facing with di↵erent risk profiles by using two datasets—the Ponemon
Institute cost of breach survey and CSI/FBI survey of security events.

3. We investigate the sensitivity of our proposed framework with respect to
under/over-estimating the probability of undesirable events.

We begin in the following section with a review of several key related work.

2 Related work

In the sensor network domain, [11] proposed a framework to optimally allocate
constrained resources (sensors) to missions such that the total profit is maximized
when there exist uncertainties in users demands and their achievable profits. They
assumed missions are always profitable and hence, should always be continued.
However, in this work, missions might not always be profitable due to risks, and
hence, we might have to terminate them. Furthermore, missions payouts and
damages due to risks depend on if and how much of their request to use secure
special resources is satisfied.



One challenge in today’s development of security technology is misaligned
incentives of di↵erent parties. For example, potential failure or security breach
rises when a person or a software guarding a system faces a lower failure or
compromise cost. The goal in information security economics [1, 2] is to combine
concepts from game theory, microeconomic theory and risk assessment with
cryptography concepts to develop security technology. To protect a given set of
information, [7] presented an economic model to derive the optimal amount to
invest in security.

Unlike dependability and reliability of a computer system, there is not much
work on quantitatively evaluating the security of a computer system. To evaluate
the security of a system quantitatively, [16] surveyed model-based methods
for evaluating dependability of a computer system. Furthermore, they discuss
extending these methods to evaluate the security of a computer system.

A risk assessment method is a qualitative approach in which the likelihood of
occurrence of undesirable events or their impacts are described qualitatively using
terms like low, medium or high. Conversely, when the likelihood of occurrence
of undesirable events and their consequences are expressed numerically, the risk
evaluation method is called quantitative risk assessment [4]. Given a qualitative
assessment of risk and complying with the ISO/IEC 27005 standard on risk
management [12], European Network and Information Security Agency (ENISA)
ranks di↵erent risks using the likelihood of a threat times its impact by assuming
a scale from 1 to 5 (where 1 represents very low, whereas 5 denotes very high)
for each of the likelihoods and impacts [5]. Clearly, the scaling values are relative
values, and it is not clear how the resulted quantities for risk can be combined
with other parameters such as cost or payouts in these methods.

Note that this work is highly related to the field of systems resilience [13]
and agility [3, 15]. Agility refers to an approach to achieving system resilience
in which a defender reconfigure the system or the operation in response to a
potential attack or perceived risk. In this work, we focus on formulations of the
decision problem to reconfigure in response to various risks and threats.

3 Problem Statement

Figure 1 illustrates our mission-oriented security model. Missions are running on
their own local server. However, these servers are under risk because of various
potential cyber attacks. To mitigate these risks, the system may assign some of
these missions to special secure resources that are immune from cyber attacks.
In the beginning of each time frame, the set of available missions are competing
for scarce secure resources. We want to determine how to allocate resources and
whether to stop or continue the missions for the current time frame. In the next
time frame, previously stopped missions with potentially di↵erent risk profiles
will compete with a set of newly arrived missions. We do not allow preemption.

Informally, the problem is to determine which missions are assigned to the
secure resources, to determine the amount of special resources assigned to the
selected missions, and to decide whether to continue or stop the missions. In
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Fig. 1: Mission-oriented security model

other words, we find the optimal strategy that maximizes the total profit achieved
from the execution of all the missions.

Formally, assume there are n missions M1, . . . ,Mn

where for each mission,
M

i

requires G
i

amount of resource. Initially, each mission is running on its own
local server which has su�cient resources to support the mission. In a risk-free
environment, M

i

achieves payout P

i

from its local resource/server if the local
server fully allocates the entire requested amount of resources (G

i

) to the mission.
Further, the unit cost of allocating resources to M

i

by its local server is b
i

.

Now due to security risks, each mission will request to use a global special
resource/server that has only W0 amount of a special (secure) resource. Each
mission M

i

is exposed to l di↵erent types of attack; each attack type happens with
probability of ↵i

j

(where superscript i denotes the i -th mission, while subscript
j indicates the j -th attack type corresponding to M

i

) and results in damage
(loss of profit) of di

j

. These types of attack are independent. They are potentially
derived from di↵erent probability distributions.

