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ABSTRACT
The SELinux mandatory access control (MAC) policy has
recently added a multi-level security (MLS) model which
is able to express a fine granularity of control over a sub-
ject’s access rights. The problem is that the richness of
this policy makes it impractical to verify, by hand, that a
given policy has certain important information flow proper-
ties or is compliant with another policy. To address this, we
have modeled the SELinux MLS policy using a logical spec-
ification and implemented that specification in the Prolog
language. Furthermore, we have developed some analyses
for testing the properties of a given policy as well an al-
gorithm to determine whether one policy is compliant with
another. We have implemented these analyses in Prolog and
compiled our implementation into a tool for SELinux MLS
policy analysis, called PALMS. Using PALMS, we verified
some important properties of the SELinux MLS reference
policy, namely that it satisfies the simple security condition
and ?-property defined by Bell and LaPadula [2].

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection; D.4.6 [Operating Sys-
tems]: Security and Protection—information flow controls

General Terms
Security, Languages, Verification

Keywords
SELinux, multi-level security, policy compliance, policy anal-
ysis

1. INTRODUCTION
SELinux seeks to fully specify the principle of least privi-

lege on modern operating systems using a mandatory access
control (MAC) security policy. To accomplish this goal, the
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SELinux policy system has combined three different policy
models: Role-based Access Control (RBAC), Type Enforce-
ment (TE) and multi-level security (MLS).

While the TE policy can be used to control the integrity
of information flows [10] (i.e. where information flows from),
an MLS policy is designed to control the confidentiality of
information flows (i.e. where informatin flows to). In par-
ticular, an MLS policy is meant to prevent the leakage of in-
formation from more secret sources to less secret channels.
Protecting against such a leakage of information is espe-
cially important to nearly all government and military sec-
tors, who widely use the MLS model. With the widespread
occurrence of electronic data theft, costing individuals and
institutions billions of dollars in damages and lawsuits, MLS
policies may find increasing use in other sectors as well.

Perhaps anticipating such a broad usage, the MLS policy
language in SELinux is general enough to express a wide va-
riety of confidentiality policies. The problem is that the MLS
policy language is so broad that it is not easy to determine
exactly what information flow goals are enforced by a given
policy. For example, in a given policy, it is important to
know that all possible information flows are constrained by
the policy (there should be no unconstrained way to read or
write data). Also, it may be important to know that the pol-
icy faithfully implements standard high-level goals, such as
the simple security condition (no read-up) or the ?-property
(no write-down) as defined by Bell and LaPadula [2]. Fi-
nally, there are cases in which it is valuable to know that
one MLS policy is compliant with another. For example,
in a distributed system when a new machine joins a trusted
group it is important to determine that the new machine will
faithfully enforce the policy goals of the group [11]. Thus a
policy compliance test is warranted.

Performing such an analysis is not easy, however. The
standard reference policy contains hundreds of lines of policy
statements, constraining access of some 40 kernel objects
that may be accessed in almost 50 modes. A manual analysis
of this policy in impractical. This is further complicated by
the lack of a logical presentation of the semantics of the
policy. While the RBAC and TE models have existed in
SELinux for many years and have been studied at length [5,
9, 10, 19, 17, 24], the MLS model in SELinux is quite new [6].
Since the MLS model is largely orthogonal to the TE model,
existing analyses for TE cannot be applied to it. What is
still needed are a formal policy semantics by which we can
reason about MLS policy and an analysis tool to aid in this
process.



Consequently, in this paper, we present the first logical
specification for modeling SELinux MLS policy. We use this
specification to develop analyses for determining 1) all infor-
mation flows allowed in a given policy and 2) whether one
policy is compliant with another. Finally, we implement
the specification and analyses in Prolog in an analysis tool
called PALMS (for Policy Analysis using Logic for MLS in
SELinux). PALMS takes two policies in SELinux MLS pol-
icy syntax and automatically determines all the information
flows allowed in the policies as well as whether one policy is
compliant with the other.

We have found PALMS to be valuable for various tasks.
First, we were able to determine that the reference MLS pol-
icy covers all possible classes of objects and modes of access.
Second, we have used this analyzer for determining compli-
ance of the SELinux reference policy with a standard mili-
tary policy implementing the ?-property and simple security
condition. Thirdly, we have also used this analysis tool for
determining the compliance of an application’s MLS policy
with the MLS policy of its host operating system. (We de-
scribe this particular application of our tool in more detail
in a recent technical report [7]).

In the next section, we give some background on SELinux
policy and a general introduction to MLS policy along with
a motivating example and some related work. In Section 3,
we give a logical specification for an SELinux MLS policy
model. We use this model in Section 4 to describe some
algorithms which determine information flows for a given
policy and also check compliance between two policies. In
Section 5, we describe our implementation of the model and
analyses in the tool, PALMS, and give some test results,
namely that the reference MLS policy for SELinux is, in fact,
compliant with the standard ?-property and simple security
condition. We conclude in Section 6.

2. BACKGROUND AND RELATED WORK

2.1 SELinux
Current Operating Systems that implement Mandatory

Access Control (MAC) policies aim to support the principle
of least privilege by limiting the set of rights an application
is assigned [12].

The foundation of Security Enhanced Linux (SE)Linux [15]
can be found in the Flask architecture [21], which has been
integrated into Linux through the Linux Security Module
(LSM) [20]. This module is now being shipped as part of the
mainstream kernel in the 2.6 series and enabled by default in
Redhat distributions since Fedora Core 5. Other work in op-
erating systems with MAC security includes Trusted Solaris
[14], Solaris Trusted Extensions [13], TrustedBSD [4] and
SEDarwin [23]. MAC operating systems require that all
subjects and objects are labeled and all security-sensitive
operations are hooked with runtime checks. These checks
query a security policy to determine whether the operation
is allowed, based on the subject and object labels.

