
Measuring Integrity on Mobile Phone Systems

Divya Muthukumaran
Systems and Internet
Infrastructure Security

Laboratory
Pennsylvania State University

University Park, PA 16802
dzm133@psu.edu

Anuj Sawani
Systems and Internet
Infrastructure Security

Laboratory
Pennsylvania State University

University Park, PA 16802
axs1003@psu.edu

Joshua Schiffman
Systems and Internet
Infrastructure Security

Laboratory
Pennsylvania State University

University Park, PA 16802
jschiffm@cse.psu.edu

Brian M. Jung
Secure Systems Group

Samsung Electronics Co., Ltd.
Suwon-City, Gyeonggi-Do,

Korea, 443-742
brian.m.jung@samsung.com

Trent Jaeger
Systems and Internet
Infrastructure Security

Laboratory
Pennsylvania State University

University Park, PA 16802
tjaeger@cse.psu.edu

ABSTRACT
Mobile phone security is a relatively new field that is gather-
ing momentum in the wake of rapid advancements in phone
system technology. Mobile phones are now becoming so-
phisticated smart phones that provide services beyond ba-
sic telephony, such as supporting third-party applications.
Such third-party applications may be security-critical, such
as mobile banking, or may be untrusted applications, such
as downloaded games. Our goal is to protect the integrity of
such critical applications from potentially untrusted func-
tionality, but we find that existing mandatory access con-
trol approaches are too complex and do not provide formal
integrity guarantees. In this work, we leverage the sim-
plicity inherent to phone system environments to develop
a compact SELinux policy that can be used to justify the
integrity of a phone system using the Policy Reduced In-
tegrity Measurement Architecture (PRIMA) approach. We
show that the resultant policy enables systems to be proven
secure to remote parties, enables the desired functionality
for installing and running trusted programs, and the resul-
tant SELinux policy is over 90% smaller in size. We envision
that this approach can provide an outline for how to build
high integrity phone systems.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection —
Access Control

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’08, June 11–13, 2008, Estes Park, Colorado, USA.
Copyright 2008 ACM 978-1-60558-129-3/08/06 ...$5.00.

General Terms
Security

Keywords
Integrity Measurement, Mobile Phones, SELinux

1. INTRODUCTION
Cellular communication is changing. Mobile phones have

become smaller, lighter, and more powerful, and support
a wide variety of applications, including text messaging, e-
mail, web surfing and even multimedia transmissions. Smart
phones that are a hybrid of cell phones and PDAs that can
handle voice and data communications, in essence function-
ing as a ”tiny computer.” This transformation motivated
the transition from small, custom operating environments
to more powerful, general purpose environments that are
based on personal computer environments, such as Windows
Mobile [33] and Linux phone OS projects [19, 23].

Third-party developers now provide many multimedia ap-
plications that users can easily download onto these powerful
new phones. The flexibility of supporting third-party appli-
cations presents security concerns for other applications that
handle critical user data. For example, mobile banking ap-
plications have been created for such phones [2], providing
attackers with a valuable target. Worm attacks [16, 4] have
been launched against the market-leading Symbian mobile
platform [27], a variety of vulnerabilities on this platform
have been identified [7, 29], and a large number of users (over
5 million in March 2006 [11]) download freeware games (i.e.,
potential malware) to their mobile devices. As a result, it
seems likely that mobile phones, including Linux and Win-
dows phones, will become targets for a variety of malware.

Security architectures for phone systems are emerging, but
they make no concrete effort to justify critical application
integrity. The Symbian security architecture distinguishes
between its installer, critical applications, and untrusted ap-
plications. The Symbian approach has been effective at pro-
tecting its kernel, but some critical resources, such as phone

contacts and Bluetooth pairing information, can be compro-
mised by untrusted applications [24]. A mandatory access
control framework has been developed for Linux, the Linux
Security Modules (LSM) framework [34], but LSM-based ap-
proaches (e.g., SELinux [22] and AppArmor [21]) do not en-
sure integrity. The SELinux LSM focuses on enforcing least
privilege, and its policies on personal computer systems are
too complex to understand integrity completely. The Ap-
pArmor LSM focuses on confining network-facing daemons,
which may prevent integrity problems from untrusted net-
work requests, but not from untrusted programs running on
the system.

Our goal is to protect the integrity of critical phone ap-
plications from the untrusted code and data of downloaded
third-party applications. The mobile banking application
above is one critical phone application. The aim is to install
and execute such trusted applications under the control of
a phone policy for which precise integrity guarantees can be
made. We believe that mandatory access control policies
are the foundation for providing such guarantees, but the
policies developed thusfar are inadequate because they are
too complex or are focused on the wrong goal.

In this paper, we define a MAC policy for a Linux phone
system and enable a remote party to verify the integrity of
our phone systems using integrity measurements. We use
the SELinux LSM as the starting point, but we reduce the
policy to focus on integrity goals. In designing our phone
policy, we use the CW-Lite integrity model [25], a weakened,
but more practical, version of the Clark-Wilson integrity
model [6] to define our precise integrity goals. Focusing on
integrity, we find that the SELinux LSM policy can be re-
duced dramatically, by over 90% in size thusfar, although
we believe that much greater reductions are possible. We
also show that the resultant policy is suitable for justifying
the integrity of such critical applications to remote parties
using the PRIMA integrity measurement architecture [13].
PRIMA measures the trusted code and the information flows
generated by the MAC policy to ensure that the integrity
of the trusted code is protected from low integrity inputs
according to the CW-Lite integrity policy. We envision that
this approach can provide an outline for how to build high
integrity phone systems in the future.

The structure of the paper is as follows. In Section 2, we
review the background of phone systems, SELinux, formal
integrity models, and integrity measurement that form the
basis for this work. In Section 3, we define the phone sys-
tem architecture, outline our policy design goals, and show
that these goals satisfy integrity requirements while permit-
ting the necessary function. In Section 4, we describe the
implementation of our system on an evaluation board us-
ing to prototype phone software. We show how our policies
are implemented, and how integrity measurements are gen-
erated for this system. We also provide results showing the
performance of the system, when performing integrity mea-
surement. In Section 5, we specify other related work, and
we conclude with Section 6.