For each mission M

i

, risk is modeled as a set of triples [4]:

R

i

= {(si1,↵i

1, d
i

1), . . . , (s
i

l

,↵

i

l

, d

i

l

)} (1)

where s

i

j

is the j -th type of attack corresponding to M

i

, ↵i

j

is the probability
that this attack type happens, and d

i

j

is the damage due to that event.

Let c
i

be the unit cost of allocating the special resources to the i -th mission,
M

i

. If mission M

i

is fully allocated G

i

amount of the special resource (mission
gets all the resources it needs), it achieves payout Q

i

with no loss due to risk. If we
don’t allocate any special resource to mission M

i

, then mission M

i

is exposed to
the entire potential damage as a result of risk. If a portion of the required special
resource is assigned to mission M

i

, only the remaining portion is exposed to risk.



Table 1: Symbols and parameters used in our resource allocation framework.

Symbols Descriptions

M

i

i-th mission
s

i

j

j -th type of attack corresponding to M

i

↵

i

j

probability that the event si
j

happens
d

i

j

the damage as a result of occurrence of si
j

W
0

amount of available special resource
G

i

total requested resources by mission M

i

b

i

unit cost of allocating local resources to M

i

by its local server
c

i

unit cost of allocating the special resource to mission M

i

P

i

achieved payout by M

i

from its local resource if the local server
allocates G

i

to M

i

, when there is no risk to mission M

i

Q

i

achieved payout by M

i

from the special resource if it is assigned
G

i

amount of special resource
w

i

allocated resources from local resource to M

i

x

i

allocated resources from special resource to M

i

y

i

y

i

= 0 indicates to stop mission M

i

y

i

= 1 indicates to continue mission M

i

Table 1 provides the description of symbols used in the proposed framework for
optimally allocating constrained secure resources to missions.

We assume payouts (P
i

’s and Q

i

’s) and potential damage are proportional
(linear) to the amount of allocated resources. Formally, let w

i

and x

i

be the
amount of allocated resources from the local resources and the special secure
resources to mission M

i

, respectively. Then, we define:
Partial payout from local server = wi

Gi
P

i

,
Partial payout from special server = xi

Gi
Q

i

,

Partial potential damage = Gi�xi
Gi

↵

i

j

d

i

j

,
where w

i

, x

i

 G

i

.
We only have W0 amount of the special resource, and we would like to

optimally allocate it amongst multiple missions in response to risk. We formalize
the problem as follows:

1. Allocate resources (w
i

’s, x
i

’s) to missions optimally such that the total profit
(payout minus cost minus damage due to risk) from all missions is maximized.

2. Decide to stop the missions (y
i

= 0) or let them continue (y
i

= 1):
(a) if a mission stops, then it gains no profit and no damage.
(b) if a mission continues, then it achieves partial payouts minus partial cost

minus partial potential damage from risk.

4 Problem Formulation

We define profit as payout minus cost minus expected potential damage due to
risk. We model the problem as a Mixed Integer Nonlinear Program (MINLP),



where the objective function is to maximize the total profit gained from all the
missions. Using our assumption regarding the linearity (in respect to the allocated
resource) of partial payouts and damage, and by using techniques in Nonlinear
Programming, we linearize our nonlinear programming problem and transform
the problem into a Mixed Integer Linear Program (MILP). An optimal solution
to the MILP can be found by using a branch and bound algorithm.

In Section 4.1, we construct a MINLP that formulates the problem. Using
McCormick envelopes, we then linearize this MINLP in Section 4.2. The resulted
MILP can be solved by using di↵erent solvers such as MATLAB MILP solver.

4.1 Objective Function

We consider a binary decision variable y

i

for each mission M

i

; y
i

= 0 indicates
the mission is terminated, and the mission receives no profit and no damage.
Whereas y

i

= 1 indicates the mission M

i

is continued. Further, let w
i

and x

i

be
the amount of the local and the special resource allocated to the i -th mission
M

i

, respectively. Then, the optimization problem is formulated by (2):

Min
w,x,y

nX

i=1

costz }| {
(b

i

w

i

+ c

i

x

i

) �

nX

i=1

y

i

2

66664

✓
w

i

G

i

P

i

+
x

i

G

i

Q

i

◆

| {z }
payout

�
lX

j=1

G

i

� x

i

G

i

↵

i

j

d

i

j

| {z }
potential risk damage

3

77775

s.t.
nX

i=1

x

i

 W0

w

i

+ x

i

 G

i

for i = 1, . . . , n

w

i

, x

i

� 0 for i = 1, . . . , n

y

i

2 {0, 1} for i = 1, . . . , n

(2)

By construction and inherent nature of MINLP, this formulation returns a
strategy that leads to the highest expected total profit.