SELinux implements three security models: the Type En-
forcement (TE) model, Role-Based Access Control (RBAC)
Model and Multi Level Security (MLS) model [18]. First, ev-
ery element in the system is associated with a class (file,
tcp socket, ipc, process, etc.) and security sensitive oper-
ations are divided into modes of access (read, write, open,
connect, getattribute, etc.). Both the TE and MLS mod-

els use these classes and modes to determine what accesses
are granted or denied.

The RBAC model has been used minimally in SELinux
security, while the TE model has been the predominant fo-
cus. The TE model further associates a security type with
every element in the system and manages an access control
matrix based on the type of the subject that makes a request
and the type of the target object which is being accessed (as
well as the class and mode of the target object).

The current MLS model was recently developed by Trusted
Computer Systems (TCS) [6]. It is largely orthogonal to
the TE model meaning there is practically no interaction
between the two. It associates an MLS level with every el-
ement in the system. On every security-sensitive operation,
a set of MLS constraints is checked based on the MLS level
of the subject and the object as well as the object class and
mode of access. There is a standard reference MLS policy
provided in the SELinux distribution which seeks to imple-
ment a confidentiality policy in accordance with the defini-
tions by Bell and LaPadula [2]. An overview of this model
is provided in the next section and a logical specification of
the syntax and semantics is given in Section 3.

2.2 MLS Security Model
While TE policies attempt to enforce the principle of least

privilege, multi-level security was formalized by Bell and La-
Padula [2] in order to control how information is allowed to
flow between subjects in a system. These subjects are given
a sensitivity level, or security clearance, and objects are also
given a similar security classification. MLS policies attempt
to restrict how information may flow between designated
sensitivities. As an example, consider a military application
with 4 sensitivities, ordered from least to most sensitive:
Unclassified (UC), Confidential (CO), Secret (S), and Top
Secret (TS). In this case, TS dominates S. Note that in this
example the sensitivites form a total ordering; each sensitiv-
ity is either higher, lower, or equal to another. This is not
always the case.

Typically, MLS defines information flow policies, based on
two properties: the simple security condition and and the
star-property. The simple security property, sometimes de-
scribed as “no read up” requires a subject S to dominate an
object O to have read rights, meaning the subject’s security
clearance dominates the object’s security classification. The
?-property, described as “no write down” requires the ob-
ject’s classification to dominate the subject’s clearance for
the subject to have write rights.

To allow finer granularity of information control than just
a few sensitivity levels, the MLS model was expanded by
adding categories to the security level. These categories
serve to group information of the same kind so that access
may only be granted to subjects on a need-to-know basis.
Categories provide a way to allow access to certain types
of data, while staying within the confines of the sensitivity
restrictions. A subject must then have a superset of the ob-
ject’s categories to dominate the object. To illustrate this,
let us take subject S with sensitivity Secret and categories
{Nuclear, Military, Domestic}, and object O with sensitivity
Confidential and {Military, Domestic} as categories. Since
S has a higher sensitivity and a superset of O’s categories, it
is said to dominate O, and O is said to be dominated by S.
In nearly every practical MLS policy, this would equate to
subject S being able to read from object O. Now if S did not



have Domestic as a category, it would no longer dominate
O; the two would be incomparable.

2.3 Example
The number and complexity of MLS constraints for a

standard SELinux policy make manual analysis impracti-
cal. Here we present a motivating example of the difficulty,
based in our own experience.

A brief study of the hundreds of lines policy statements in
the reference SELinux MLS policy gave the appearance that
it might be possible to violate the standard MLS informa-
tion flow goal preventing write-downs. One complication is
that SELinux uses an expanded form of the standard MLS
model, allowing a range of levels to be associated with a sub-
ject (this will be introduced more formally in Section 3.1),
as in the DG/UX System [3]. At first glance, the policy
prevents a process from reading data out of a file at a high
level and writing to a lower level. At the same time, it
seemed that it might be possible simply to relabel a file and
downgrade it using a process with a particular MLS range.
Thus, unlimited downgrading would be possible for an un-
privileged user.

Even a more thorough study of all the constraints ap-
plied to the file class did not reveal a counter-example. In
this case, in order to disprove our hypothesis, we had to con-
struct an experiment on an actual SELinux system and read
the audit logs to determine our mistake. In our study, we
had overlooked a different permission, the mlsvalidatetrans
permission that is only minimally documented in the litera-
ture. Even discovering that was difficult, because the audit
logs were vague about which constraint was violated.

With our analysis tool, PALMS, it is simpler to undertake
such investigations and also more informative with regard to
what constraints are violated or which information flows are
allowed in a given situation.

2.4 Related Work
Previous frameworks developed to help in the analysis of

SELinux security policies include Gokyo [9, 10], SLAT [5],
PAL [17], APOL [22] and SELAC [24]. Gokyo assesses ac-
cess control policies based on Access Control Spaces; such
spaces define sets of assigned permissions (prohibited, per-
missible, and unknown spaces). Their approach was used
to evaluate the integrity of the Apache web server in the
context of the entire SELinux policy. More precisely, they
determined whether low integrity subjects (subjects outside
Apache who are not high security trusted subjects) were al-
lowed to write data that the Apache administrator would
read.

Another framework is SLAT (Security Enhanced Linux
Analysis Tool) [5]. It provides a systematic scheme for
defining OS security goals. They define that a system’s se-
curity goals depend on the configuration of the system and
the interaction between the system and trusted pieces of
software with their goal being that only a small set of pro-
grams should be granted such privileges. SLAT also contains
an implementation, using model checking.

