
Dynamic Mandatory Access Control for Multiple
Stakeholders

Vikhyath Rao
Systems and Internet Infrastructure Security

Laboratory
Pennsylvania State University

University Park, PA 16802
vrao@cse.psu.edu

Trent Jaeger
Systems and Internet Infrastructure Security

Laboratory
Pennsylvania State University

University Park, PA 16802
tjaeger@cse.psu.edu

ABSTRACT
In this paper, we present a mandatory access control system
that uses input from multiple stakeholders to compose poli-
cies based on runtime information. In the emerging ubiqui-
tous environment, many devices run software whose access
permissions depends on multiple stakeholders, such as the
device owner, the service provider, the application owner,
etc., rather than a single system administrator. However,
current access control administration remains as either dis-
cretionary, allowing the running and perhaps compromised
process to administer, or mandatory, requiring all permis-
sions to be known by load-time. A key problem is that users
may download arbitrary programs to their devices, requiring
that the system contain such programs while allowing some
reasonable functionality. However, such programs may need
access to resources that can lead to attacks, such as imple-
menting voice-over-IP calls, but that may also be needed for
benign operations. In our approach, we use a “soft” sand-
boxing mechanism to first contain such processes, request
the stakeholder to authorize operations outside the sandbox
that are not prohibited by policy, and maintain a runtime
execution role for the process to identify its access state to
the stakeholders. We define a proxy policy server that caches
and combines stakeholder policies to make such access de-
cisions. Our framework was implemented by modifying the
SELinux module and using a remote proxy policy server,
although a local proxy policy server is also possible. We in-
cur a 0.288 µs performance overhead only when stakeholders
need to be consulted, and new permissions are cached.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess Control

General Terms
Security

Keywords
Mobile Phones, Distributed Access Control, SELinux

1. INTRODUCTION
The emergence of a wide range of applications for ubiqui-
tous devices, such as cell phones, is causing such devices
to evolve toward general-purpose computing systems. Un-
like PCs, however, such ubiquitous devices have a history of
being closed systems that implement the needs of multiple
stakeholders, such as the device manufacturers and telecom-
munications service providers for cell phones. The introduc-
tion of downloadable applications to such an environment
opens these formerly closed systems, but these stakehold-
ers wish to retain some control over these systems, unlike
PCs. Thus, when an application is downloaded, it is imper-
ative that the application fall under the administration of
these stakeholders. However, for previously unknown appli-
cations or for untrusted applications that may leverage some
sensitive permissions, the stakeholders need a way to make
runtime administrative decisions to control such software,
while providing the desired user experience. In this paper,
we propose a dynamic administrative mechanism that pro-
vides scalable and stateful administrative decisions for mul-
tiple stakeholders.

In general, there are primarily two approaches for admin-
istering access control policies, discretionary access control
(DAC) and mandatory access control (MAC). DAC permits
administration by the owners of system objects, often users.
The central problem with DAC administration is that users
or processes on behalf of users, accidentally or intentionally,
may override important system permissions, thereby com-
promising security. In MAC, administration is restricted to
trusted subjects, such as system administrators, which can
ensure that a specific goal is enforced on the system.

While MAC administration appears to provide the control
necessary to ensure system security, it is too restrictive for
the dynamic environment of these ubiquitous devices. For
MAC administration, it is imperative that system adminis-
trators define accurate security policies for all possible ap-
plication deployments and executions, but that is difficult
for the following reasons. First, each deployment may have
a different set of stakeholders with different security require-
ments that must be composed. Even the set of stakeholders
may not be known until runtime. Second, some applica-
tions may want to use some sensitive permissions. While it

is easy to deny permissions that lead directly to attack, in
many cases it is a combination of mutually conflicting per-
missions (e.g., access to voice input and the WiFi network
that would enable VoIP, circumventing telephony charges)
that may lead to attack, rather than a single permission.
Third, some applications may be previously unknown to the
stakeholders, so it is necessary to derive permissions on the
fly. However, strict sandboxing may be too restrictive, so
the mechanism needs to be able to authorize limited permis-
sions, again preventing attack vectors. A traditional MAC
policy is inadequate in this case, because it does not capture
the requirements of all stakeholders nor express the dynamic
requirements for determining policy.

Existing approaches do not balance the security with the
dynamic requirements of such systems accounting for gover-
nance by multiple stakeholders. In phone systems, Google
Android uses static manifests to load the policy for new ap-
plications at install time [15], and Symbian uses certificate-
based permissions [11, 12]. These approaches assume that
the policy is sufficiently static to be pushed to the client
at install timeand importantly, that the program is already
known to a particular stakeholder responsible for the system
security, and finally, only static policy needs to be enforced
by a Client Reference Monitor (CRM). Traditional MAC
systems presume either that all programs are known ahead
of time (e.g., SELinux [10]) or that the mapping between
users and labels is determined at login (e.g., MLS [1] and
RBAC [3]). None of these systems support the download
of programs that may need sensitive permissions whose use
may preclude other permissions (e.g., Chinese Wall [2]) nor
do these approaches support the input of multiple stakehold-
ers.