2. BACKGROUND
In this section, we provide background for phone systems

security, SELinux, integrity models, and integrity measure-
ment approaches that motivate our work.

2.1 Mobile Phone Security

Historically, mobile phone systems have been standalone
devices with custom operating systems. These consumer
electronics devices were installed with software in the factory
and no user interfaces were provided for typical users to
update the software.

As more functional, “Smart” phones began to appear, the
operating system functionality requirements increased. A
consortium of phone manufacturers created the Symbian op-
erating system [27], a general-purpose, embedded operating
system targeted specifically at the phone market.

The Symbian operating system is most noteworthy for
not having a known kernel compromise in its history, but
it also implements an interesting security model. The Sym-
bian system defines three distinct subjects: the installer,
Symbian-signed subjects, and untrusted subjects [28]. Each
process is assigned to one of these three subjects depending
upon which of the three categories the originating program
file belongs. The three subjects essentially form a Biba hier-
archy with installer being the highest integrity level. How-
ever, the choice of how files are assigned to integrity-levels
is somewhat ambiguous. For example, some system files,
such as the Bluetooth pairing database can be modified by
untrusted code, permitting untrusted devices to upload files
unbeknownst to the user [24]. Although we like the small
number of subjects, the integrity protections provided are
insufficient.

Recently, Windows and Linux-based phone systems have
begun to emerge, eating into the Symbian market share, al-
though it is still the operating system in over 50% of the
phone devices sold. Windows and Linux systems bring both
applications and security issues to the phone market. Secu-
rity in the initial versions of these phones was nearly non-
existent. For early Linux phones, if an attacker could get
a user to download her malware to the phone, it would be
trivially compromised. But, most modern phones provide
users with easy mechanisms to upload new programs. As
a result, many phone system vendors are seeing that they
need to add security enforcement. Motorola Linux phones,
such as the A1200, include a mandatory access control mod-
ule called MotoAC [19] and Samsung Research has explored
SELinux on phones [35].

The challenge for phone security is becoming similar to the
personal computer. Do the phone system vendors provide
so much flexibility that the phones become impossible to
manage? Or can a model of security that permits the secure
use of untrusted code be created? We explore the answers
to these questions in this paper.

2.2 SELinux
SELinux is a reference monitor for the Linux operating

system [22]. SELinux enforces a mandatory access control
policy based on an extended Type Enforcement model [3].
The traditional TE model has subject types (e.g., processes)
and object types (e.g., sockets), and access control is repre-
sented by the permissions of the subject types to the object
types. All objects are labeled with a type. All objects are
an instance of a particular class (i.e., data type) which has
its own set of operations. A permission associates a type,
a class, and an operation set (a subset of the class’s opera-
tions). Permissions are assigned to subject types using an
allow statement.

SELinux also permits domain transitions that allow a pro-
cess to change its label (e.g., when it executes a new pro-

gram). Domain transitions are important because an un-
privileged program could not invoke a privileged program
without such transitions. For example, passwd would not
be able to change a user’s password in the /etc/shadow file
when called from a user’s shell unless a transition permitted
passwd to invoke its own rights. Domain transitions are also
relevant to security because a privileged program that does
not protect itself from invocations by untrusted subjects will
be a security liability to the system. In SELinux, a subject
type must have a transition permission to the resultant
subject type in order to effect a domain transition.

SELinux provides a fine-grained model in which virtually
any policy could be defined. As a result, we believe that the
SELinux model can be used to implement a policy that we
can use to verify the integrity of critical phone applications.
However, the development of SELinux policies to date have
focused on defining least privilege permissions to contain
services. Also, SELinux policies have grown to be very com-
plex. A typical SELinux policy is approximately 3MB in size
containing over 2000 types and between 50,000 to 100,000
permission assignments. While there have been efforts to
shrink the SELinux policy, we believe that a different view
of policy and function is necessary for the phone system. If
we can get a simple SELinux policy that provides effective
functionionality, then we might get a handle on security be-
fore the phone systems get out of control. We believe that
to do this we need to focus on the integrity protection of
critical applications.

2.3 Integrity Models
Protecting the integrity of critical system applications has

always been a goal of security practitioners. However, the in-
tegrity models that have been proposed over the years seem
not to match the practical environment. Our challenge in
the development of phone system policies is to find a prac-
tical integrity model.

The Biba integrity model [15] assigns integrity labels to
processes and relates these labels in an integrity lattice. Biba
integrity requires that normal processes not read data at
labels of lower integrity in the lattice. Also, Biba integrity
does not permit normal processes to write data at labels of
higher integrity in the lattice. As such, no lower integrity
data could reach our critical, high integrity application in
a Biba system. Unfortunately, many critical applications,
including software installers, read some low integrity data.

Efforts to allow processes to read lower integrity data
without compromising their integrity have not found accep-
tance either. LOMAC [8] requires that a process drop its in-
tegrity level to that of the lowest integrity data it reads, but
some critical phone processes, such as the telephony servers,
must be permitted to accept commands from low integrity
subjects, but execute at high integrity. In general, we find
LOMAC too restrictive, although we implement a variant
of it for software installers (see Section 4.2). Clark-Wilson
integrity [6] provides a more flexible alternative, by permit-
ting subjects to read low integrity data if the immediately
discard or upgrade the data, but Clark-Wilson requires full
formal assurance of such processes.

We have previously proposed a compromise approach to
integrity, called the CW-Lite integrity model. CW-Lite is
weaker than Clark-Wilson in that it doesn’t require full for-
mal assurance, but CW-Lite requires processes to have fil-
tering interfaces that immediately upgrade or discard low

integrity data as Clark-Wilson prescribes. The focus then
moves to identifying where low integrity data may be read
and ensuring that programs use filtering interfaces to read
such data. We aim to apply this view of integrity to phone
systems.

2.4 Integrity Measurement
Given the inherently untrustworthy nature of remote par-

ties, it is desirable to be able to validate that a system is of
high integrity. More specifically, there should be some guar-
antee that the remote machine is only running programs that
are trusted to behave properly and that the security policy
is correct. A proposed method of establishing these guaran-
tees uses integrity measurement [26, 17, 10, 5, 12]. Integrity
measurements consist of cryptographic hashes that uniquely
identify the components that define system integrity (i.e.,
code and data). Remote parties verify the integrity of a sys-
tem by verifying that the integrity measurements taken are
consistent with the remote party’s view of integrity. Such
measurements are conveyed in a messages signed by an au-
thority trusted to collect the measurement, and a signed
integrity measurement is called an attestation.