Sarna-Sota and Stoller [17] used the information flow
model defined in SLAT [5] to implement another framework
for analyzing configuration policies in SELinux; it is called
PAL (Policy Analysis using Logic Programming). PAL cre-
ates a logic program based on an SELinux policy that make
it possible to run queries to analyze the policy. PAL is im-

plemented on XSB [1], a logic-programming system based
on tabled resolution, the use of queries based on logic pro-
gramming makes the system more flexible and easy to use
than the system build in SLAT [17].

APOL [22] is a tool developed by Tresys Technology to
analyze SELinux configuration policies. Among its multiple
features it includes forward and reverse domain transition
analyses, direct and transitive information flow analysis, re-
label analysis and type relationship analysis.

Zanin and Mancini [24] define a formal framework called
SELAC (Security Enhanced Linux Access Control) for ana-
lyzing a SELinux policy configuration. They define seman-
tics for the rules that define a SELinux configuration policy,
as well as their interactions, they use such semantics and the
concept of Accessibility Spaces as defined in [9, 10] to de-
velop an algorithm to verify whether a subject is allowed to
access a particular object in a given mode, under a specific
SELinux policy configuration.

Unfortunately, none of these existing approaches deal with
MLS in any way. Each of the analyses above deals only with
SELinux type enforcement policies, and what effect the re-
sultant properties of these policies have on the system. MLS,
on the other hand, has been heavily evaluated and discussed
in a formal setting for years. MLS in the context of SELinux
MAC enforcement, however, may or may not conform to
the formal descriptions and properties (star, simple security,
etc) historically given in literature. Consequently, we must
leverege a methodology for analyzing SELinux, and extend
it to form a good functional analysis of SELinux coupled
with MLS. In doing so, we must also be certain that we are
able to meet our goals of establishing a practical method of
validating the information flows present in a given SELinux
policy, not simply a workable formalism.

3. SELINUX MLS MODEL
In this section we develop a model to understand the

meaning of a set of MLS statements.

3.1 Extended Security Context
An SELinux security context in a system that enables the

MLS extension implemented by TCS [6] adds a fourth field
to the three fields, user, role and type (which are all used
for the RBAC and TE models described in Section 2.1): an
MLS range defined by a low and a high MLS level. Each
level is composed of a sensitivity level and an optional set
of category compartments. Sensitivity represents an MLS
clearance (on subjects) or classification (on objects), while
categories represent a set of non-hierarchical compartments
to which the subject may have access.

The following example is an SELinux security context in
a system with the MLS extension disabled, it includes user,
role, and type: staff u:staff r:staff t

An MLS-enabled SELinux system contains one additional
field: staff u:staff r:staff t:s0-s2:c0.c15

Most of the objects in the system have the same value for
their low and high levels (they are single-level); there are
some exceptions like multi-level directories. On the other
hand, it is not unusual for subjects to have different low and
high levels. The low level means the current security clear-
ance and the high level represents the upper bound security
clearance for the same subject. In the following example s0

is the low level and s15 is the high level, in addition s15 has
access to compartments c0 through c15: s0-s15:c0.c15



3.2 MLS Model
Although an SELinux policy includes thousands of state-

ments that define the Mandatory Access Control rules for a
particular system (implementing the RBAC and TE mod-
els), the focus of this work is the behavior of an SELinux
MLS policy. Therefore the input of our model is the set of
MLS-specific statements: sensitivity, category, level,
dominance, mlsconstrain and mlsvalidatetrans. All def-
initions given in this section and Sections 4 and 5 use the
notation presented below.

s Security context for a given subject
o Security context for a given object
c Single class
p Single mode in which an object may be accessed
C Set of classes
P Set of modes in which an object may be accessed
u user
r role
t type
sl Sensitivity level
ca Category
exp Boolean expression
Policy Set of SELinux statements and rules (TE

and MLS) that define a policy
stmt statement in an given policy

3.2.1 Syntax
In this section we present a brief description of our set of

MLS statements: sensitivity, category, level, dominance,
mlsconstrain and mlsvalidatetrans. At the end of every
paragraph we added the real syntax used in SELinux.

sensitivity: Sensitivities in an MLS model represent secu-
rity clearance for subjects or security classification for ob-
jects. In SELinux the statement that declares one sensitiv-
ity follows the syntax presented below. The set of sensitivity
statements define the set of valid sensitivities in a particular
SELinux system.

sensitivity id [ alias id set ];

category: Categories expand an MLS model by making it
possible to represent different families of data associated to
each sensitivity. For example, categories allow us to make a
distinction between Top Secret (sensitivity) Nuclear (cate-
gory) data and Top Secret Policital (another category) data.

category id [ alias id set ];

level: MLS levels define legal combinations of sensitivities
and category sets.

level sl : [ ca set ];

dominance: MLS sensitivities are organized into a hierar-
chy; higher sensitivities represent higher security clearances
or higher security classification. The first sensitivity in the
dominance statement is assigned the lowest position in the
hierarchy, the last element is assigned the highest position.

dominance { sl1sl2...sln }

mlsconstrain: This statement restricts access rights as-
signed in an SELinux policy, according to relationships be-
tween the security context of the subject that requests access
and the security context of the target object, the class of the
target object and the mode in which the subject wants to
access the object. Objects are classified into classes (filesys-
tem,file,dir,...); for each class a set of access modes is defined
(read,write,create,...).

mlsconstrain C P exp;

mlsvalidatetrans: This statement restricts the ability of
a subject to change the security context of a target object,
according to relationships among the new context, the old
context and the security context of the subject that requests
the change, and the class of the target object.

mlsvalidatetrans C exp;

The following set of statements define a system with sen-
sitivities s0 to s3, the lattice over those elements, the set of
allowed categories and levels. Examples for mlsconstrain

and mlsvalidatetrans are presented in the next section.

sensitivity s0;

sensitivity s1;

sensitivity s2;

sensitivity s3;

dominance { s0 s1 s2 s3 }
category c0; category c1; category c2;

level s0:c0.c2;

level s1:c0.c2;

level s2:c0.c2;

level s3:c0.c2;

3.2.2 Semantics
In this section we present the analytical model we devel-

oped to understand the meaning of a set of MLS statements.
The following paragraphs present the components of such
model.

