
Resolving Constraint Conflicts

Trent Jaeger
jaegert@watson.ibm.com

Reiner Sailer
sailer@watson.ibm.com

Xiaolan Zhang
cxzhang@watson.ibm.com

IBM T.J. Watson Research Center
Hawthorne, NY 10532

ABSTRACT
In thispaper, wedefineconstraint conflictsandexamineproperties
thatmayaid in guidingtheir resolution.A constraintconflict is an
inconsistency betweentheaccesscontrolpolicy andtheconstraints
specifiedto limit that policy. For example,a policy that permits
a high integrity subjectto accesslow integrity datais in conflict
with a Biba integrity constraint. Constraintconflicts differ from
typical policy conflictsin thatconstraintsarenever supposedto be
violated. That is, a conflict with a constraintresultsin a policy
compilationerror, whereaspolicy conflictsareresolvedat runtime.
As we have found in the past,whenconstraintconflictsoccur in
a specificationa varietyof resolutionsarebothpossibleandprac-
tical. In this paper, we detail somekey formal propertiesof con-
straintconflictsandshow how theseareusefulin guidingconflict
resolution.WeusetheSELinuxexamplepolicy for Linux 2.4.19as
thesourceof our constraintconflictsandresolutionexamples.The
formal propertiesareusedto guidetheselectionof resolutionsand
provide a basisfor a resolutionlanguagethatwe apply to resolve
conflictsin theSELinuxexamplepolicy.

Categoriesand SubjectDescriptors
K.6.5 [Managementof Computing and Inf ormation Systems]:
SecurityandProtection—unauthorizedaccess

GeneralTerms
Design,Management,Security

Keywords
accesscontrolmodels,constraintmodels,policy design

1. INTRODUCTION
Conflictsin accesscontrolpolicy (i.e.,policyconflicts) have tra-

ditionally beencausedby thespecificationof positive andnegative
authorizations.An accesscontrolpolicy consistsof a setof autho-
rizationsthateithergrant(positive)or deny (negative)aprincipal’s
(e.g.,useror program)requestto performanoperation(e.g.,read

Permissionto make digital or hardcopiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthisnoticeandthefull citationon thefirst page.To copy otherwise,to
republish,to postonserversor to redistributeto lists,requiresprior specific
permissionand/ora fee.
SACMAT’04, June2–4,2004,Yorktown Heights,New York, USA.
Copyright 2004ACM 1-58113-872-5/04/0006...$5.00.

or write) on an object (e.g.,file or socket). An authorizationde-
cision moduledetermineswhethera particularprincipal’s request
is allowed given the authorizationsin an accesscontrol policy. It
is possiblein many modelsto expresspositive andnegative autho-
rizationsthatmayconflict. At runtime,theauthorizationdecision
modulemayfind two conflictingrulesthatmatchtherequestedau-
thorization(i.e.,oneapprovesandoneprecludes).Additional con-
flict resolutionrulesarethenusedto determinewhich of the two
authorizationrulesto accept.

In this paper, we examineanotherkind of conflict: constraint
conflictsthatresultfrom thedesignof anaccesscontrolpolicy that
is incompatiblewith thetargetsecurityconstraints.Constraintsare
usedto describethesafetyrequirementsof anaccesscontrolpolicy
(i.e., theauthorizationsthatshouldnot bepermittedin thepolicy).
Althoughauthorizationsspecifytheonlyoperationsthatcanbeper-
formed,it is oftendesirableto haveconstraintsto preventthepolicy
from permittingoperationsthatwerenot intended.For example,if
we want to prevent an untrustedprincipal from writing a file that
may be usedby a programin our trustedcomputingbase(TCB),
we canexpressa constraintthatpreventssucha situation. Unlike
accessspecificationswhich canbeexpressedaspropositions,con-
straintsmustbewritten in a predicatecalculus,in general,because
they must precludeassignmentsthat are not known a priori . In
our example,we maynot know theexactsetof files thatour TCB
programmayreador execute.