Our approach implements dynamic administrative decisions
in a distributed environment consisting of multiple stake-
holders. For each application process, we provide a base
policy that only provides access to those operations granted
for all runs. For previously unknown applications, this pol-
icy provides a sandbox. When permission is requested that
is not authorized by the base policy, but not strictly prohib-
ited, a policy server is consulted to determine whether this
operation should be authorized based on the input of the
application’s stakeholders. The policy server implements a
hierarchical mechanism to determine the application’s stake-
holders and their administrative decisions regarding this re-
quest. We say that the mechanism is hierarchical because
the stakeholder’s decisions may be cached at the policy server
on the device, a proxy policy server (e.g., in the telecommu-
nications network), or on the stakeholders themselves. In
best case, the stakeholders are already known and the ad-
ministrative policy is already cached on the device, so it is
a matter of updating the MAC policy policy. A variety of
policies are permitted for combining stakeholder decisions.
At present, we only consider a Chinese Wall-style selection
of one set of permissions from a conflict set, although others
are possible. We support both transient updates (e.g., lim-
ited use or temporary permissions) and persistent updates
(e.g., policy modules in SELinux).

Our major contribution in this paper is an administrative
policy mechanism for MAC in dynamic environments with
support for multiple stakeholders. This mechanism provides

the functionality described above, as well as supporting revo-
cation, since we believe in any dynamic environment, policy
may also be removed. A key insight in implementing such a
mechanism is that it will not be possible to push the state
of each devices MAC policy around the network (e.g., to
the proxy or stakeholders), so we identify that subjects cor-
respond to dynamic “roles” that, like typical RBAC, imply
that the subject possesses a set of permissions, but unlike
RBAC, is used by policy servers and stakeholder to make
administrative decisions. We have implemented our admin-
istrative mechanism and find that the performance overhead
for each access request is minimal at 0.288 µ s. Of course,
there may be additional overhead to talk to the proxy server
and stakeholders. We expect that such delays will be similar
to registering the device on the network, and much admin-
istrative policy may be captured in that task.

The rest of the paper is structured as follows. In section
2 we define the problem and challenges our framework is
trying to solve, followed by an elaborate explanation of our
solution in section 3. We then discuss the implementation
details of our framework in section 4. Section 5 deals with
the performance and overhead involved in our solution along
with some additional features. Discussion of our framework,
and other existing approaches with regards to the enveloping
skeleton of Usage CONtrol (UCON) is presented in related
work in section 6. We conclude the paper with section 7
which also summarizes our future work.

2. PROBLEM
In order to help define our problem clearly we present an ex-
ample scenario. We consider the telecommunications system
whose core network is owned by the network operator, and
provides services to millions of distributed clients. Early
telecommunications systems did not allow users to install
any software obtained without the service providers permis-
sion. Even basic features like ring tones could only be down-
loaded Over-The-Air (OTA). This is unlike personal com-
puters, where the lines are demarcated more in favor of in-
creased user privileges to the detriment of security. In recent
years, however, the telecommunications network has opened
up, as consumers demand more services, and advanced cell-
phones with support for installation of third party appli-
cations were introduced. Following an Internet-like model
where “anything goes” is not feasible in a closed network
like the telecommunication network. Many researchers al-
ready warn us about the effects of end-users installing third
party applications [13, 4].

Further, the more restrictive the service providers are, the
more alienated the users will become, leading to a situation
where the users rebel against the very same providers who
are trying to protect them and their systems. For example,
the initial iPhones were introduced which locked users into
a certain service provider. This quickly resulted in mass
“Jail-breaking” of these phones [9, 7]. “Jail-breaking” is
a term for removing locks that the service providers imple-
ment. The users who installed these hacks, many from ques-
tionable sources, further exposed themselves and their sys-
tems to more threats. This creates a security model where
the users are adversaries. MAC is a good solution as can
implement verifiable security, but the demand for increased
services and flexibility from consumers means a static MAC

policy is not flexible enough.

Thus we define our problem statement as follows: Enabling
dynamic policy administration in MAC systems by multiple
stakeholders in a distributed environment. We need to per-
form the following steps in any effective framework.

• Identify when to ask - Here we define the conditions un-
der which we ask for new permissions. For this, we use
prior work in access control spaces [5] as guidance. The
entire request space can be divided into prohibited, per-
missible, specified and unknown subspaces. The base
policy on the client defined by the manufacturer corre-
sponds to prohibited and permissible subspaces. Core
applications that have already been granted permis-
sions to run, including the default phone dialing, SMS,
and phonebook applications come under permissible
subspace. Critical resources like SIM card secrets are
permanently denied access are part of the prohibited
subspace. Unknown subspace is the remaining set of
permissions that have not been defined locally. When
an access request for a permission residing in the un-
known subspace is encountered, the decision is sent to
the stakeholders, and the response becomes part of the
phone policy, and this transitions the request from un-
known to the specified subspace 1 (if authorized), and
may extend the prohibited subspace. A revocation of
permission results in the access request associated with
the revocation returning to the unknown subspace.

• Identify what to ask - In order for the stakeholders
to make a well-informed decision based on their pol-
icy, the following information needs to be transmitted
by the Client Reference Monitor (CRM); the access
request comprising of subject, object, task being per-
formed, unique application identifier, and finally state
information. State information refers to the set of per-
missions already existing on the phone. Maintaining
a separate state unique to every set of permissions is
unfeasible. Hence, in our framework we define sets of
permissions as roles. Possible roles may include, WI-
FI enabled, GPRS-enabled, handset microphone and
speaker-enabled, and GPS-enabled, to name a few.

• Response from Stakeholder - The stakeholders provide
administrative policy that may be cached at the proxy
server (in the network) and policy server (on the de-
vice). The administrative policy associates applica-
tions and roles with rules for administering the MAC
policy. The mechanism does not limit the types of
rules, but in our initial approach, stakeholders may
state no interest or conflict sets among roles (and the
permissions associated with those roles). The policy
server will find the role associated with a permission
request, determine if this role is in conflict with one
of the application’s current roles, and, if not, return
the new role and its specified permissions (including
positive and negative permissions).