This part of the section presents four operators to handle
MLS statements: name, classes, modes and expr. name
gets the name of a given statement, classes gets the set of
classes a statement applies to, modes gets the set of modes a
statement applies to, and expr gets the boolean expression
a statement is based on. Notice that not all the operators
are defined for all the MLS statements; classes and expr are
defined only for mlsconstrain and mlsvalidatetrans, and
modes is defined only for mlsconstrain. Below are some
examples of the described operators.

name(sensitivity s1) = sensitivity

name(category c0) = category

classes(mlscontrain file { create relabelto }
(l2 eq h2) ) = {file}

modes(mlscontrain file { create relabelto }
(l2 eq h2) ) = { create relabelto }

expr(mlscontrain file { create relabelto }
(l2 eq h2) ) = (l2 eq h2)

The operators classes and modes also apply to a Policy. In
that case they respectively return all the classes declared and



all the modes in which objects may be accessed regarding a
given Policy.

The model also includes operators to get the components
of a given security context: getu, gett, getr, getl and geth.
They take a security context (u,r,t,(l,h)) where (l,h) repre-
sent an MLS range and return respectively the elements u,
r, t, l, and h.

SELinux has a dominance rule that defines a partial order
over the MLS sensitivities.

dominance(sl1, sl2, ..., sln) ≡ induces a partial order,v
over the elements sl1, sl2, ..., slns.t.

sl1 v sl2 v ... v sln.

We define operators to get the components of a given MLS
level: getsens and getcat. For example, they take an MLS
level s1:c0,c1 and return respectively the elements s1 and
the set {c0,c1}.

We define operators to compare two MLS levels: dom,
domby and incomp based on the partial order defined by the
dominance statement for sensitivities and the set defined by
the categories associated with each level.

opl(==, l1, l2) =(l1 = l2)

opl(!=, l1, l2) =(l1 6= l2)

opl(dom, l1, l2) =(getsens(l2) v getsens(l1)) ∧
(getcat(l2) ⊆ getcat(l1))

opl(domby, l1, l2) =(getsens(l1) v getsens(l2)) ∧
(getcat(l1) ⊆ getcat(l2))

opl(incomp, l1, l2) =¬(opl(dom, l1, l2)) ∧ ¬(opl(domby, l1, l2))

Dominance over roles opr is defined in a way that is anal-
ogous to the dominance over levels, thus the operators dom,
domby and incomp also apply. Details may be found in [8].

We define an operator to generate the set of all valid
ranges in a given Policy. Some subjects and multi-level ob-
jects require access to multiple MLS levels; SELinux makes
this possible through MLS ranges, but not every range is
allowed.

ranges(Policy) = {(l1, l2) | (getsens(l1) v getsens(l2)) ∧
(getcat(l1) ⊆ getcat(l2))}

The definition of the previous operators is straight-forward.
They serve primarily to support the main definition, which
consists of the operators γMLS and γMLSvt. These operators
determine the result of applying all relevant constraints to
a particular subject, object, object class and access mode.
If the result of applying all relevant constraints (a possibly
empty set) is true then γMLS is true, otherwise it is false.

γMLS(s, o, c, p) = ({stmt | stmt ∈ Policy,

name(stmt) = mlsconstrain,

c ∈ classes(stmt), p ∈ modes(stmt),

‖ expr(stmt) ‖s,o = FALSE} = ∅)

Next we present an inductive definition for the semantics of

‖ expr(stmt) ‖s,o

s represents the subject that is requesting the security-sensitive
operation and o is the object that s attempts to access.

‖ not(exp) ‖s,o = ¬ (‖ exp ‖s,o )

‖ expa and expb ‖s,o =‖ expa ‖s,o ∧ ‖ expb ‖s,o

‖ expa or expb ‖s,o =‖ expa ‖s,o ∨ ‖ expb ‖s,o

‖ u1 == u2 ‖s,o = (getu(s) = getu(o))

‖ u1 != u2 ‖s,o = (getu(s) 6= getu(o))

‖ r1 operator r2 ‖s,o = opr(operator, getr(s), getr(o))

‖ t1 == t2 ‖s,o = (gett(s) = gett(o))

‖ t1 != t2 ‖s,o = (gett(s) 6= gett(o))

‖ l1 operator l2 ‖s,o = opl(operator, getl(s), getl(o))

‖ l1 operator h2 ‖s,o = opl(operator, getl(s), geth(o))

‖ h1 operator l2 ‖s,o = opl(operator, geth(s), getl(o))

‖ h1 operator h2 ‖s,o = opl(operator, geth(s), geth(o))

‖ l1 operator h1 ‖s,o = opl(operator, getl(s), geth(s))

‖ l2 operator h2 ‖s,o = opl(operator, getl(o), geth(o))

In addition, the values of the fields user, role and type from
subject’s security context or object’s security context may
be tested against predefined values:

‖ u1 == userset ‖s,o = (getu(s) ∈ userset)

‖ u1 != userset ‖s,o = (getu(s) 6∈ userset)

The same operations may be evaluated for u2 (object’s user),
r1 and t1 (subject’s role and type) and r2 and t2 (objects’s
role and type), supported by the operators getr and gett.