The secure storage and reporting of these measurements
are typically reliant upon a root of trust in hardware like
the Trusted Computing Group’s Trusted Platform Module
(TPM) [32]. This commodity cryptographic co-processor
has facilities storing hash chains in a tamper-evident fash-
ion. It can also securely generate public key pairs that are
used to sign attestations and identify itself to remote par-
ties. Samsung demonstrated a phone with a hardware TPM,
called the Mobile Trusted Module [31], at the CES confer-
ence in Las Vegas in January 2008 [1].

Several architectures exist to gather integrity measure-
ments such as the Linux Integrity Architecture (IMA) [10].
It obtains run-time integrity measurements of all code that
is memory-mapped as executable. This facilitates the detec-
tion of any malware present on a system.

However, the IMA approach is too simplistic for phone
systems for two reasons. First, if any untrusted code is run
on the phone system, such as a third-party game, then an
IMA verification will result in the entire phone being un-
trusted. Second, if an attack can modify a data file used by
a trusted process, then the remote party may be tricked into
thinking that a compromised phone is high integrity because
IMA only measures the code and static data files. We aim to
enable a phone system to run some untrusted code as long
as the MAC policy enables verification that the trusted code
is protected from inputs from such untrusted code.

2.5 PRIMA
The Policy-Reduced Integrity Measurement Architecture

(PRIMA) [13] addresses the problem of run-time integrity
measurements by additionally measuring the implied infor-
mation flows between processes from the system’s security
policy. This way, a verifier can prove that trusted com-
ponents in the system are isolated from untrusted and po-
tentially harmful inputs. Moreover, PRIMA’s CW-Lite in-
tegrity enforcement model only requires the trusted portions
of a system to be measured and thus reduces the number of
measurements required to verify a system.

In addition to the basic integrity measurements of code
and static data, we identify the following set of measure-
ments necessary for a remote party to verify CW-Lite in-

Trusted
Program

Untrusted
Program

Installer

Operating System Kernel

MAC
Enforcement PRIMA

CRTMRoot of Trust
Measurement

Operating
System

System
Services

Applications

Figure 1: Software architecture for a phone system

tegrity:

1. MAC Policy: The mandatory access control (MAC)
policy determines the system information flows.

2. Trusted Subjects: The set of trusted subjects (TCB)
that interact with the target application is measured.
The remote party must agree that this set contains
only subjects that it trusts as well.

3. Code-Subject Mapping: For all code measured,
record the runtime mapping between the code and the
subject type under which it is loaded. For example, ls
may be run by normal users or trusted administrators;
we might want to trust only the output of trusted pro-
grams run by trusted users. If the same code is run
under two subject types, then we take two measure-
ments, but subsequent loads under a previously-used
subject type are not re-measured.

At system startup, the MAC policy and the set of trusted
subjects is measured. From these, the remote party con-
structs an information flow graph. The remote party can
verify that all edges into the target and trusted applications
are either from trusted subjects (that are verified at runtime
only to run trusted code) or from untrusted subjects via fil-
tering interfaces (recall that we extended the MAC system
to include interface-level permissions).

Next, we measure the runtime information. Due to the in-
formation flow graph, we only need to measure the code that
we depend on (i.e., trusted subjects’ code). All others are
assumed untrusted anyway. Also, we measure the mapping
between the code loaded and the trusted subject in which
the code is loaded, so the remote party can verify that the
expected code is executed for the subject. This is analo-
gous to measuring the UID a program runs as in traditional
UNIX.

By measuring how the code maps to system subjects,
PRIMA enables a remote party to verify that the system
runs high integrity code, perhaps with acceptable filtering
interfaces, in its trusted subjects, and that these subjects are
protected from information flows from untrusted subjects by
the MAC policy.

3. APPROACH

Package Installer
ipkg File

Labeler
setfiles

config executable
scripts

tmp log

Figure 2: The software installation process

3.1 System Architecture
Figure 1 shows the software architecture for a phone sys-

tem. First, the phone system contains some root of trust
which is the basis for integrity in a phone system. An ex-
ample is the Mobile Trusted Module [31] proposed by the
Trusted Computing Group. We are not aware of phone sys-
tem with a TPM, but we believe that some satisfactory root
of trust for phone systems will emerge.

Second, the phone system has an operating system ker-
nel that supports mandatory access control (MAC) and in-
tegrity measurement using the PRIMA approach. The MAC
policy of the kernel will be used to define the system’s in-
formation flows. The MAC policy is enforced by a reference
monitor in the kernel that mediates all the security-sensitive
operations of all the user-level programs. SELinux is an
example of a kernel with such MAC enforcement (see Sec-
tion 2.2). The PRIMA module measures the information
flows in this MAC policy as well as the code that is loaded
in the system, as described in Section 2.5, to enable verifica-
tion that the trusted subjects are protected from untrusted
subjects.

Third, the phone system has a software installer for in-
stalling both trusted and untrusted software packages. Most
phone systems permit the phone users to install new software
packages. In many cases, such installations require confir-
mation from the device user, but that is not always the case.
Also, some software packages may include signed hash files
that enable verification of the originator of package and the
integrity of its contents.

Fourth, the packages loaded on a phone system may in-
clude trusted packages, such as a banking client, and un-
trusted packages, such as a game program. While some
phone systems only permit the installation of signed pack-
ages from trusted authorities (e.g., Symbian-signed pack-
ages [28]), we envision that ultimately phone systems will
also have to support the use of arbitrary packages. However,
the trusted components of the system, such as the banking
client and the installer itself, must be provably protected
from such software.

3.2 Software Installation and Execution
Figure 2 shows the process of software installation. A

software installer is a program that takes a software pack-
age consisting of several files and installs these files into the
appropriate location in the phone’s file system. Since the
software installer may update virtually any program on the
phone system, it is entrusted with write access over all soft-
ware in the system. As a result, the integrity of the system

is dependent on the integrity of the software installer.
The software installation process also determines the la-

bels of the installed files. Typically, this is not done by the
software installer, however, but a MAC labeling service, out-
side the kernel, that labels the files based on a specification
in the MAC policy. In SELinux, a program called setfiles

interprets the MAC policy specification for file labeling to
set the correct labeling for the newly-installed package files.
The MAC labeling service must also be trusted, but unlike
the software installer, it need not interact with any untrusted
package files directly.