4.2 Solving The Minimization Problem

We linearize the objective function in (2) by exploiting McCormick envelopes, and
reformulate the problem as a Mixed Integer Linear Problem (MILP). McCormick
envelopes are a convex relaxation technique that can be exploited to linearize
MINLPs. In particular, if the objective function is a bilinear function, applying
McCormick envelopes linearizes the objective function. The function f(x, y) is a
bilinear function if it is linear with respect to each variable x and y individually.

Let f(x, y) = yg(x), where y is a binary variable and g(x) is a linear function
with lower bound of L and upper bound of U , i.e. L  g(x)  U . Then, one



can linearize f(x, y) by defining a new variable z and exploiting McCormick
envelopes. The function f(x, y) is equivalent to:

z

s.t. Ly  z  Uy (3)

g(x) + U(y � 1)  z  g(x) + L(y � 1) (4)

We note that if y = 0, then f(x, y) = 0. Furthermore, from (3), z must be 0
too. Moreover, if y = 1, then f(x, y) = g(x). On the other hand, from (4), z must
be g(x) as well. Hence, f(x, y) is equivalent to z with constraints (3) and (4).

By defining D

i

:=
P

l

j=1 ↵
i

j

d

i

j

, B
i

:= Qi

Gi
+ 1

Gi
D

i

and A

i

:= Pi
Gi

, and by using
McCormick envelopes, we can linearize (2) and obtain the following MILP:

Min
w,x,y,z

nX

i=1

(b
i

w

i

+ c

i

x

i

� z

i

+D

i

y

i

)

s.t.
nX

i=1

x

i

 W0

for i = 1, . . . , n:

w

i

+ x

i

 G

i

y

i

2 {0, 1}
w

i

, x

i

, z

i

� 0

z

i

 (P
i

+Q

i

+D

i

)y
i

z

i

� A

i

w

i

+B

i

x

i

+ (P
i

+Q

i

+D

i

)(y
i

� 1)

z

i

 A

i

w

i

+B

i

x

i

(5)

To solve MILP, a branch and bound algorithm is typically used in di↵er-
ent solvers such as MATLAB MILP solver, IBM-CPLEX optimizer, or CVX
commercial solver. In this paper, we use MATLAB MILP solver.

To deploy our proposed decision making under security risk in practice, a
method to assess risk quantitatively is required. We next formally define security
risk and propose a novel quantitative risk assessment method.

5 Risk Evaluation

In this section, we first briefly review the definition of security risk and the
expected damage from risk (Section 5.1). We then construct the elements of our
proposed novel probabilistic risk assessment method based on the relative proba-
bility of the j -th attack type (Section 5.2.1) and the probability of experiencing
a successful attack (Section 5.2.2).



5.1 Risk Definition

Probabilistic risk assessment [4] is an analysis that measures and evaluates risk
systematically. It estimates the consequences of undesirable events and predicts
the likelihood of such events. These approaches often use expert opinion or
historical data to assess the likelihood of undesirable events and their consequences.
This method of risk assessment aims to address three questions [14]:

1. What vulnerabilities are exposed? What are undesirable events? What are
types of attacks experienced by a mission, system or enterprise?

2. What is the probability of occurrence of those events?
3. What are the consequences or potential impact of occurrence of those unde-

sirable events? What is the damage due to those events?

Historical data can be used as test data to evaluate security systems as we
discuss later. Furthermore, they form the basis of our proposed risk assessment
framework. One might argue that historical data cannot be a valid sampling set
to estimate future probabilities and consequences as they only refer to series of
known past events. However, as reference [10] points out, although studies by the
Computer Emergency Response Team Coordination Center (CERT/CC) show
that risks do change with technological advances and human factors, the changes
are small and infrequent, i.e., risk is largely stable over time.

Discussed previously, we model the risk of each M

i

as a set of triples in (1).
In a probabilistic risk assessment approach, risk is related to two parameters.
The first parameter is the likelihood of occurrence of undesirable events such as
experiencing cyber attacks, or vulnerability exposure. The other parameter is
the consequence of the occurrence of these events.