Example: The following example shows the behavior
of γMLS(s, o, c, p) in a given case. A user with MLS range
s1-s2 has a file with MLS level s1, the user tries to upgrade
his file to s2. Two of the permissions that must be checked
in the default MLS policy are relabelto and relabelfrom,
therefore the following mlsconstrain rules are checked:

mlsconstrain { file lnk file fifo file }
{ create relabelto }
( l2 eq h2 );

mlsconstrain{ dir file lnk file chr file blk file }
relabelto

( h1 dom h2 );

The evaluation of these constraints gives:

γMLS( staff u:staff r:staff t:s1-s2:c0.c2,

staff u:object r:user home dir t:s2,

file,relabelto) = TRUE

The following SELinux MLS rule also applies in this case:

mlsconstrain { file lnk file fifo file }
{ write create setattr relabelfrom rename }

(( l1 eq l2 ) or

(( t1 == mlsfilewritetoclr ) and

( h1 dom l2 ) and ( l1 domby l2 )) or

( t1 == mlsfilewrite ) or

( t2 == mlstrustedobject ));



The evaluation of this constraint gives:

γMLS( staff u:staff r:staff t:s1-s2:c0.c2,

staff u:object r:user home dir t:s1,

file,relabelfrom) = FALSE

γMLSvt detects the result of the constraints that apply in a
particular transition case.

γMLSvt(o1, o2, s, c) = ({stmt | stmt ∈ Policy,

name(stmt) = mlsvalidatetrans,

c ∈ classes(stmt),

‖ expr(stmt) ‖o1,o2 ,s = FALSE} = ∅)

Next we present an inductive definition for the semantics of

‖ expr(stmt) ‖o1,o2 ,s

for mlsvalidatetrans.These definitions look similar to the
ones presented for mlsconstrain but notice that now we
have three elements to evaluate instead of two: o1 : old
security context, o2 : new security context and s: secu-
rity context of the process that requests the transition. In
the boolean expression, elements indexed with 1 (u1,r1,t1)
make reference to o1, elements indexed with 2 (u2,r2,t2)
make reference to o2 and elements indexed with 3 (u3,r3,t3)
make reference to s. Since the definitions are close to the
ones presented for mlsconstrain we only present some of
them in order to shorten the presentation. Detailed infor-
mation may be found in [8].

‖ not(exp) ‖o1,o2 ,s = ¬ (‖ exp ‖o1,o2 ,s )

‖ expa and expb ‖o1,o2 ,s =‖ expa ‖o1,o2 ,s ∧ ‖ expb ‖o1,o2 ,s

‖ expa or expb ‖o1,o2 ,s =‖ expa ‖o1,o2 ,s ∨ ‖ expb ‖o1,o2 ,s

Next we define the meaning of boolean expressions for
mlsvalidatetrans.

‖ u1 == u2 ‖o1,o2 ,s = (getu(o1) = getu(o2))

‖ u1 == userset ‖o1,o2 ,s = (getu(o1) ∈ userset)

The meaning of the expressions u1 != u2, r1 operator r2,
t1 == t2, t1 != t2, l1 operator l2, l1 operator h2, h1 op-
erator l2, h1 operator h2, l1 operator h1, l2 operator h2

is defined in the same way and supported by the operators
getu, getr, gett, getl, geth, opr and opl. Notice that, as pre-
viously indicated, elements indexed with 1 are linked to o1
and elements indexed with 2 are linked to o2. The mean-
ing of the expressions u2 == userset, u1 != userset, u2 !=

userset, r1 == roleset, r2 == roleset, r1 != roleset, r2 !=

roleset, t1 == typeset, t2 == typeset, t1 != typeset, t2 !=

typeset, follow the same reasoning.
mlsvalidatetrans involves a third security context. The

following paragraph presents the ways in which this security
context may be tested:

‖ u3 == userset ‖o1,o2 ,s = (getu(s) ∈ userset)

‖ u3 != userset ‖o1,o2 ,s = (getu(s) 6∈ userset)

Similar operations may be evaluated for r3 and t3.

Taking the same example as before: a user with MLS
range s1-s2 has a file with MLS level s1, the user
tries to upgrade his file to s2, we show the result of
γMLSvt(o1, o2, s, c). In the current policy there is only one
mlsvalidatetrans statement.

# the file upgrade downgrade rule

mlsvalidatetrans

dir file lnk file chr file blk file sock file

fifo file

((( l1 eq l2 ) or

(( t3 == mlsfileupgrade ) and ( l1 domby l2 )) or

(( t3 == mlsfiledowngrade ) and ( l1 dom l2 )) or

(( t3 == mlsfiledowngrade ) and ( l1 incomp l2 )))

and

(( h1 eq h2 ) or

(( t3 == mlsfileupgrade ) and ( h1 domby h2 )) or

(( t3 == mlsfiledowngrade ) and ( h1 dom h2 )) or

(( t3 == mlsfiledowngrade ) and ( h1 incomp h2

))));

This is the result:

γMLSvt( staff u:object r:user home dir t:s1,

staff u:object r:user home dir t:s2,

staff u:staff r:staff t:s1-s2:c0.c2,

file) = FALSE

The analytical model described in this section offers a
logical framework to analyze MLS policies. However, such
analysis can not be done by hand. A practical tool is re-
quired. PALMS is such tool. It is based on this model and
implemented in XSB Prolog. PALMS is presented in sec-
tion 5.