1The permission is added to the specified rather than the
permissible or prohibited subspaces because such assign-
ments are transient. In general, a stakeholder may have
a choice of whether to grant or revoke the permission un-
conditionally, but at present, we only consider temporary
assignments.

Figure 1: Problem Overview

• Response from Policy Server - There are two possi-
ble forms of policy update responses. The first is a
transient update that is request-specific. The permis-
sions are added, but they may expire or otherwise be
revoked. This approach is better suited to high risk,
downloaded applications with individual permissions
that may need to be revoked. The second type up-
dates permissions at the scale of the application or the
application-run, where a batch of permissions analo-
gous to a policy module are updated. It is not in-
tended that such permissions be revoked individually
or perhaps at all.

• Update client - Finally, after obtaining the permission
response, we either make a transient change or a mod-
ule change to policy. The roles of the application also
may be updated.

Let us analyze the installation of a Internet based telephony
application similar to Skype, on a handset implementing
MAC in a telecommunications system. With the advent of
Wi-Fi on handsets, such applications can be used to make
free phone calls over the Internet bypassing the telecommu-
nications infrastructure and costs associated with it. The
first restriction for such applications comes from the service
provider. Network operators do not want to allow end users
to make calls through the Internet as this creates a loss of
revenue for them. On the other hand, the phone manufac-
turer would have no problem allowing installation of such
applications if its the telecommunications systems, as it in-
creases the phone’s appeal to consumers and may result in
increased sales. Finally, the application provider might want
to limit the user to only 20 executions of the application
since it is a trial version and the user has not paid the req-
uisite fee. Here, the phone manufacturer, network operator,
applications provider, and the end user are all stakeholders
in the system, and have specific access control restrictions
that need to be enforced. Let us see how this plays out in
our scenario.

When the Internet telephony application first runs on the
MAC enabled phone, it requests permission for access to
the handset speaker and microphone. The service provider
stakeholder grants this permission since it is not a violation
of policy. The phone changes state into the“handset speaker
and microphone-enabled” role. When the application then
attempts to access Wi-Fi to stream the voice, another re-
quest is made to the stakeholder, and this time, based on the
stateful information that handset speaker and microphone
is already permitted, the stakeholder can identify that an
internet telephony application may be running and either

deny the new request, or revoke the previously granted per-
missions and permit the WI-FI request. This would also
change the state from “handset speaker and microphone-
enabled” role to the Wi-Fi role. We note that other com-
plexities in state might be involved in making a real decision
on a working system, but we limit the example to easily un-
derstand the problem at hand.

Even if the service provider stakeholder decides through a
change in policy that Internet telephony is allowed, the ap-
plications provider would still want to enforce pay-per-use
applications or trialware, where application access is limited.
In this case, the permission granted to the telephony appli-
cation must be revoked after the requisite usage. One of
the main challenges of policy revocations in distributed en-
vironments is the overhead associated with frequent policy
downloads. This problem is compounded in an environment
where users may install new applications regularly. Hence
scalability must be carefully accounted for in any frame-
work solution. Finally, as mentioned, one of our framework
requirements is that depending on if the telephony applica-
tion is recognized by a stakeholder, or is an unknown third
party application, we either obtain an application specific
policy, or a request specific response respectively and this
affects ease of revocation which ultimately impacts scalabil-
ity.

Figure 1 presents the interaction of various components in
our example scenario. The CRM is responsible for policy
enforcement on the client, and for transmitting permission
requests with the information required for various stakehold-
ers to make a decision. By using a CRM to identify the
permission requests dynamically, we avoid the problem of
requiring an external entity to create a list of static per-
missions that is required at install time. The proxy refers
to an intermediate stage where information from multiple
stakeholders is consolidated and staged.

3. APPROACH
In this section we present an architectural overview of our
framework, followed by the details of our main functional
mechanisms.

3.1 Architecture Overview
The main components of our framework as shown in Figure
2 are the Proxy Server, local policy server and MAC sand-
box. We use a trusted channel like IPsec, SSL, or any other
end-to-end encryption from the client to the proxy server
to securely transmit information. The proxy server contains
the various stakeholders’ consolidated decisions. It serves as
a staging point before permission responses are transferred
to the local policy server. The MAC Sandbox is the client
reference monitor that enforces policy on the end device.

Viewed differently, our framework components provides an
interesting hierarchical structure as shown in figure 3. Top
to bottom, the responsibilities gradually change from decid-
ing the policy to enforcing the decision. Similarly, the policy
representation becomes more specific, from policy subspaces
and abstractions to binary “yes” or “no” decisions. The top
tier consists of the various stakeholders and their individual
policies. These are consolidated and staged at the proxy
policy server which acts as a proxy and an abstraction to

Figure 2: Framework Overview

the lower tiers, simplifying their interaction to a single en-
tity. Then we have the local policy server that processes
permission responses as request specific (directly inserted
into the Access Vector Cache (AVC)) and application spe-
cific which are processed through access vector table before
insertion into the AVC. The AVC enables high performance,
easy revocation and contains the final access decision.

3.2 MAC Sandbox
In order to identify permissions for an application, we use a
strict MAC policy tailored to the unspecified subspace. We
term this as a “soft” sandboxing solution or a MAC Sandbox
since unspecified application requests get denied initially as
if running in a sandbox. Thus when newly installed ap-
plications like our example Internet telephony application
attempt to use cell phone functionality in the unspecified
subspace, the MAC policy will isolate these requests. Con-
versely, specified subspace requests like core permissions and
restrictions, are directly defined in the local MAC policy and
do not require further processing.