Following ISO/IEC 27005 [12], we define the expected loss due to the event
s

i

j

, the j -th type of attack corresponding to mission M

i

as: L i

j

:= ↵

i

j

d

i

j

. However,
there is very limited statistical information from studies on attacks experienced
by enterprises. As a result, it is very di�cult to quantify ↵

i

j

’s in practice. To
be able to quantify risk, we define potential loss due to the j -th type of attack
corresponding to mission M

i

as [21]:

L i

j

:= p

i

⌧

p

i

j

d

i

j

(6)

where pi
⌧

is the probability that mission M

i

experiences a successful attack during
time interval ⌧ and p

i

j

is the relative probability of occurrence of the j -th type
of attack, or threat. Table 2 provides the description of symbols used in the
proposed risk assessment method.

The relative probability of the j -th attack type is defined as the likelihood
that a mission is under the j -th type of attack given an intense assumption that
the mission is in fact under an attack.

From (6), we can compute the total expected damage from risks for each of

the missions from: L i :=
P

li

j=1 p
i

⌧

p

i

j

d

i

j

, where l

i

is the number of attack types
corresponding to the i -th mission, M

i

.



Table 2: Symbols and parameters used in the risk assessment method.

Symbols Descriptions

p

i

⌧

probability that M
i

experiences a successful attack during time
interval ⌧ when no secure resource is assigned to this mission

p

i

j

relative probability of occurrence of the j -th attack
l

i

number of attack types corresponding to M

i

L i

j

potential loss due to the event si
j

L i total expected damage from risk for mission M

i

L i

LogN

total expected damage from risk for mission M

i

when TBC is
modeled by lognormal distribution

5.2 Risk Assessment

To calculate the expected loss due to risk, we find the relative probabilities
of attack types (Section 5.2.1) and the probability that missions experience a
successful attack during a time interval (Section 5.2.2).

5.2.1 Computing Relative Probabilities The relative probability of the
j -th attack type can be computed based on available historical data. Given
historical data from a previous time period, the relative probability of the j -th
attack type corresponding to mission M

i

is computed from:

p

i

j

=
perc

i

jP
li

k=1 perc
i

k

(7)

where perc

i

k

is the percentage of times that mission M

i

experienced attack type
k during the last time period. Alternatively, depending on the available data set,
perc

i

k

can be defined as the percentage of enterprises that experienced the k -th
type of attack during the last time period. Moreover, in case that an enterprise
is supplied with its security expert’s opinion rather than past data, perci

k

can
be expressed based on the expert opinion, and be defined as the percentage of
experts that think the enterprise will experience the attack type k.

5.2.2 Computing Probability of Experiencing an Attack The probabil-
ity of experiencing a successful attack during time interval ⌧ can be modeled
by di↵erent probability distributions. Let random variable X represent the time
between two consecutive attacks. Further, let qi(⌧) denote the probability that
no successful attack has occurred in the time interval ⌧ for mission M

i

. Then:

q

i(⌧) = Pr(X > ⌧)

p

i

⌧

= 1� q

i(⌧) = F

X

(⌧) (8)

where F

X

is the Cumulative Distribution Function (CDF) corresponding to the
random variable X [17].



Lognormal Distribution: Authors in [9] conducted a large-scale study on
the required time to compromise a computer system. According to their analysis
on detected cyber intrusions on 260, 000 computer systems over a period of three
years, they find that lognormal distribution is the best fit to model the Time
Between Compromises (TBC).

Assume X has a lognormal distribution with parameters µi and �

i:
X ⇠ lnN (µi

,�

i). Then,

p

i

⌧

=
1

2


1 + erf

✓
ln (⌧)� µ

i

�

i

p
2

◆�
(9)

where erf is the error function. The parameters of lognormal distribution (µi and
�

i) can be estimated from the historical data.

6 Data and Simulation Results

We evaluate the mission-oriented security model through an example of seven
missions competing for constrained secure resources. We first calculate a numerical
value for the probability of experiencing a successful attack during 30 days
(Section 6.1). We then present datasets of the Ponemon Institute cost of breach
survey and CSI/FBI surveys of security event that we exploit to characterize
the risk of missions (Section 6.2). We evaluate the performance of our proposed
model and compare it with the performance of two other policies (Section 6.3).
We further investigate the e↵ect of di↵erent factors on the performance of the
three di↵erent approaches (Section 6.4). Finally, we provide a sensitivity analysis
that studies the e↵ect of incorrectly estimating the probability of occurrence of
attacks on the performance of our method (Section 6.5).