4. ANALYSIS
Understanding the semantics of the SELinux MLS policy

is useful for various purposes. For example, it is impor-
tant, for a given policy, to be able to determine whether
all data classes and modes are constrained by the policy.
Determining whether the policy faithfully implements basic
information flow goals such as the simple security condi-
tion and ?-property is also important. There are also some
practical systems reasons for analyzing the information flow
properties of a given policy. In distributed systems, a system
service may need to determine whether two MLS policies are
compliant [11]. In cases that a MAC-based OS needs to trust
an application to handle multiple levels of data, it is impor-
tant that the OS can determine whether the application’s
information flow policy complies with its own.

Policy compliance is important in a distributed system
when labels are being communicated over sockets and an
SELinux machine wants to be certain that the machine to
which it is sending its data will be compliant with its own
policy. For example, when machine A connects to machine
B over a socket with MLS label s2, will machine B honor
the policy of machine A and not leak data passed through
that socket to a lower level, such as s1?

Another application of this analysis could be for applica-
tions running in a particular OS. In some cases, it is nec-
essary for an application to handle multiple levels of data
inputs and outputs. If the application’s flows obey a partic-
ular security lattice, can those flows be tested for compliance
against the host OS’s MLS policy?



Throughout this section, we refer to the SELinux MLS
reference policy, meaning the policy that is distributed with
latest version of SELinux. That MLS policy contains about
350 lines of policy statements ranging over 40 different kernel
object classes, which can be accessed in 50 different modes.
Thus, it is not feasible to evaluate by hand the functions we
give in this section. For this reason, we have implemented
these functions in an analyzer presented in the next section.

In this section, we use the formal semantics defined in
Section 3 to demonstrate how we can determine compliance
of one policy with another policy. We give a formal pre-
sentation here, which we have implemented in Prolog. This
section serves as both a formal description and also, because
the Prolog code follows the formalism so closely, as an intro-
duction to the implementation. First we give some general
definitions of information flows and functions that operate
on them, and then we give some algorithms for how we in-
stantiate these functions for SELinux MLS policy.

4.1 Finding all information flows

4.1 Definition (Information Flow Policy) A policy
consists of a set of security levels arranged in a lattice with
partial order v and a set of statements determining each
subject’s read/write permissions for a given object based on
the security levels of the subject and object (and possibly
also on other factors such as the class of the object).

Consider a typical military MLS information flow policy
with no categories. In such a policy there are four secu-
rity levels. Typically, military policies have permissions
which implement the simple security condition (ssc) and
?-property:

Example 4.2 (Military MLS policy)

levels(Mil) = {unclassified(UC), confidential(CO),

secret(S), topsecret(TS)}

where UC v CO v S v TS and reads and writes obey the
following properties:
Simple security condition: For a subject labeled ls and
an object labeled lo, the subject can read from the object iff
lo v ls.
?-property: For a subject labeled ls and an object labeled lo,
the subject can write to the object iff ls v lo.

We define an information flow in the following way:

4.3 Definition (Information flow) An information
flow from l1 to l2 exists in a system when a single process
can read from a resource labeled with l1 and write to a
resource labeled with l2.

Example 4.4 For the military policy given in Example 4.2,
there is an information flow (UC, S), because for a subject
at level CO, there is a valid read of an object at level UC and
a valid write of that object out to S. (Note: there are also
other ways to generate this information flow, with a subject
at level UC or CO, but not at TS.)

Next we define a function that is important for proving
compliance, AllFlows. Here we give only a generic defini-
tion of what this function should do. Later, we will instan-
tiate it for the Mil policy and the SELinux policy.

4.5 Definition (AllFlows) The function

AllF lows : Policy → ℘(levels(Policy)× levels(Policy))

returns all information flows allowed in a given Policy with
levels, levels(Policy).

To instantiate this function for the Mil policy, we must
find all information flows, such that the ssc and the ?-
property are preserved.

Example 4.6 (AllFlowsMil)

AllF lowsMil = {(l1, l2) : l1, l2 ∈ levels(Mil)∧
∃ls ∈ levels(Mil).l1 v ls v l2

which would give the set

{(UC, UC), (UC, CO), (UC, S), (UC, TS), (CO, CO),

(CO, S), (CO, TS), (S, S), (S, TS), (TS, TS)}.

4.2 Comparing policies
In addition to determining the information flows which are

allowed by a given policy, it can also be useful to compare
MLS policies. In a distributed system, for example, it is
important to know how the policies of two operating systems
compare, before they start exchanging labeled data.

When comparing two information flow policies, we require
a mapping from the levels in one policy to the levels in the
other. The mapping need not be defined for every level, but
must map the levels in policy A to a subset of the levels in
Policy B. All levels which are not shared between policy A
and policy B are mapped to ⊥ (undefined). In the follow-
ing, we define both the renaming of a single level and the
renaming of a flow (overloading the name rename).

4.7 Definition (rename)

renameA→B : levels(A) → (levels(B) +⊥)

renameA→B :levels(A)× levels(A) →
(levels(B) +⊥)× (levels(B) +⊥)

4.8 Definition (Shared levels) A level l is said to be
shared between two policies A and B iff renameA→B(l) 6= ⊥

Compliance can then be defined for two policies by com-
paring the flows allowed in one policy with the flows allowed
in the other. Specifically, we are interested the flows between
levels shared by the two policies.