When the software installer executes, its executable uses
information in a variety of other files to implement installa-
tion. Such files may include installer configurations, scripts,
logs, and temporary files. Installation configurations, scripts,
and the installer executable itself are rarely modified (e.g.,
only on installer upgrades), so these can be assumed not
to be written on the loading of untrusted software. Other
files, such as logs and temporary files may be updated on
each installation. That is certainly the intent of the log file,
which is designed to collect information from each installa-
tion. Temporary files may or may not be used depending
on the installation process. In designing an access control
policy, in the next section, we must consider the use of these
files in designing policies that protect system integrity prop-
erly.

After the software packages are installed, the programs
included in these packages may now be executed (i.e., as
processes). In order to protect the integrity of the system,
trusted processes, such as the banking client, must be pro-
tected from untrusted processes, such as the game program.
As we identified in the PRIMA background in Section 2.5,
a process’s integrity depends on its code and the data that
it depends on. The banking client should be isolated from
untrusted programs, so it should not depend on data that
can be modified by untrusted processes. However, the in-
staller clearly receives input from untrusted processes (e.g.,
the untrusted programs themselves) which is necessary for
correct functioning. Thus, integrity must be justified while
allowing some access to untrusted data, but we also want to
minimize the amount of untrusted data that installers must
access.

3.3 System MAC Policy Design
The system MAC policy must enable practical justifica-

tion of integrity for the software installer and the trusted
packages that it installs. Here, we sketch the requirements
for the MAC policies for trusted programs and the installer.
The actual policies are defined in Section 4.

For trusted packages, such as the banking client, we be-
lieve that a conservative model of integrity is practical. Biba
integrity [15] (see Section 2.3) can be enforced for the bank-
ing client because its files can be isolated from all untrusted
programs. Since there is only one user on the phone sys-
tem, there is no need to have separate principals for differ-
ent banking client data files. We envision that many trusted
programs, such as those used to maintain phone books, ser-
vice configurations, etc., will be isolated from untrusted pro-
grams, and generally one another.

For the installer, isolation from untrusted programs is not
possible. As a result, only the more liberal justification of
CW-Lite integrity [25] (see Section 2.3) is possible1. In ad-

1We find that other system services on the phone, such as

Untrusted
process

Trusted
Installer

Trusted
process

UnTrusted
Installer

untrusted package

trusted
files

untrusted
files

labeler

config scripts

config scripts

(untrusted)

(trusted)

trusted tmp

untrusted tmp

trusted

untrusted

log file (PFS)

Figure 3: The modified installer process showing
filtering interface to handle untrusted input

dition, in the design of MAC policy for the installer, we
also wish to minimize exposure to the confused deputy prob-
lem [9] as well. As a result, our software installer runs with
permissions that permit any program to invoke it and per-
missions that permit it to access a package file anywhere in
the phone’s file system, but the installer’s permissions are
dropped based on the label of the package that it will install.

Figure 3 shows the modified installer process and outlines
the installer’s MAC policy. The installer must provide a fil-
tering interface that protects it from compromise on invoca-
tion. Thus, the installer’s integrity will not be compromised
by either a malicious invocation by an untrusted process
or an invocation that includes a malformed package. The
installer immediately determines whether it is installing a
trusted or untrusted package, and drops privileges to that
label. This prevents the confused deputy problem by not
allowing the installer to use its trusted privileges when in-
stalling untrusted software.

3.4 System Security
In this section, we show informally that the MAC policy

described above will enable verification of the integrity of
the trusted programs and the installer and these policies
will provide the necessary permissions for trusted programs
and the installer to function properly.

Biba Integrity.
For trusted programs, the MAC policy aims to ensure

isolation from untrusted programs. Isolation from other
trusted programs may be desirable for least privilege per-
missions, but is not required to prove system integrity. All
trusted programs must be trusted by the remote party in a

the baseband processor daemon that enables phone calls,
SMS, etc., can also be invoked by untrusted programs, so
these will also achieve CW-Lite integrity at best. A sim-
ilar approach would be used for securing them, but their
examination is outside the scope of this paper.

successful verification, so we assign all the same MAC policy
label, trusted. In addition to the initial verification of the
filesystem integrity on boot (see Section 2.5), PRIMA mea-
sures the code for each trusted program that is executed,
and the information flows in the MAC policy. All trusted
programs are isolated from untrusted programs in the MAC
policy, so if the trusted program’s code is acceptable to the
remote party, the integrity of the trusted programs is justi-
fied to the remote party.

CW-Lite Integrity.
For the installer, the MAC policy defines two principals

that the installer may run under: trusted, and untrusted.
The installer starts in the trusted principal and protects
itself from its invocation inputs using a filtering interface. If
the installer detects that it is installing untrusted software
(e.g., by lack of a signature), it then switches to untrusted

and loads the untrusted package. In this case, the installer
cannot modify any files of the trusted packages with un-
trusted data.

Supports Necessary Function.
Clearly, the trusted programs will run correctly, as their

configuration permits isolated execution from untrusted pro-
cesses, but we must be careful to enable the installer to run
correctly when it runs as an untrusted process. There are
two issues: one for files that are only read by the installer
and one for files that are read and written by the installer.
First, since the untrusted installer does not modify config-
urations and scripts, it can access these as normal. We have
found that the installer scripts do not require exceptional
privilege, so they can be run as untrusted.

Second, the installer may modify log files and temporary
files. Since the temporary files apply to the untrusted pack-
age being loaded and/or the untrusted files that are being
replaced, these can be treated as trusted or untrusted ac-
cording to the case. At present, the SELinux MAC policy
assigns the same label to all of the temporary files created
by an installer, so this will need to be changed. The log
files are more difficult. In this case, we want a single log file
name, but the untrusted installer should not be allowed to
modify trusted logs. Our design choice is to create separate
log files for trusted and untrusted installers, and we use a
file system implementation to enable these files to share the
same name (see Section 4.2).