6.1 Computing the probability of experiencing a successful attack
on the local servers (p⌧ )

We consider the probability of attack arrival over a month by setting the parameter
⌧ in (9) to 30 days.

The study in [9] found that the Maximum Likelihood estimate of the lognormal
parameters are µ̂ = 3.719 and �̂ = 1.065. Hence, assuming TBC has a lognormal
distribution, from (9), the probability that M

i

experiences a successful attack
when its resource requirements are satisfied from its local server is computed as:

p

i

⌧

=
1

2


1 + erf

✓
ln (30)� 3.719

1.065
p
2

◆�
= 0.3827

Recall that mission M

i

will not experience any successful attack if all of its
resource requirements are satisfied from the secure server. If part of its resource
requirements is satisfied from its local server, the damage due to a successful
attack will only be proportional to the amount of resources allocated from the
local server, i.e., only local server use induces damage.



6.2 Data and Experiments Settings for Ponemon Institute and
CSI/FBI Surveys

We consider seven di↵erent missions with risk characteristics derived from the
Ponemon Institute and CSI/FBI surveys, and conduct 100 iterations in which
attack characteristics are simulated based on p

⌧

and risk vectors in Table (3).
The special resource has only W0 = 3500 units of resource while the amount of
required resources (G

i

’s) and payouts (P
i

’s and Q

i

’s) are drawn uniformly at
random from ranges: G

i

2 U([1000, 1500]) (for all missions).
P

1

2 U([80000, 100000]), P
2

2 U([30000, 40000]), P
3

= U([40000, 60000]),

P

4

2 U([40000, 60000]), P
5

2 U([20000, 22000]), P
6

2 U([50000, 52000]),

and P

7

2 U([11000, 13000]).

Q

1

2 U([50000, 70000]), Q
2

2 U([15000, 25000]), Q
3

2 U([30000, 40000]),

Q

4

2 U([30000, 40000]), Q
5

2 U([12000, 15000]), Q
6

2 U([30000, 35000]),

and Q

7

2 U([7000, 10000]).

Further, the unit cost of using the special resources is c
i

= 2 for each mission,
while the unit cost of the local resources is b

i

= 1 for each mission.

6.2.1 Ponemon Institute Study The Ponemon Institute conducted a sur-
vey [18] on the annual cost of cybercrime from 237 organizations in six di↵erent
countries: United States (M1), Japan (M2), Germany (M3), United Kingdom
(M4), Brazil (M5) and Australia (M6). We use their results to assess risk corre-
sponding to six missions. We consider a scenario in which the data of each country
contributes to the evaluation of risk for the six di↵erent missions (M1, . . . ,M6).

Eight di↵erent types of attack have been identified by the Ponemon Institute
study. The eight types of attack categorized by Ponemon Institute and the
percentage of users who experienced these attacks are: Malware (98%), Phishing
and Social Engineering (70%), Web-based attacks (63%), Malicious code (61%),
Botnets (55%), Stolen devices (50%), Denial of services (49%), and Malicious
insiders (41%). Organizations were asked if they have experienced these types
of attack. Using (7), we calculate the relative probability of each attack type
(pi

j

’s for i = 1, . . . , 6 and j = 1, . . . , 8). Furthermore, we use their results, and
compute the monthly damage as a result of these types of attack for each
mission. As an example, we can compute the relative probability of the Malware
attacks (the first type of attack corresponding to missions M1, . . . ,M6) from
(7) as: p1 = 0.98

0.98+0.70+0.63+0.61+0.55+0.50+0.49+0.41 = 0.2012. Furthermore, the
damage due to Malware attacks for mission M1 (United States) for the fiscal
year of 2016 was reported to be 0.13x17.36 million = $2, 256, 800. Therefore, on
average, the monthly damage as a result of Malware attacks for mission M1 was
d1 = 2,256,800

12 = 188, 067.
Table (3) summarizes risk parameters for each mission with the columns

M1, . . . ,M6. From this data set, Malware attacks were the most common types of
attack experienced by users, while Malicious code had the most severe damage.