4.9 Definition (Compliance) An information flow policy
A is said to be compliant with an information flow policy B,
iff

Flows′A ⊆ FlowsB

where

FlowsA = AllF lowsA(A)

FlowsB = AllF lowsB(B)

Flows′A = renameA→B(FlowsA)

Although the definition of compliance implies that all
flows in both policies should be determined, in order to de-
termine whether the flows in policy A are a subset of policy



B, only the flows of policy A need to be exhaustively de-
termined. Then each flow allowed by A can be checked to
see if it is also allowed in policy B. This can lead to some
performance improvement if policy B is significantly larger
than policy A (as in the case when B is an OS policy and A
is only an application policy).

4.3 Information flows for SELinux MLS
When implementing these information flow functions for

SELinux policy, we must make some adjustments. The first
consideration is that SELinux policy parameterizes MLS ac-
cess rules based on object class (c), as described in Section 3.
Thus, an information flow can occur using multiple classes,
such as by reading from a public file and then writing to a
secret ipc. This requires us to define information flows by
iterating over all possible object classes.

The second consideration is that the policy also parame-
terizes accesses based on the possible modes for that class.
So, continuing the previous example, information could be
read from a public file using the getattribute mode and
written to a secret ipc using the open mode. We follow
other systems [5, 17] in grouping modes into “read-like”
and “write-like” modes. Some modes fall into both cate-
gories, such as dir create which certainly is “write-like”,
but is also “read-like” because it will reveal whether the di-
rectory already existed. We extend our formal semantics to
include the functions, readlike(p) and writelike(p) which
return true if the mode p is read-like or write-like, respec-
tively.

The algorithm AllF lows can be instantiated for SELinux
MLS policy by using the constraint γMLS and accessors,
classes, modes, ranges from our formal semantics given in
Section 3. The function is divided into two checks corre-
sponding to two different ways that information flows can
occur. The first way is by reading (in some mode) from some
class at one level and writing (in some mode) to some class
at another level. The second way is by simply relabeling an
object from one level to another level.

Although we are not primarily concerned about general
security contexts (including user, role and type) for our anal-
ysis of the MLS policy, γMLS does require that the full se-
curity context of the subject and object be provided. This
is because, generally speaking, the subject might have some
special privileges that affect the MLS constraints. For this
analysis, we are concerned with the most basic scenario and
so we fix our subject and object to have a vanilla type t
with no extra privileges and to have insignificant user and
role fields. For a more thorough analysis, our MLS analy-
sis could be combined with existing analyses [22, 10, 17, 5]
that consider information flows introduced by type enforce-
ment. The orthogonality of TE policies from MLS policies,
however, facilitates the approach we have taken. The only
additional interaction that could be considered is when a
type transition might move the subject into a state in which
it has some additional MLS privileges. We leave the consid-
eration of this fringe case to future work. Thus, the set of
flows can be found by unioning these two sets together as
follows,

4.10 Algorithm (AllFlowsSELinux)

AllFlowsSELinux(Policy) = {(l1, l2) :

∃c1, c2 ∈ classes(Policy).∃p1, p2 ∈ modes(Policy).

∃ls ∈ ranges(Policy).readlike(p1) ∧ writelike(p2)∧
s = (u, r, t, ls) ∧ o1 = (sys, obj, t, l1) ∧ o2 = (sys, obj, t, l2)∧

γMLS(s, o1, c1, p1) ∧ γMLS(s, o2, c2, p2)}S
{(l1, l2) : ∃c ∈ classes(Policy).∃ls ∈ ranges(Policy).

s = (u, r, t, ls) ∧ o1 = (sys, obj, t, l1) ∧ o2 = (sys, obj, t, l2)∧
γMLS(s, o1, c, relabelfrom) ∧ γMLS(s, o2, c, relabelto)∧

γMLSvt(o1, o2, s, c)

In the next section, we describe the Prolog code which
implements these functions and give an example of deter-
mining whether the SELinux reference MLS policy meets
the ssc and ?-property, by determining if it is compliant
with the Military MLS policy we have described throughout
this section.

5. IMPLEMENTATION
We implemented an analysis framework based on the ana-

lytical model presented in the previous section. This frame-
work allows us to evaluate the MLS properties for a real
SELinux policy. We implemented this framework by encod-
ing the logic into Prolog, using the XSB Prolog implementa-
tion. Although the tabled resolution provided by XSB was
not essential, it does serve to improve performance. Using
Prolog was beneficial for multiple reasons. One is that the
program encoding is directly analogous to the logical model
presented in Section 4, making it trivial to determine the
correctness of the implementation. Another is the simplicity
of the Prolog code. Prolog is ideal for implementing search
algorithms, because backtracking and unification are inher-
ent to the language. Thus, merely expressing the rulebase
for the SELinux policy along with some simple description
of the searches is enough to implement the analysis. Only
20 lines of code are required to implement the functions
described in Section 4 (the code for implementing the se-
mantics in Section 3 is longer, about 150 lines, but need not
be changed to vary the queries). Thus, it is easy to make
slight modifications to the code to check different properties
of the policy. Finally, because the analyzer should only be
run infrequently, time is not a limiting factor (although, in
fact, XSB Prolog is highly optimized and the time is not
prohibitive for the kinds of queries discussed in Section 4).