In order for the stakeholders to make stateful decisions, per-
mission requests are transmitted with a predefined subset
of possible conflict sets abstracted as the current role. This
role is intialized at boot up, and varies according to the set
of permissions currently in the client’s possession. We define
the request consisting of the source label, target label, re-
quested operation, and role as a tuple that uniquely defines
an access request.

We transmit this access request tuple to the proxy policy

Figure 3: Hierarchical flow diagram from the policy
creators to enforcers

server before the denial is final. We term this run-time per-
mission request generation as a dynamic manifest (e.g., like
a Google manifest which provides permissions for an appli-
cation). We note that this is only a manifest in principle,
since these requests are generated on resource access and
they are not consolidated.

An important advantage of our dynamic manifest solution
is that an application’s unused privileged functionality does
not affect its operation. This is unlike an install time cer-
tification system like Symbian where static policy directly
prevents installation regardless of usage.

Another advantage of our framework is that it ensures appli-
cations run with least privilege. This is because permission
requests are only sent for accesses that are denied, and the
application is only granted the minimum permissions it re-
quests and nothing more.

3.3 Proxy/Policy Server
Request tuples need to be resolved according the multiple
stakeholders. We may use a staging point called the proxy
server to support the same. Various policy servers corre-
sponding to the different stakeholders are connected to the
proxy server. If bypassed, the client needs to query every
stakeholder’s policy server individually and cache responses
in the local policy server. The remote proxy server design
avoids this by handing policy consolidation externally and
thus minimizes the complexity and delay overhead for the
client. The trade-off is the overhead of an additional com-
ponent in the framework. We note that although the proxy

server component is optional, the rest of this paper assumes
it is part of the framework. Implementations without the
proxy server are straighforward as its functionality is just
pushed to the local policy server.

Policy rules are generally defined as explicit “allow” with de-
fault deny to support no interest. Explicit “deny” rules may
also exist, that are overarching restrictions on request tuples.
This is termed as strict-policy. In contrast, a targeted-policy
scheme is where all undefined requests are allowed and the
policy only consists of “deny” rules. However this is less
secure as we then have to define every malicious scenario.

In the case of multiple stakeholders, policy consolidation can
be handled in the following semantically different ways.

• All allow - All policy servers must explicitly have an
allow ruleset. Implemented by anding all access bit
vectors. Extremely conservative.

• Any allow - At least one policy server must have an
allow ruleset results. Implemented by oring access bits
vectors. Extremely generous.

• Consensus - At least one policy server must have an
allow ruleset and none with an explicit deny ruleset.
No fault tolerance nor conflict resolution.

• Priority - Sum of priorities of allow ruleset policy servers
greater than those with explicit deny. Implemented by
weighted sum of bit vectors with priorities as weights.
Higher ranked stakeholders can override lower ranked
ones. Provides some fault tolerance and conflict reso-
lution.

While consensus provides us with a basic implementation
that is elegant and simple, it does not take into account
complexity in treating all stakeholders equal. For example,
a secondary stakeholder say, the manufacturer, should not
override a primary stakeholder, say the telecommunications
provider, in the context of a particular access decision. We
can implement these kinds of complexities using a priority
based approach with different priorities associated with each
tuple and stakeholder combination. A complete identifica-
tion and mapping of the intersection and unions of different
stakeholders and permissions is out of scope and left as fu-
ture work.

We now look at how state information, i.e. role transmitted
with the dynamic manifest helps us make permission deci-
sions at the proxy server. In our example case, we assume
that the initial Wi-Fi Internet access request is first granted
and is inserted into the cache. Following this, the applica-
tion then attempts to access the handset microphone and
speaker. Now this request will have the existing state/role
of Wi-Fi enabled. Thus the proxy server can make a state-
ful decision denying access and preventing end users from
accessing Internet Telephony over Wi-Fi. If Wi-Fi was not
already enabled, the proxy server would have permitted ac-
cess to the handset microphone and speaker as the end-user
cannot use Internet Telephony unless both are active.

3.4 Incremental Policy Addition
The decision payload returned from the stakeholders or proxy
server, is transferred to the local policy server. Here depend-
ing on the category of response, i.e. permission or applica-
tion specific, local policy updates are performed.

Permission specific responses are termed as incremental pol-
icy addition. We explain its operation through our example
scenario. The Wi-Fi access request from our Internet tele-
phony application is in the unspecified subspace and corre-
spondingly the local policy server transmits a request tuple
to the proxy server, which replies with an instant request-
specific response. The local policy server receives this re-
sponse, identifies it to be request specific, and inserts into
the local client cache. Since the cache is always checked
before consulting the local policy, we exploit this layer of
indirection to enforce system policy. We minimize the per-
formance overhead as once the cache is populated, subse-
quent permission responses are returned directly through
cache hits.

The main advantage of this online approach is twofold. First,
downloading complete policy modules involves significant
overhead for every permission reply received. Modifying a
monolithic policy involves downloading the new binary pol-
icy to the phone, which is in megabytes, and inserting it
into the kernel. Even in modular form, binary policy mod-
ules for meaningful applications like firefox or thunderbird
are about half a megabyte in size and need to be inserted
into the kernel. Unknown high risk applications conceiv-
ably result in frequent permission requests and revocations
exacerbating the problem. Second, and more importantly,
it greatly simplifies revocation, which is critical in dynamic
environments. Since these transient decisions are only in-
serted into the cache, revocation becomes as easy as inval-
idating the cache either incrementally or completely. Thus
in this mechanism, we exploit cache poisoning as a funda-
mental feature to provide low overhead policy enforcement
and easy revocation.