6.2.2 CSI/FBI Survey In a sequence of surveys [8, 19, 20] conducted yearly
by the Computer Security Institute (CSI) and the Federal Bureau of Investigation



Table 3: Risk characteristic from Ponemon Institute and CSI/FBI surveys.
Missions

relative probabilities/damage M

1

M

2

M

3

M

4

M

5

M

6

M

7

p

i

1

0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.1005
d

i

1

188,067 139,833 124,133 78,108 79,050 57,333 118,919
p

i

2

0.1437 0.1437 0.1437 0.1437 0.1437 0.1437 0.1411
d

i

2

217,000 69,917 124,133 66,092 35,133 53,750 3,926
p

i

3

0.1294 0.1294 0.1294 0.1294 0.1294 0.1294 0.0024
d

i

3

173,600 146,825 111,067 102,142 87,833 46,583 29,375
p

i

4

0.1253 0.1253 0.1253 0.1253 0.1253 0.1253 0.0239
d

i

4

347,200 48,942 58,800 66,092 48,308 46,583 4,176
p

i

5

0.1129 0.1129 0.1129 0.1129 0.1129 0.1129 0.1077
d

i

5

43,400 34,958 13,067 18,025 8,783 7,167 2,605
p

i

6

0.1027 0.1027 0.1027 0.1027 0.1027 0.1027 0.1962
d

i

6

86,800 34,958 78,400 72,100 43,917 28,667 16,656
p

i

7

0.1006 0.1006 0.1006 0.1006 0.1006 0.1006 0.0359
d

i

7

231,467 90,892 104,533 138,192 79,050 68,083 27,383
p

i

8

0.0842 0.0842 0.0842 0.0842 0.0842 0.0842 0.1914
d

i

8

159,133 132,842 39,200 60,083 57,092 50,167 11,271
p

i

9

— — — — — — 0.0861
d

i

9

— — — — — — 4,684
p

i

10

— — — — — — 0.0144
d

i

10

— — — — — — 1,267
p

i

11

— — — — — — 0.0502
d

i

11

— — — — — — 17,877
p

i

12

— — — — — — 0.0502
d

i

12

— — — — — — 224,987
Expected damage (L i

LogN

) 70987 34894 33638 28745 21674 17585 12238

(FBI), respondents from di↵erent industry organizations are asked the types of
attack they experienced and the cost of those attacks to their organization. We
use this dataset to evaluate security risk corresponding to another mission (M7).

The latest CSI/FBI survey that we found which contains damage lost per
attack type, per respondent is their 2003 survey [19]. 12 di↵erent types of attacks
were identified by this survey. These attack types and percentage of respondents
that experience each of these types of attack are: Denial of service (42%), Stolen
devices (59%), Active wiretap (1%), Telecom fraud (10%), Unauthorized access
by insiders (45%), Virus (82%), Financial fraud (15%), Insider abuse of Net
access (80%), System Penetration (36%), Telecom Eavesdropping (6%), Sabotage
(21%), and Theft of Proprietary Info (21%).

Likewise, we calculate the relative probability of each attack type (p7
j

’s for j =
1, . . . , 12) for M7 using (7). For example, the relative probability corresponding
to DoS (the first type of attack corresponding to missions M7) is p1 = 0.1005.
Moreover, the damage due to DoS attack was on average d1 = 1,427,028

12 = 118, 919
monthly. Refer to column M7 of Table (3) for risk vectors of this mission.
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Fig. 2: Survivor functions of three policies

6.3 Performance Evaluation

6.3.1 Comparison of Di↵erent Policies: We compare our proposed MILP-
based framework that maximizes the expected total profit with two other policies:

(a) Risk-Averse Policy: In this policy, we only continue missions whose request
to use the secure resources can be fully satisfied. We stop the rest of the
missions. Then, the secure resource allocation is a well-known knapsack
problem where we have n objects with values of Q

i

, weights of G
i

and cost
of c

i

. The capacity of the knapsack is W0. The optimal allocation of secure
resources in this policy can be found by a greedy algorithm which serves the
requests of the missions with a higher Qi

ciGi
value first until the knapsack does

not have enough capacity to store any other object.
(b) Risk-Ignorant Policy: In this policy, the risk is ignored. Hence, every

mission is always continued, and the resource allocation is based on a simple
Linear Program, a modified version of (2), where for each mission, y

i

= 1
and the probability of occurrence of attacks ↵i

j

= 0.