4. IMPLEMENTATION

4.1 Experimental System
The initial design and development of mobile phones are

typically carried out on evaluation boards that have hard-
ware very similar to mobile phone hardware. Our imple-
mentation was performed on a Spectrum Digital Evaluation
board (OMAP 5912 OSK) with the following features:

• ARM CPU (ARM926EJ-S) operating at 192 Mhz

• 32 MB DDR RAM

• 32 MB Flash ROM

We run the Linux kernel 2.6.18.1 on the evaluation board
with the SELinux security module enabled and the PRIMA
patches applied (see Section 4.4). The kernel is booted with

the u-boot 1.3.1 bootloader which is commonly-used on
embedded devices. We cross-compiled the kernel and boot-
loader for the ARM platform using a toolchain generated
using buildroot, a script for generating toolchains and root
filesystems.

The root filesystem software originates from the Qtopia
Linux distribution [30]. We use the ipkg installer from the
Linux OpenMoko distribution [23] as our installer. It is the
only software we use from outside the Qtopia distribution.

Once the kernel is uploaded to the flash memory on the
board, almost all further compilation is performed directly
on the board. An exception is the compilation of the SELinux
policy which fails on the board due to memory constraints.
It was compiled on an x86 machine and copied to the board’s
root filesystem.

We use Journalling Flash File System 2 (JFFS2) with ex-
tended attributes support as the file system format on the
evaluation board. JFFS2 is becoming increasingly popu-
lar as the filesystem format for mobile devices due to the
numerous advantages for flash memory. Due to storage
space limitations of the evaluation board, we divided our
root filesystem into two parts. The majority of the filesys-
tem was flashed onto the memory on the board while the
remaining(/usr and /tmp) was mounted via NFS from a re-
mote machine. We note that SELinux does not trust NFS
by default and gives the NFS-mounted files the same label,
nfs_t. On the phone, this would not be a problem as the
root filesystem would not be mounted remotely.

4.2 Simplifying the Installer Policy
The basic idea behind the reduction in policy complexity

is to move from a fine-grained, least privilege policy to a
coarse-grained, integrity policy. We make a distinction be-
tween the purpose SELinux policies serve in personal com-
puters and what we want it to do in phone systems. Tradi-
tionally, SELinux is used to enforce a least privilege MAC
which results in a very fine-grained policy. For example, a
large number of SELinux types are defined for which there
must be many more rules between types. As an example,
consider how the policy for installers are defined in a tradi-
tional SELinux policy 2. Installers needs access to different
kinds of files, namely, the executable, configuration files, log
files, scripts, temporary files, and libraries. Because the aim
is to have a least privilege policy, each of these files is given
its own SELinux type to make a distinction among them.
This results in many types defined just for the ipkg installer
as shown below.

type ipkg_t; /* ipkg process */
type ipkg_exec_t; /* ipkg executable */
type ipkg_file_t; /* ipkg configuration */
type ipkg_log_t; /* ipkg log */
type ipkg_script_exec_t; /* ipkg scripts */
type ipkg_script_t; /* ipkg script process */
type ipkg_script_tmp_t; /* ipkg script temp files */
type ipkg_script_tmpfs_t; /* ipkg script tmpfs use */
type ipkg_tmp_t; /* ipkg’s temp files */
type ipkg_tmpfs_t; /* ipkg’s use of tmpfs */
type ipkg_var_lib_t; /* ipkg files in /var/lib */

Our purpose for the SELinux policy in the phone systems
is to preserve integrity and hence we do not need to make
2The SELinux reference policy defines policy for the rpm
installer which we adapt for the ipkg installer used in this
experiment. The architecture and function of these installers
is very similar.

a distinction between all these types and to control inter-
actions between them. All we need to know is whether the
installer reads or writes trusted or untrusted data. In our
goal of achieving integrity protection on the phone systems
we move from a fine-grained policy to a coarse-grained by
viewing the system as consisting of only three types of in-
tegrity entities namely trusted, untrusted and kernel.

There are SELinux rules that assign the installer pro-
cess access to its files (SELinux allow rules) and other pro-
cess’s ability to run the installer with its privileges (SELinux
type_transition rules). In the SELinux reference policy,
there are over 2000 rules of these types, most describing how
other processes can invoke the installer (specifically, RPM
installer). However, the installer is also given access to the
entire file system because we do not know where the new
files may be installed.

As an initial approach to providing system integrity, we
use the three types in a Biba integrity policy [15] with ker-

nel as the highest integrity and untrusted as the lowest
integrity. In order to obtain all its privileges, the installer
runs as trusted, and all installer files with the SELinux
types shown above are relabeled to trusted as well. How-
ever, requiring that the installer’s policy satisfies Biba in-
tegrity is too restrictive for the software installer. There are
two cases that would violate Biba integrity:

• When a process labeled untrusted calls the installer

• When the package being installed is labeled untrusted

In the first case, the invoking process can set the envi-
ronment and arguments to the software installer, so it can
write data to the software installer. This violates the Biba
integrity because a low integrity process (the untrusted re-
quester) cannot write to a higher integrity process (the in-
staller with type trusted). In the second case, the data
being written to the installer is low integrity. This violates
Biba because a high integrity process (the installer) cannot
read lower integrity data (the untrusted package).

We can modify the policy to solve the first problem. If
we do not provide a transition rule for untrusted processes,
then the installer will run as untrusted as well. The installer
no longer violates Biba integrity because it is allowed to read
the high integrity installer files. The second case cannot
be solved using policy modifications – we need a different
approach to solve this problem.

4.3 Filtering Interface
In the second case, Biba integrity cannot work. Instead,

we use the CW-Lite integrity model semantics [25]. CW-
Lite requires that any process that receives lower integrity
data must supply filtering interfaces that either immediately
upgrade or discard this data. For the installer, we use a
variant of discarding the data, where the installer includes an
interface to safely receive the input, determine its integrity,
then the installer can downgrade its own label dynamically
if the input is untrusted. The CW-Lite semantics should be
modified slightly to include this case.