5.1 Details
The implementation of the MLS semantics in Section 3

can be implemented in Prolog in a straight-forward way. By
way of background, variables in Prolog which begin with
capital letters denote logic variables. These variables are
gradually instantiated through unification as Prolog pro-
cesses a query. For cases in which the variable could be
instantiated in different ways, Prolog inserts a backtracking
point and tries all possibilities. In this way, for example,
we can implement the ranges function from Section 3 by
using the predicate valid mls. The predicate valid mls(L)

is true when L is bound to any valid MLS range.



all flows(LSet) :-

findall(

L,

(L=(L1,L2), has flow(L1,L2)),

LList),

list to set(LList,LSet).

has flow(L1,L2) :-

valid mls(LS),

security class(C1),read like(C1,P1),

S = sc(user u,user r,user t,LS),

O1 = sc(system u,object r,user t,L1),

O2 = sc(system u,object r,user t,L2),

gamma mls(S,O1,C1,P1,true),

security class(C2),write like(C2,P2),

gamma mls(S,O2,C2,P2,true).

has flow(L1,L2) :-

security_class(C),

valid mls(LS),

S = sc(user u,user r,user t,LS),

O1 = sc(system u,object r,user t,L1),

O2 = sc(system u,object r,user t,L2),

gamma mls(S,O1,C,relabelfrom,true),

gamma mls(S,O2,C,relabelto,true),

gamma mlsvt(O1,O2,S,C,true).

Figure 1: The Prolog code for finding all information
flows in a given SELinux policy.

We encode MLS labels as a 4-tuple containing the low
sensitivity level and low category set followed by the high
sensitivity level and the high category set. Thus, to denote
the label s0-s3:c0.c1 we write the following:

mls(s0,[],s3,[c0,c1])

To expand this into a full security context, we use the
functor sc, giving,

sc(system u,object r,user t,mls(s0,[],s3,[c0,c1]))

This particular example describes an object labeled with
the type user t and the MLS label given above.

The AllF lows function follows the definition in Section 4,
with the slight modification that it calls an auxilliary predi-
cate hasFlows to find a single flow and uses backtracking to
find all possible flows. The code is given in Figure 1.

5.2 Example
One useful application of our analyzer is for automati-

cally determining compliance between an SELinux policy
and another policy. We give an example here which shows
that the current reference policy for MLS complies with the
?-property and simple security property. We do this by lim-
iting the SELinux policy slightly and showing it complies
with the military MLS policy given in Example 4.21. Since
this military policy is defined according to the ssc and ?-
property, if the SELinux policy is compliant with it, we have,
by implication, that it is compliant with these properties.

1This limitation is only for demonstration purposes. Using
all 16 sensitivity levels and all category sets only increases
the analysis time, not the fundamental result.

For our analysis, we use all the constraint rules from the
reference policy, but for clarity of presentation, we modify
the available levels slightly. While the reference policy has
16 sensitivity levels, we reduce this to the four military lev-
els. Also, for simplicity of presentation, we ignore category
sets (note that our analyzer handles both of these correctly).
A more important consideration is that the security prop-
erties we are interested in verifying do not consider MLS
ranges. We can still carry out the compliance check if we
limit the analyzer to check only single levels.

To summarize, we use the following renaming predicate

rename(s0,UC).

rename(s1,CO).

rename(s2,S).

rename(s3,TS).

Finally, we can run all flows to get all possible flows in
the SELinux policy, as shown in the following sample XSB
execution.

?- all flows(LSet).

LSet=[(s2,s3),(s1,s3),(s0,s3),(s1,s2),(s0,s2),

(s0,s1),(s3,s3),(s2,s2),(s1,s1),(s0,s0)]

After renaming the flows given in LSet and reordering
them, we can see that the set is equal to AllF lowsMil in
Example 4.6.

In building the analyzer, we found it useful for analyzing
SELinux policy in other ways as well. As one example, it is
not easy to tell by inspection that the constraint rules for
the MLS policy cover all possible object classes and access
modes, and since the policy specifies a default-allow, this is
an especially critical property. In fact, as we ran our an-
alyzer, we discovered some strange flows (from unclassified
to top secret, for example) allowed by the policy. Isolat-
ing these flows, we re-ran the analyzer to recover how these
flows took place and discovered they were enabled through
such write-channels as socket/open and process/sigchld.
Upon closer inspection, we discovered in comments that the
makers of the SELinux policy intended for these permis-
sions to be ignored. Further inspection revealed that they
are coupled with write permissions which are not left un-
constrained. Had there been other classes/modes left uncon-
strained, however, our analyzer would have caught them.

Another important use for our policy analyzer is in deter-
mining compliance of an application with SELinux, when
the application obeys an information flow policy. In partic-
ular, applications written in a security-typed language [16]
fit this description. This is especially important if the op-
erating system needs to entrust such an application with
special privileges to handle multiple information flows. By
determining in advance that the application will obey an in-
formation flow policy compliant with the OS’s information
flow policy, these privileges can be granted without fear of
abuse. In a recent work, we built a framework that takes
advantage of our compliance analysis to serve this end [7].

6. CONCLUSION
In this paper, we have given a formal semantics for the

MLS policy in the SELinux operating system. We estab-
lish a formal concept of compliance between two information
flow policies and show how we could use this formalism to
prove compliance between the MLS portion of SELinux and



another information flow policy. We developed an analyzer
in XSB Prolog which implements our formalism and auto-
mates the finding of information flows for SELinux. Further-
more, we use our analyzer also to prove compliance of the
SELinux reference policy with the simple security condition
and the ?-property.

Several items remain for future work. Particularly im-
portant is a more careful analysis of the interaction effects
between Type Enforcement policy and the MLS policy in
SELinux. As noted earlier, this interaction is limited to
some very specific cases, but a combination of TE analy-
sis with our MLS analysis would produce some important
results for full SELinux system security management. Due
to the similarity of the frameworks, combining our analysis
with that of Sarna-Sota and Stoller [17] should be particu-
larly fruitful.

Another important topic of future work involves a more
careful analysis of the MLS policy in light of the special
privileges for declassification that can be introduced for
trusted subjects and trusted objects. These privileges in-
clude attributes in the existing MLS reference policy such
as mlsfilereadtoclr and mlsfilewritetoclr, which intro-
duce additional information flows.
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