We present our results by showing the ratio of achieved total profit from these
three policies over the maximum possible total profit. Based on the value of p

⌧

and the risk vectors shown in Table (3), we simulate the attack occurrences. The
maximum possible total profit is achieved from a hypothetical scenario in which
an oracle knows the attack occurrences ahead of time so that accordingly the
assignment of the secure resources and the decisions to continue or stop missions
are made with full knowledge. Note that in reality, we do not have such oracles,
so the best we can achieve is to plan to maximize the expected total profit.

The average ratios are 0.52, �0.23 and 0.41 for our proposed approach, risk-
ignorant, risk-averse policies, respectively. Moreover, the standard deviations of



the ratios are 0.32, 1.11 and 0.1 for our proposed method, risk-ignorant, risk-
averse policies, respectively. Fig. 2 shows the survivor functions (1-CDF) of the
ratios for 100 iterations.

Insight 1. We observe that the risk-ignorant method might result in a negative
total profit with a probability of about 0.50, while our proposed approach leads to
a positive total profit with a probability of about 0.90.

Insight 2. The risk-averse policy almost never results in a ratio (achieved total
profit over maximum possible total profit) close to one. In fact, the probability that
the risk-averse approach exceeds a ratio of 0.5 is only 0.14, while our proposed
approach results in a ratio of 0.5 or greater with a probability of 0.64.

6.4 A↵ect of the probability of experiencing a successful attack on
the local servers (p⌧ ) and the normalized damage (di

j/min Pi)
on the performance

To investigate the e↵ects of p
⌧

(probability of experiencing a successful attack
on the local servers) and d

i

j

/min P

i

(damage per attack type normalized by the
minimum possible payout from all the local servers) on the ratios (achieved total
profit from the three polices over the maximum possible total profit), we perform
two di↵erent simulations. In the first simulation, we still assume the probability
of a successful attack follows the lognormal distribution (p

⌧

= 0.3827), and
investigate the a↵ect of damage from attacks. In this experiment, we set all the
attack types to have the same damage value (di

j

:= D) for a constant D. In Fig.
3a, we plot the average ratios from 100 iterations for each di↵erent values of D.
We show the x-axis as D values normalized by the minimum possible achievable
payouts from all the local servers (11000).

In the second simulation, we fix the damage as in Table (3), but we vary the
probability of a successful attack (p

⌧

). We plot in Fig. 3b the average ratios from
100 iterations for each di↵erent values of p

⌧

.

Insight 3. As can be seen from Fig. 3, when the probability of a successful attack
(p

⌧

) or damage (D) have small values, our algorithm performance matches the
risk-ignorant performance and even outperforms it. On the other hand, when p

⌧

or D are large, the performance of risk-ignorant policy drops drastically, while
the performance of our algorithm matches the risk-averse policy performance.

To conclude this subsection, we illustrate the average ratio of our proposed
approach from 500 iterations for each di↵erent values of p

⌧

and D using a bar
plot (Fig. 4). For p

⌧

= 0 or d

i

j

= 0, maximizing the expected total profit (our
MILP-based approach) matches maximizing the total possible profit, and hence
the ratio is 1. Furthermore, when p

⌧

= 1, the ratio is also close to 1. This
observation leads to insight 4:

Insight 4. In the situations where there exist no uncertainty on the occurrence
of attacks (i.e. the chance of a successful attack is either 0 or 1), our proposed
approach reaches the maximum achievable total profit.
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Insight 5. Generally, the loss in the total profit achieved by our proposed policy
is caused by uncertainty on the occurrence of successful attacks. Particularly, when
the probability of a successful attack is roughly about 0.5, the lowest performance
of our approach is caused. More precisely, based on di↵erent levels of damage due
to the attack, Table (4) shows the probabilities of a successful attack that leads to
the lowest performance of our proposed method.



Table 4: Successful attack probabilities that cause the lowest performance of our
proposed approach for the di↵erent level of damage due to the attack.
D 13 12 11 10 9 8 7 6 5 4 3 2 1

p⌧ 0.3 0.4 0.4 0.4,0.5 0.3,0.5 0.5 0.5,0.4 0.5,0.4 0.5,0.6 0.7 0.7 0.9 0.6,0.7

Table 5: Data and parameters of the synthetic dataset.
Missions

W 0 = 200 M
high

M
med

M
low

Number of missions 5 10 10
Gi U([20-40]) U([20-40]) U([20-40])
bi 1 1 1
ci 2 2 2

Number of di↵erent types of attack 10 10 10
↵i

j 0.25 0.25 0.25
Estimated ↵i

j ↵̂ ↵̂ ↵̂

Pi U([120-150]) U([100-120]) U([80-100])
Qi U([100-120]) U([80-100]) U([60-80])

6.5 Sensitivity Analysis

In this scenario, we study the a↵ect of incorrect estimation of the probability
of occurrence of di↵erent attack types (↵i

j

) on the total profit. Over- or under-
estimating this probability can result in non-optimal decisions:

(a) Decide to continue a mission while the optimal decision is to stop the mission,
and vice versa.