While this approach is basically implementing LOMAC
integrity [8], by automatically downgrading the integrity of
the software installer when it is used to install low integrity
software packages, we find that CW-Lite is more general.
Other critical applications, such as the telephony server,
may have to process inputs from untrusted and they must

enforce access using the traditional CW-Lite semantics. We
believe that both approaches should be supported.

This works as follows. Since the installer is being started
by a trusted process it will run with the trusted type ini-
tially. However, when the input is examined and is de-
termined to be untrusted, the installer will transition to
untrusted. Since this is a dynamic transition decision, it
cannot be defined in the policy. In order to enable this tran-
sition, we need to make a small addition to the installer code
at the point where the input is examined.

if(!checkcontext(package_context,trusted_context)

{

strcpy(str,"system_u:object_r:untrusted_t");

i = setcon((security_context_t) str);

}

The setcon function is used to dynamically change the
context of a process from within the program. Thus, on
examining the input and seeing that an untrusted package is
being installed the installer will self-transition to untrusted.

We would ideally prefer to reduce the SELinux policy com-
plexity to the bare minimum, and have only three types.
However, while configuring the policy for this experiment,
we found that there were many dependencies between SELinux
types in the policy, which required us to include many addi-
tional SELinux types. Some of the dependencies occured at
compile time; it was possible to create a policy of approxi-
mately 100 types compile. However, other SELinux types,
particularly types for devices, appear to be necessary for
the system to function properly. We are still experiment-
ing with the policy to see how many of these types can be
eliminated, but currently, our policy has approximately 700
SELinux types, including our three types. This is still a
significant improvement over the 2000 types that are in the
SELinux reference policy. In particular, the SELinux policy
binary is reduced from 3MB to less than 300KB, resulting
in greater than a 90% reduction in policy size.

Recall from Section 3.4 that the only installer files that
are written are log files (ipkg_log_t) and temporary files
(ipkg_tmp_t and ipkg_tpmfs_t and the analogues for ipkg
scripts) that are both now labeled trusted. Since the tem-
porary files are specific to an installer run, we can use untrusted
temporary files for an installation by an untrusted installer.

For the log files, we generate separate logs for the trusted
and untrusted versions of the installer. While this only per-
mits an untrusted subject or a trusted subject with a fil-
tering interface to read all the logs3, it does protect system
integrity. The problem is that both versions of the installer
would use the same log file, and we cannot give a single file
two types, even if it made sense. To permit two processes to
write to two versions of a file with the same name, we pro-
pose using a polyinstantiated [14] file system, which Linux
already has for enabling processes of different secrecy levels
to write files of the same name without leaking data. In
a polyinstantiated file system, multiple files correspond to
the same name, but the system chooses which file to access
based on the security label of the process. For example,
when a high integrity process writes a file, it would write
the highest integrity file it can access (i.e., at its own level).
When it reads a file, the process reads data from all the files

3Separate secrecy requirements may be installed to prevent
untrusted processes from reading the trusted process’s log.

whose integrity dominates the process (i.e., Biba read-up).
This is future work.

4.4 PRIMA Implementation
To create our PRIMA system, we created a custom 2.6.18-

1 Linux kernel by altering the SELinux LSM hooks with
modified IMA functions. We also changed the evaluation
board’s init program to properly load the PRIMA’s trusted
subjects policy and process the information flows.

4.4.1 Kernel Modifications
The Linux community has rejected the use of the LSM in-

terface for integrity measurement, so to implement PRIMA,
we converted IMA to function like a Linux kernel library that
can be called from SELinux. Originally, IMA uses 5 LSM
hooks as seen in Table 1, to gather integrity measurements
and manage internal data. The first step in integrating in-
tegrity measurement functionality with SELinux, was to add
the IMA callback functions to each of the SELinux’s equiv-
alent hooks. We added each callback after authorization,
so they are only triggered if the SELinux hook would have
authorized the policy decision.

First, we modified the file_mmap hook to gather the SELinux
subject of the current context. When calls are made to code
memory mapped as executable, PRIMA is invoked to parse
the PRIMA list of trusted subjects for the current context.
If a match is found, then the calling process is indeed trusted
and the code is measured as was done in IMA. PRIMA
then performs a subsequent measurement that binds the
code hash to the SELinux subject type by concatenating
the two and measuring the result. However, if the file being
loaded by a trusted subject is a library, the function does not
take the second subject measurement since it is unimportant
which trusted processes is using it.

The LSM hooks inode_permission and sb_umount detect
when a measured file that is still open is opened for writing
or unmounted. If this happens, the measurement list is in-
validated as it is no longer clear if the measurement actually
represents the loaded code. Since this behavior is the same
in IMA as in PRIMA, we simply inserted the function call
into the hook.

A trusted subject list specifies the set of SELinux subject
types that must run trusted software. This list is created as
part of the system’s policy so its contents are independent
of PRIMA mechanism. Before the subject list is loaded,
PRIMA assumes all subjects are trusted as the early boot
phase is critical and must all be trusted.

To load the set of trusted subjects for the system and
to view this set, we created a sysfs file /selinux/ts_load.
IMA also by default exposes a sysfs file /selinux/measurereq
which accepts a file pointer and performs a PRIMA integrity
measurement on arbitrary files. We use this file to measure
the SELinux system policy used in this run of the system.

PRIMA also takes integrity measurements in two addi-
tional cases. The first is when the aggregate of all pre-
kernel integrity measurements is generated during PRIMA’s
initialization. Here, no subject binding measurement is per-
formed as there is no PRIMA policy available before the OS
has loaded. The second case is whenever a kernel module is
loaded into the kernel. In this case, the subject binding mea-
surement is performed as for other trusted code as described
for file_mmap above.

4.4.2 Building the Information Flow Graph

SELinux hook IMA task
file mmap Code measurement
sb umount Detecting concurrent write

inode permission Detecting concurrent write
inode free security Free PRIMA data structures
file free security Free PRIMA data structures

Table 1: The SELinux LSM hooks and their equiv-
alent IMA purpose.

We have a program to extract the information flows from
the SELinux binary policy file. The security policy defines
all the types and permission assignments between types. We
are interested in the interactions between types, specifically,
we are interested in what information flows are allowed to
or from a trusted type. We, therefore, parse the policy and
extract only the data relevant to building the information
flow graph.