3.5 Batch Policy Module Insertion
The application specific solution is utilized if the application
making requests is recognized by the stakeholder and it has
a module available that encompasses resource requirements
at the proxy server. We assume our Internet telephony ap-
plication is a store application bought from a stakeholder.
Known applications are recognized by Application IDenti-
fiers (AppID) that are provided by stakeholders to develop-
ers as a premium service for money. In this case, the appli-
cation module is provided directly in response to the access
request, and the local policy server inserts the module into
the client MAC policy. This mode of batch operation where
a complete permissions manifest is downloaded one-time to
the client, is more akin to traditional policy servers that
provide on-demand policy modules. Revocations are a lit-
tle challenging, as policy changes will require a new module
download to override existing policy. However as this op-
tion is used only for recognized applications, the frequency
of revocations should be low and thus easily handled. In
this mechanism, we exchange the advantage of easy revoca-
tion for a more persistent solution that alleviates per-access
response delay.

3.6 Revocation
The telecommunication system was initially built to be a
closed network, but with the advent of smart phones, we see
a constant evolution of permissions in an dynamic environ-
ment, where millions of end users routinely install and unin-
stall new applications. In order for the service provider to
effectively control the end points of this network, revocation
of permissions is a high priority. Our framework has been
carefully designed with revocation in mind, so it supports
both mass revocation and functionality-specific revocation.

We first look at revocation of the request specific, incremen-
tal decisions. The permission replies from the policy server
are inserted into the cache instead of modifying the phones
local policy directly. Now resetting the phone to its original
state and revoking all permissions can be performed by a
simple cache invalidation. Apart from mass revocation, we
can also invalidate cache entries line by line by simply re-
moving them individually from cache. Invalidation can be
triggered by requests from the policy server as and when
required.

Revocation of the application specific, policy insertions need
to be handled a little differently. In this case, in order to
invalidate permissions the old policy module will require re-
moval and a new module is reinstalled at the client. However
as policy insertions are performed only for stable recognized
applications, there is less need for revocation in this case.

Another interesting feature of our framework is the ability
to support pay-per-use applications. We associate a counter
with each cache entry that is intialized with the desired num-
ber of permitted accesses. Then decrement this counter ev-
ertime a service is accessed by an application. When the
counter reaches zero, we simply invalidate the cache entry
denying further access to the service. Thus, a user may be
allowed to access internet telephony services for say, up to
50 times a month or send 100 SMS’s a month.

4. IMPLEMENTATION
In this section we discuss the implementation details of our
framework. We use the SELinux LSM module in the Linux
kernel version 2.6.27.2 to implement the base MAC sys-
tem for our framework, and modify it according to our re-
quirements. Our experiment shows that it is relatively sim-
ple to introduce this functionality in the kernel with min-
imum overhead and modular changes. A thorough study
of the SELinux module architecture was required. Estab-
lishment of a secure channel for communication like IPSEC
or TLS is a requirement for our approach. In the telecom-
munications network, it is not unrealistic to assume a se-
cure channel between the user and the core network. The
hardware used was a Dell Optiplex GX620 machine with
Intel Pentium Dual Core processor @ 3.20 GHz. In order
to enable basic SELinux support the kernel needs to be
recompiled after enabling the SELinux options like CON-
FIG SECURITY SELINUX and CONFIG SECURITY SELINUX BOOTPARAM.
SELinux has two modes of operation namely, Enforcing mode
and Permissive mode. In enforcing mode, SELinux will ac-
tually prevent those operations that are not permitted by
the policy, whereas in permissive mode, a violation is just
logged for audit purposes and the operation is allowed to
continue. We boot the kernel in permissive mode for testing

purposes.

4.1 SELinux
SELinux uses a reference monitor to mediate all access on
a system. It is predominantly a type enforcement system
(TE). All entities are labeled with contexts, and when a
subject tries to access an object, both the source contexts
(scontext) and target contexts (tcontext) are checked for ac-
cess control in the security policy. SELinux was modified to
operate as part of the Linux Security Module (LSM) frame-
work. While the LSM uses TSIDs (Target Security Identi-
fier) and SSIDs (Source Security Identifier) to identify the
source and target objects, these get translated to source and
target contexts in the SELinux module. These contexts stay
consistent between machines as long as the same policy is
loaded and this enables us to maintain consistency between
the policy server and local system. We have identified that
transmitting the source and target contexts, along with a
class identifier and the access control bitmask is enough to
uniquely identify a permission request and its response. The
context refers to the label of the entity, and the class identi-
fier corresponds to the various entity types like file, socket,
directory etc. The access control bitmask, avc->allow, refers
to a 32 bit identifier where each bit refers to either an al-
low or deny decision for various operation requests. When
a subject tries to access an object, this bitmask is identi-
fied for the source-object context pair and corresponding
class, in the Access Vector Cache (AVC). If not present in
the cache, the bitmask is looked up from the Access Vector
Table (AVT) and then inserted into the AVC. The access
permissions requested are represented in the same format as
the bitmask permissions. Except, only the requested permis-
sion bit is set, all other bits are zeroed. To identify if access
should be granted or not, a bitwise “and” is performed be-
tween the requested and permissions bit mask, and if it is
non zero, access is granted. Thus a tuple consisting of scon-
text, tcontext, class, and bitmask are sufficient for access
decisions. Apart from the avc->allow bit access vector de-
scribed above, there are two other access bit vectors namely
avc->auditallow, and avc->deny. The auditallow vector cor-
responds to one that grants permission and has its output
logged in the audit report. This is useful for troubleshoot-
ing and logging purposes. The deny access vector is similar
to the allow vector, except it is initialized as ones and zero
corresponds to allow. These access bit vectors used together
allow us to obtain a fine grained policy.