(b) Decide to allocate the secure resources to a mission while the optimal decision
is to only assign the local resources to that mission.

Consider the following scenario where there are three di↵erent types of mission:
10 missions have a low-level payout, 10 missions have a medium-level payout,
and 5 missions have a high-level payout. The capacity of the secure special
resources/server W0 = 200, and each mission requires U([20 � 40]) units of
resource. The cost for each mission for using their local and the secure servers are
b

i

= 1 and c

i

= 2, respectively. The payout of the high-level missions from their
local server is in the range of U([120� 150]) while their payout from the secure
server is in U([100�120]). Further, the payout of the medium-level missions from
their local server is in U([100� 120]) while their payout from the secure server
is in U([80� 100]). The payout of the low-level missions from their local server
is in U([80� 100]) while their payout from the secure server is in U([60� 80]).
In this scenario, each mission is exposed to 10 di↵erent types of attack. The
true probability of each type of attack for all missions is ↵

i

j

= 0.25. Table (5)
summarizes the parameters for this scenario.

For each value of ↵̂ (estimated probability of occurrence of di↵erent attack
types) and d

i

j

(damage due to those undesirable events), we run 500 iterations,
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and find the average error rate where the error rate is calculated by first finding
the di↵erence between the total profit when there is no error on the estimated
probability (↵̂) and the total profit when under/over-estimating ↵̂. Then, the
absolute value of the di↵erence is divided by the total profit when there is no
error on the estimated probability. An error rate of greater than 1 indicates
that the obtained total profit by miscalculating the probability of occurrence of
attacks has a negative value. As expected the more we deviate from the true
probability of occurrence of attacks the higher the error rate is. Fig. 5 depicts the
results when the true probability of occurrence of all types of attack is ↵i

j

= 0.25.

Insight 6. We observe that under-estimating the occurrence of di↵erent types
of attack probabilities has more severe consequences than over-estimating them.

Insight 7. A counter-intuitive observation is that when over-estimating the
probability of occurrence of di↵erent attack types, as the damage increases the
error rate increases also. However, after the normalized damage reaches a certain
level, the error rate starts to decrease.

7 Limitations and Discussion

In this work, for mathematical simplicity, we assumed payouts (P
i

’s and Q

i

’s) and
potential damage are proportional (linear) to the amount of allocated resources.



In general, partial payouts and damage might have a nonlinear relation to the
amount of allocated resources. However, these mathematical assumptions are
prevalent, and usually, do not have a significant impact on the overall performance.

Another limitation of our framework is that we assumed the secure resources
are immune from any successful attack, and hence, a mission whose request is
fully satisfied from the secure server will not su↵er from any attack. This might
not be the case in real-world scenarios, and there could be a chance that the
secure server is vulnerable to risk too. However, our model can be easily modified
to address this scenario.

8 Conclusions

In this paper, we presented a mission-oriented security model—an optimization-
based framework to allocating resources that integrates security risk, cost and
payout metrics to optimally allocate constrained secure resources to discrete
actions called missions. We modeled this deployment or adaptive decision problem
as a Mixed Integer Linear Program (MILP) which can be solved e�ciently by
di↵erent optimization solvers such as MATLAB MILP solver. Additionally, we
proposed a novel quantitative risk assessment technique to learn the attack rates
and risk characteristic from historical data. We used this technique to maximize
the expected total profit gained from all the missions. We evaluated our model
using the existing risk surveys and validated the model robustness and uncovered
a number of insights on the importance of risk valuation in resource allocation.

This work is an e↵ort in developing techniques on how to allocate resources
in the face of risk. The capability a↵orded by this model will allow us to explore
di↵erent policies by evaluating their e↵ectiveness when dealing with varying
characteristics of risk. In the future, we will explore a wide range of environments
and assess its ability to promote e↵ectiveness to di↵erent adversarial assumptions.
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