The program first extracts the types and their string rep-
resentations and builds a Type number:Type name map.
Then, the policy entries are read and a hashtable of access
vectors (AV) is built. AVs represent the SELinux allow rules
that define the access rights in the system.

In the second stage, we go through the hashtable and in-
terpret the permissions between the source and target type.
Interpreting the permissions amounts to identifying if the
operation corresponds to a read or a write or both. This
identifies the information flow between the subject type and
the object type implied by the AV. The resulting informa-
tion flow is collected into our information flow graph after
mapping the type numbers to the type names (using the
type number:type name map). An entry in the information
flow graph looks like this

fsadm_t proc_t both

where fsadm t is the source type, proc t is the target type
and both indicates a bi-directional flow.

4.4.3 init Modification
PRIMA requires a list of trusted subjects to operate prop-

erly. So we modified the phone’s init program to load this
before loading the SELinux policy. This is done by first writ-
ing the contents of the subject list stored in
/etc/selinux/subjects to measurereq for measurement and
then to /selinux/ts_load to load it into kernel memory.
The information flow graph is also generated through a call
from init and its resulting graph is also passed to the
measurereq interface for measuring.

4.4.4 Measurements
PRIMA stores each measurement in the order they were

performed. This forms a list that is stored in kernel memory
and can be inspected through the sysfs file
ascii_runtime_measurements.

Figure 4 is a small sample of what the measurement list
looks like. The fields are the PCR which is extended with the
hash (if a TPM is present), the hash of the file, the filename
and the SELinux subject type. All code measurements lack
a subject type since they are just the measurements of the
code. One measurement is made per file (if invoked by a
trusted subject) unless the file is changed (i.e., the hash of

10 ff boot_aggregate
10 e56018bfcc61405d9def6a595d2e40b7b11c506a boot_aggregate kernel
10 6f6eb4425481a71ca77d0f1daf66fd15aa8f8767 init
10 2db507746ded4f5d96aaa8ae9b581c020bbc6c82 init kernel_t
10 607923211824 a0896681a3905462d686e31efed6 ld -uClibc.so.0
10 72 ee17e727640c366694d4688bf1eb8211490139 libselinux.so.1
10 5353 b8942212fff22bf8d58cb3a7f95f099633c0 libc.so.0
10 431130 f8b5339f70ac96450e2978ad4084b2a5be libsepol.so.1
10 ebf6d1687c36e7bf53cdc62bc1adab62468de21f libgcc_s.so.1
10 0d8a05330cdf2b02a65cf102809a6dd496b2cfff sh
10 b6f76619ca02b186a09a90878aa465e4ce1d331e sh init_t
10 ee7f114040e114012e25c8259d886dd8e8f71aca libcrypt.so.0
10 847 a13e34caa35dd7049494e6f474253f1e53c9d syslogd initrc_t
10 57 b62f6b521f644093e0b975ea4fd5070f99c28b ipkg -cl
10 bfe18be303892a8cce1cbc2623d2dd150af2742d ipkg -cl init_t
10 8c727828829ab478e7c77fd499543fde9abc52bf libipkg.so .0.0.0

Figure 4: Example of a PRIMA measurement list. Each line consists of a (a) PCR Location, (b) SHA-1
Hash, (c) filename and (d) subject type.

Measurement of Policy binary 0.33
Generate Information flows 13.47

Measure trusted subjects list 0.06
Measure a generic program (busybox) 0.10

Measure generic file (Size:2.5MB) 2.76
Measure generic file (Size:30MB) 27.4

Table 2: Time taken to perform certain tasks on the
evaluation board (in seconds)

the binary has changed) in which case a new measurement
is taken.

The measurements with subjects show the mapping be-
tween the software and its subject type. Their hashes are
different from the code measurements, as they measure the
concatenation of the subject and software. Only one mea-
surement is needed per file, so all subsequent loads of the
code by different subjects will result in just a measurement
of the mapping.

We tested the performance of our system’s integrity mea-
surement mechanism in processing requests. Since the eval-
uation board lacks a TPM and uses NFS for a part of its
root filesystem, performance is not what would be expected
in an actual mobile phone, but shows the scalability of the
mechanism. Table 2 shows time taken to measure typical
files. The time grows roughly linearly with the size of the
file. Table 3 compares the boot time and the time taken by
the ikpg installer in a Vanilla, IMA and PRIMA kernel.

5. RELATED WORK
There have been some efforts to have a policy based access

control on mobile phones. A recent paper [20] summarizes
the status of MontaVista Software’s efforts to implement
security solutions based on ARM cores that provide sepa-
rated computing environment, as well as SELinux to pro-
vide MAC for embedded devices. The paper cites memory
footprint and performance trade-off as the two most critical
constraints for developing security solution for embedded de-
vices. The emphasis is on virtualization in embedded devices
with concepts like containment, root of trust and SELinux.
Although there are no design details about SELinux policy
for phones systems, the paper does address the need for a
careful analysis of the policy to ensure that it is not unnec-

essarily comprehensive.
There has also been a recent effort by the MontaVista

Corporation that incorporates SELinux into Mobile phones.
A press release of Mobilinux 5.0 says it is the first operating
system to include MontaVista MicroSELinux [18], a minia-
turized version of SELinux. It claims to be the first Linux
release for mobile phones that incorporates SELinux. While
our work also emphasizes a small policy, we have shown how
such a policy can be designed by using coarse grained speci-
fication of integrity and tied it to an integrity measurement
architecture.

Zhang et al proposed an isolation technique for resource
constrained mobile platforms [35]. They realize this goal by
employing the TCG’s Trusted Mobile Phone specification by
leveraging SELinux. They also integrate IMA for integrity
measurement by defining SELinux policy language exten-
sions that adds another attribute to the context. We have
implemented SELinux with integrity measurement without
modifications to SELinux policy structure.

Motorola also made an attempt to provide a SELinux-like
system on the Motorola A1200 mobile phone. The oper-
ating system is based on a v2.4 linux kernel and includes
a proprietary access control system known as MotoAC. On
analysis of this system, MotoAC appears to be disabled by
default and does not provide any advantage over their pre-
vious phone models.