4.2 MAC Sandbox
The MAC sandbox is the primary component in the im-
plementation of the dynamic manifest concept. The imple-
mentation framework is outlined in figure 4. We define the
handset user sysadm t as our subject and a new object type
untrusted t, which corresponds to an unknown third party
application. The phone’s pre-configured local MAC policy
is limited to only core applications and this becomes our
specified subspace. The specified subspace is inserted into
the cache as part of normal SELinux operation when an ac-
cess request causes a lookup from the access vector table.
However, when a user of type sysadm t attempts to exe-
cute untrusted app, it is not allowed as this permission is
not enabled in the local policy (unspecified subspace). This
simulates running unknown applications in a sandbox, and
this becomes our dynamic manifest.

Figure 4: Implementation Framework for MAC Se-
curity Model

Once we obtain the unspecified access request, we insert a
hook and instead of the default deny message being logged,
an independent kernel thread is spawned to communicate
with the proxy policy server. The security tuple consisting
of the source security context, the target security context,
target class, the requested permission mask and the current
role, if one exists is sent to the proxy server via a secure
network socket. The proxy server on receipt of this message
checks its consolidated policy database and makes an access
decision. This decision is communicated back to the local
policy server over the network. It is important to note here
that the client does not busy wait for an access vector deci-
sion from the policy server. The kernel thread created earlier
blocks while waiting for the access vector decision. On re-
ceipt of the packet from the proxy server, the local policy
server performs a bitwise “or”between the local bitmask and
the proxy server bitmask. This corresponds to a union of the
local and remote decision vectors. This new bitmask is then
“anded” with the requested permission vector to generate
the allowed/denied decision. the local policy server inserts
this access vector decision in the AVC. This functionality is
verified by viewing the kernel log messages. Once a decision
is inserted into the cache, the next time the same function-
ality is accessed, the access decision is returned as a cache
hit. Thus the unspecified request, becomes part of the spec-
ified subspace and exists in the cache. It will once again be
downgraded to unspecified only in the event of revocation.

Depending on the network traffic as well as the load at the
policy server, the client might have to wait momentarily
before it gets the correct access control decision from the
policy server. This one time transient wait at the client

before it can run the application is an example where system
security is given higher priority over a minimal performance
increase.

Revocation of granted permissions in case of an attack is also
well facilitated. This is done by allowing cache invalidation
of a single-entry or the entire cache by sending an explicit
invalidate request from the server. The ability to perform
single entry cache invalidation after specific number of ac-
cesses is supported by invalidating cache entries that exceed
a specific number of cache hits. The only modification to
support this feature was insertion of a counter variable in
the cache entry. On every cache hit, the counter variable is
decremented and when it reaches zero, the entry is deleted
from the cache, and this revokes its permission.

4.3 Policy insertion
In order to support the policy insertion part of our frame-
work, we wrote an SELinux policy module “trustedm.te” for
our test application. The module creates a new object type
called trusted t that corresponds to a known phone appli-
cation that is trusted and given access permission by the
local policy server. The policy also allows the user of type
sysadm t to read and execute a file of type trusted t. This
precompiled modular policy can be inserted into the kernel
through the semodule -i <module name> command dynam-
ically without recompilation of the entire policy. When a
user of type sysadm t attempts to execute trusted app, it is
now granted permission to execute by phone’s local SELinux
policy. This is confirmed by the AVC logs. Revocation is
achieved by using the semodule -r <module name> com-
mand to remove the corresponding policy module.

4.4 Proxy Policy Server
Policy consolidation is performed at the proxy server us-
ing any of the techniques mentioned in section 3.3. When
the MAC sandbox sends a permissions request to the proxy
server, it checks the transmitted AppID to confirm if it is a
known application. If it is unknown, an incremental access
decision vector is returned to the local policy server accord-
ing to the consolidated policy. Instead, if the request is for a
known application with a policy module already existing at
the proxy server, we just send the compiled binary module
to the local policy server for insertion. Similarly revoca-
tion requests can be initiated from the server whether it is
a cache invalidation or module removal request.

5. DISCUSSION
In this section we discuss performance of our implementation
and some additional features that can be easily integrated
into the framework.

5.1 Performance Overhead
Our framework relies on a modified SELinux module that
sends access requests to the proxy server after lookup in the
cache and local policy. Since SELinux has now been stan-
dardized in Linux kernels, introduction of our framework
into an existing system should be relatively easy. In terms
of performance our framework does not add much overhead
to the users handset operations. This is because although
the first access for a new application will be delayed at least
by round trip time to the policy server, subsequent decisions

Table 1: Implementation delays for a single access
request

Data Payload Size 28 bytes
Processor Speed 3.2 GHz
Plain SELinux Kernel 946 cycles = 0.295 µs
W/Local Policy Server 1485 cycles = 0.464 µs
W/remote Policy Server 1870 cycles = 0.584 µs
Single Request Overhead 924 cycles = 0.288 µs
Network Round Trip Delay 3 ms (approx)

are cached and returned locally with minimal overhead. By
increasing the size of the cache, before entries are replaced,
we can further ensure the performance overhead is limited
only to first time access and all subsequent accesses are re-
turned locally through the cache. The advantages we gain
in exchange for this initial overhead include many novel fea-
tures. These include easy revocation and reduced overhead
compared to SELinux policy insertions.