6. CONCLUSION
In this paper we have shown that it is possible to construct

an SELinux policy capable of justifying a phone system’s
integrity. We have demonstrated that the policy can pro-
tect critical applications from untrusted code allowing cell
phone users to install and run trusted applications in a safe
fashion. Further, we have achieved this with a minimal pol-
icy which is 90% smaller than the SELinux reference policy
(less than 300KB from a 3MB policy originally). By porting
PRIMA onto the phone system we have enabled verifiable
integrity on the phones. In future work, we plan to analyze
the policy to further reduce its complexity. We also plan
on experimenting on a variety of applications to assess our
design’s robustness.

7. REFERENCES

Vanilla kernel IMA Kernel PRIMA Kernel
Boot time 11.81 14.54 14.33

Execution time of a program (ipkg) 0.24 0.39 0.39

Table 3: Comparison of performance of Vanilla, IMA and PRIMA kernel on the evaluation board (in seconds)

[1] Trusted Platform. http:
//www.sisa.samsung.com/innovation/tp/index.htm.

[2] Bank of America. Mobile banking. http:
//www.bankofamerica.com/onlinebanking/index.

cfm?template=mobile_banking&statecheck=PA.

[3] W. E. Boebert and R. Y. Kain. A practical alternative
to heirarchical integrity policies. In Proceedings of the
8th National Computer Security Conference, 1985.

[4] F-Secure Computer Virus Information Pages: Cabir.
http://www.f-secure.com/v-descs/cabir.shtml,
2006.

[5] L. S. Clair, J. Schiffman, T. Jaeger, and P. McDaniel.
Establishing and sustaining system integrity via root
of trust installation. In Proceedings of the 2007 Annual
Computer Security Applications Conference, Dec.
2007.

[6] D. D. Clark and D. Wilson. A comparison of military
and commercial security policies. In 1987 IEEE
Symposium on Security and Privacy, May 1987.

[7] J. de Haas. Symbian Phone Security.
http://www.blackhat.com/presentations/

bh-europe-05/BH_EU_05-deHaas.pdf.

[8] T. Fraser. LOMAC: Low water-mark integrity
protection for COTS environments. In 2000 IEEE
Symposium on Security and Privacy, May 2000.

[9] N. Hardy. The Confused Deputy: (or why capabilities
might have been invented). ACM SIGOPS Operating
Systems Review, 22(4), 1988.

[10] IBM. Integrity Measurement Architecture for Linux.
http://www.sourceforge.net/projects/linux-ima.

[11] 236 mln wireless subscribers in the us in 2006.
http://www.itfacts.biz/index.php?id=P8421, 2007.

[12] O. W. R. M. J. Marchesini, S.W. Smith.
Experimenting with tcpa/tcg hardware, or: How i
learned to stop worrying and love the bear. Technical
Report TR2003-476, Computer Science Technical
Report, Dartmouth College, Dec. 2003.

[13] T. Jaeger, R. Sailer, and U. Shankar. PRIMA:
Policy-reduced integrity measurement architecture. In
Proceedings of the 11th ACM Symposium on Access
Control Models and Technologies, pages 19–28, June
2006.

[14] C. S. Janak Desai, George Wilson. Extending selinux
to meet lspp data import/export requirements, Feb
2006. http://selinux-symposium.org/2006/papers/
04-lspp.pdf.

[15] K.J.Biba. Integrity considerations for secure computer
systems. Technical Report MTR-3153, Mitre
Corporation, June 1975.

[16] F-Secure Computer Virus Information Pages:
Mabir.A.
http://www.f-secure.com/v-descs/mabir.shtml,
2005.

[17] H. Maruyama, F. Seliger, N. Nagaratnam,
T. Ebringer, S. Munetoh, S. Yoshihama, and
T. Nakamura. Trusted platform on demand. Technical
Report RT0564, IBM, Feb. 2004.

[18] Montavista. Montavista Mobilinux.
http://www.mvista.com/product_detail_mob.php.

[19] Motorola. Opensource Motorola.
https://opensource.motorola.com.

[20] H. Nahari. Trusted secure embedded Linux. In
Proceedings of the Linux Symposium Proceedings of
the Linux Symposium Proceedings of the Linux
Symposium, 2007.

[21] Novell. AppArmor Linux Application Security.
http://www.novell.com/linux/security/apparmor/.

[22] Security-Enhanced Linux.
http://www.nsa.gov/selinux.

[23] openmoko.com. http://www.openmoko.com/, 2008.

[24] V. Rao. Security in mobile phones - handset and
networks perspective. Master’s thesis, The
Pennsylvania State University, 2007.

[25] U. Shankar, T. Jaeger, and R. Sailer. Toward
automated information-flow integrity verification for
security-critical applications. In Proceedings of the
2006 ISOC Networked and Distributed Systems
Security Symposium (NDSS’06), Feb. 2006.

[26] E. Shi, A. Perrig, and L. V. Doorn. BIND: A
time-of-use attestation service for secure distributed
systems. In Proceedings of IEEE Symposium on
Security and Privacy, May 2005.

[27] Symbian OS: the open mobile operating system.
http://www.symbian.com/, 2008.

[28] Symbian Limited. Symbian signed.
http://www.symbiansigned.com.

[29] Trifinite.org – home of the trifinite.group.
http://trifinite.org/trifinite_stuff.html, 2008.

[30] Trolltech. Qtopia Open Source. http:
//trolltech.com/products/qtopia/opensource.

[31] Trusted Computing Group. Trusted computing group:
Mobile. https:
//www.trustedcomputinggroup.org/groups/mobile.

[32] Trusted Computing Group. TCG TPM specification
version 1.2 revision 85, Feb 2005. https:
//www.trustedcomputinggroup.org/groups/tpm/.

[33] Windows mobile: Smartphone and pda software.
http://www.microsoft.com/windowsmobile/, 2008.

[34] C. Wright, C. Cowan, S. Smalley, J. Morris, and
G. Kroah-Hartman. Linux security modules: General
security support for the Linux kernel. In Proceedings
of the 11th USENIX Security Symposium, pages
17–31, August 2002.

[35] X. Zhang, O. Aciicmez, and J.-P. Seifert. A trusted
mobile phone reference architecture via secure kernel.
In Proceedings of the 2007 ACM Workshop on Scalable
Trusted Computing, 2007.