The kernel patch has not been completely optimized as yet
and currently consists of about 256 lines of kernel code.
However, performance testing even without optimization only
showed 0.288 microseconds overhead in executing our frame-
work. Of course, this is independent of round trip time
which varies depending on the network used and is proba-
bly a bigger bottleneck. However, we mitigate its influence
by intelligent caching design and further, core applications
and stakeholder recognized applications will have their secu-
rity vectors in the local policy itself and only newly installed,
unidentified third party applications will have this overhead,
limited to the first time functionality is accessed.

As we see, local network roundtrip time domintates the
framework overhead. The alternative to our framework in
distributed environments is to download a new binary pol-
icy module each time a permission request is sent to the
policy server. An average application policy module like
firefox or thunderbird is approximately half a megabyte in
size. Each time we want to update the local policy, no mat-
ter how trivial the change, the entire binary module needs
to be transferred and installed into the handset. Consider
a 1.5 MBps connection transferring 0.5 MB for each policy
update. This scenario becomes readily unscalable with total
overhead reaching magnitudes of 33 seconds as the num-
ber of policy updates approaches 100. By comparison, our
framework scales efficiently in the same scenario to just 300
ms.

We also present our motivation for using the access vector
cache to store transient decisions, in figure 5. From this
graph, we see that after the system stabilizes, all security
decisions are returned from the cache directly. The num-
ber of cache misses does not increase after 100s while the
cache hits continue to increase steadily. Thus after the sys-
tem converges to a stable state, communication between the
local policy server and proxy server will be minimized and
round trip delay will not impact the system significantly
over time. Only in the event of a revocation, the cache gets
reset and the system will need to re-insert the new security
decisions into the cache. However, the alternative of down-
loading entire policy modules instead of cache insertion, will

Figure 5: AVC statistics vs Time

result in much greater overhead. We leave further research
regarding optimization of cache size, and dealing with cache
replacement as future work.

5.2 Flagging
Having a tightly coupled security framework between the
handset owner and the service provider allows both parties
to maintain control over content and services. For example,
permissions requested that are not granted by the handset
local policy have to be granted by the service provider. This
means that all access requests can be logged and maintained
at the proxy server per user. This kind of flagging allows the
service provider to have greater visibility over the services
accessed by third party applications. For example, a third
party SMS application installed by the user will require per-
mission to access SMS services. When the user requests
this permission from the proxy server, the service provider
can flag the user as one with greater risk of misusing SMS
resources. Thus if the user’s handset appears to perform
an anomalous operations like sending hundreds of SMS’s
shortly after installation of a third party application, the
service provider can identify the software at runtime. This
is in contrast to a framework like ”Symbian Signed” which
performs extensive source code analysis on every signed ap-
plication to provide the same feature. This also allows the
service provider to maintain higher vigilance on users who
install high risk content on their handsets. For example,
an elderly couple might never install the latest third party
games from an online site. Hence they will not have many
requests for permission and will not require careful monitor-
ing. Whereas, a user that installs many third party applica-
tions with access to critical services can be flagged as high
risk, and monitored closely for any anomalous behaviour.
Intensive fine grained security flagging is often very useful
in identifying security holes in a system quickly but there is
a corresponding tradeoff in terms of privacy. However, not
all loss of privacy infringes upon the user rights and many
may be willing to balance their privacy requirements for se-
curity. However a thorough study of privacy issues and user
behaviour is out of scope for this paper.

5.3 DySEL as IDS

Since we already have the complete policy module for pre-
mium and core applications, any denied requests for the
same can be assumed to be a deviation from its normal
profiled behaviour. For example, through a code injection
attack like a buffer overflow, a highly privileged phone bank-
ing application attempts to access the Bluetooth device to
offload user information. In such a scenario owning to the
least privilege permissions constraints, the phone banking
application should not have any access to the Bluetooth de-
vice, and any such resource request can be identified as a
deviation from normal profiled behaviour and classified as
an attack. While we note that the MAC framework will
prevent such an attack, we can additionally flag these de-
viations to provide basic Intrusion Detection System (IDS)
capabilities.

5.4 AppID
The AppID assigned for each premium application that is
recognized by the proxy policy server is universally unique
and it provided as a wrapper along with the installation
package. This AppID is transmitted as part of the access
request tuple and enables easy identification of the premium
application and its corresponding tailored policy. Unknown
applications are assigned an AppID that is locally unique
on installation, but may have duplicates globally. However
during analysis and identification of rogue applications this
locally unique AppID can be combined with a unique identi-
fier for the phone like IMSI (International Mobile Subscriber
Identity) or IMEI (International Mobile Equipment Iden-
tity).

6. RELATED WORK
6.1 Multiple Stakeholders and Access Control
Certificate based techniques on the topic of multiple stake-
holders and distributed policy have been explored in Akenti,
however the authors deal more with access to distributed re-
sources, which is different from our goal of a tightly coupled
local CRM enforcing policy provided by multiple stakehold-
ers [8]. Tresys has implemented an SELinux policy server
that allows remote administration of SELinux policies, how-
ever, it is limited to single administrator, pre-computed pol-
icy modules that allow remote installation [14]. Static mani-
fests techniques like kirin are not suitable for scenarios where
the manifest itself is highly dynamic [15]. Certificate based
techniques have been already used in practical systems like
Symbian [12], but have weaknesses similar to static mani-
fests. Further more, external certification leads to increased
costs for third party developers, as they must get their ap-
plications certified for a fee, in case of any modification.

Tools like audit2allow, have previously used the set of all
denied messages obtained from an installed application to
identify the permissions it needed [14]. However this was
performed off-line using log files to generate new policy files
which allow the application to operate. This approach is not
dynamic since we would need to obtain the appropriate log
files, and run the tool each time to generate the new policy.
Further, the newly generated policy needs to be compiled
and inserted into the kernel. Finally, we would still need to
identify the permissions that should be allowed or denied,
since we cannot perform a blanket guarantee on the entire
log file and allow all requests.

6.2 UCON
Usage control (UCON) which is a generalization of tradi-
tional access controls, trust management, and digital rights
management is a systematic approach for next generation
access controls [6]. Traditional access control is limited to a
closed system with a server-side reference monitor where all
the users are known. Trust management covers authoriza-
tion for strangers in an open environment, and digital rights
management deals with client side control of information
usage. UCON scope can be mapped in terms of different
kinds of reference monitors, and payment options. In terms
of UCON scope traditional access control and trust man-
agement is performed using a server side reference monitor
(SRM) while usage control is performed using a client side
reference monitor (CRM). For our discussion we only focus
on access control in UCON. While UCON in general can
include both SRM’s and CRM’s we compare our framework
to the generalized domain of UCON. We use SELinux as a
standard CRM but instead of using an SRM, which enforces
the policy, we just identify the decision and pass it to the
client for policy enforcement. This prevents the overhead of
enforcement at the server and client, under the assumption
of a trusted computed base (TCB) that includes the server,
client and communication channel between them. Although
we provide some resource control in the sense, we can limit
the number of execution attempts on functionality, our main
focus in this paper is restricted to access control. Further
our framework is flexible enough to incorporate more usage
control, and increase the amount of state involved in policy
decisions in the future.

7. CONCLUSIONS AND FUTURE WORK
We have presented a novel security framework using Manda-
tory Access Control (MAC) in a distributed environment.
The main contribution of this paper was to provide a secu-
rity framework with support for new features like multiple
stakeholders, dynamic permission derivation, and extensive
revocation support. Our framework was implemented by
modifying the SELinux module and using a policy server
database that can validate security permission requests in
real time. The performance overhead introduced in the ker-
nel was minimal at 0.288 µs. Our model provides an end-
to-end solution using SELinux deployment and is beneficial
to providing system security in a distributed environment.

In our future work, we plan to study the following: Impact
of having policy servers outside the TCB and possibility of
collusion among policy servers. A more in depth study of
consolidation techniques of different stakeholders and com-
pliance testing to ensure conflicts are resolved. Further re-
search regarding optimization of cache size, and dealing with
cache replacement.

8. ACKNOWLEDGMENTS
The authors would like to thank Sudeep Dutt for his help in
implementation of this framework, and Dr Patrick McDaniel
for his early guidance.

9. REFERENCES
[1] D. Bell, L. L. Padula, M. Ben-Ari, G. Benson, and

G. Secure computer system unified exposition and
multics interpretation.

[2] D. Brewer and M. Nash. The chinese wall security
policy. Security and Privacy, 1989. Proceedings., 1989
IEEE . . . , 1989.

[3] D. Ferraiolo, J. Cugini, and D. Kuhn. Role-based
access control (rbac): Features and motivations.
Proceedings of the Eleventh Annual Computer Security
. . . , 1995.

[4] C. Guo, H. J. Wang, and W. Zhu. Smart Phone
Attacks and Defenses. In Proceedings of Third ACM
Workshop on Hot Topics in Networks (HotNets-III),
2004.

[5] T. Jaeger, X. Zhang, and A. Edwards. Policy
management using access control spaces. ACM
Transactions on Information and System Security
(TISSEC), 2003.

[6] R. S. Jaehong Park. The UCON usage control model.
In Proceedings of ACM Trans. Inf. Syst. Secur., vol 7,
pages 128–174, 2004.

[7] S. Kelby and T. White. The iphone book: how to do
the things you want to do with your iphone. 2007.

[8] Mary Thompson, William Johnston, Srilekha
Mudumbai, Gary Hoo, Keith Jackson, Abdelilah
Essiari. Certificate-based Access Control for Widely
Distributed Resources. In Proceedings of the 8th
USENIX Security Symposium, pages 215–228, August
1999.

[9] C. Miller, J. Honoroff, and J. Mason. Security
evaluation of apple’s iphone. 2007.

[10] National Security Agency. Security Enhanced Linux.
http://www.nsa.gov/selinux.

[11] Symbian Limited. Symbian OS - the mobile operating
system. http://www.symbian.com, 2006.

[12] Symbian Limited. Symbian Signed.
http://www.symbiansigned.com, 2006.

[13] P. Traynor, V. Rao, T. Jaeger, P. McDaniel, and
T. La Porta. From Mobile Phones to Responsible
Devices. Technical Report NAS-TR-0059-2006,
Network and Security Research Center, Department of
Computer Science and Engineering, Pennsylvania
State University, University Park, PA, 2007.

[14] Tresys technology, SETools policy tools for SELinux.
http://www.tresys.com/selinux/selinux_policy\

_tools.shtml.

[15] William Enck, Machigar Ongtang, and Patrick
McDaniel. Automated Cellphone Application
Certification in Android (or) Mitigating Phone
Software Misuse Before It Happens. Technical report,
Pennsylvania State University, 2008.