Typically, suchconstraintsarechecked at compile-timeto pre-
vent theconstructionof any accesscontrolpolicy thatmayviolate
theconstraints,sotheproblemof constraintconflictsis aconstraint
designproblem1. Becausespecifyingwhatshouldnotbeassigned
in any futuremodelwithoutprecludingpossiblereasonableassign-
mentscanbea touchybusiness,constraintdesignitself canleadto
complex constraints.This introducesproblemsnot only in speci-
fying thesecomplex constraintscorrectly, but alsoin maintaining
theseconstraintsin the future. Thesemanticsof a complex predi-
catecanbeverydifficult to modify correctly.

Our solutionhasbeento advocatesimplerconstraintspecifica-
tions [1, 8, 12]. However, while the useof suchconstraintsen-
ablesmanagement,they may not be preciseenoughto effectively
representthepolicy. Ratherthanrequiringprecisespecificationof
all that is to be precluded,our approachhasbeento expressgen-
eralconstraintsthatmayprecludemorepermissionsthanis desir-
able,but resolve overly-confiningspecificationsin a simplepropo-
sitionallogic. We have shown thatin someapplicationssuchover-

�
We considertheadditionof authorizationsby a systemadminis-

tratorafterthepolicy hasbeenusedto beachangein designwhich
requiresa recompile.Systemsthatmodify authorizationsautomat-
ically requirecheckingconstraintsat runtimewhich is beyondour
scope.

generalizedconstraintswith propositionalpolicy refinementsapply
well [13].

We have also found caseswherefinding appropriateproposi-
tional resolutionsis more complex and could use support from
automatedtools [14]. In the SELinux examplepolicy, we would
like to be ableto enforcea Biba integrity policy [5] ascloselyas
possibleon the system’s trustedcomputingbase(TCB). Biba in-
tegrity requiresthatall higherintegrity principalsmustnot depend
on (i.e., reador execute)inputsthatmaybemodifiedby lower in-
tegrity principals. Sincea UNIX system’s TCB is trustedto han-
dle a significantamountof low integrity data,a Biba constraintre-
sultsin a wide varietyof conflicts. In thatpaper, we discussedthe
needto identify andresolvesuchconflicts,thenatureof theresolu-
tions,andsomeadhocautomatedapproachesto supportresolution.
However, in thispaper, weformalizethenotionof aconstraintcon-
flict andformalizethenotionscapturedintuitively in theprior work
with an aim to enablethe constructionof moreeffective tools for
designingaccesscontrolpolicies.

In thispaper, weaimfor two goals:(1) distinguishingconstraint
conflictsfrom traditionalpolicy conflictsto motivatethe needfor
differentapproachesto theproblemand(2) providing a formal ex-
aminationof constraintconflict detectionand resolutionthat can
serve asa basisfor futureconstraintconflict resolution.In thefirst
case,we arguefor the differencebetweenconstraintconflictsand
policy conflicts. Constraintconflictsarea policy designproblem
wherewe want to choosesimpleconstraintspecificationsthatcan
beresolvedwhennecessarywith a moderatepropositionalspecifi-
cation. In general,the combinationof constraintsandresolutions
shouldbeassimpleaspossible.In thesecondcase,we definefor-
malpropertiesthatidentify theminimalsetof statementsthatcover
all conflictsanddefinethevariousformsof impactof resolvinga
conflict on the resolutionprocess. We examinethe useof these
formal propertiesin constraintmanagementfor the SELinux ex-
amplepolicy’s trustedcomputingbaseandfind that: (1) computing
the minimal setof statementsis useful in focusingattentionand
(2) computingtheresolutionimpactof a policy statementenables
reasoningabouthow to proceedwith theresolution.

The structureof the paperis as follows. In Section2, we de-
scribethe constraintmanagementproblemin SELinux andmoti-
vate the needfor constraintconflict resolutionthat is distinctive
from traditional policy conflict resolution. In Section3, we for-
mally definethe problemof constraintconflict. In Section4, we
defineandprove thepropertiesof minimalconflictcoverandmaxi-
mal resolutionimpact. In Section5, weexaminetheapplicationof
thepropertiesin thecontext of constraintconflict resolutionfor the
SELinux examplepolicy. In Section6, we concludeanddiscuss
futurework.

2. BACKGROUND
In this section,we motivatetheneedfor constraintconflict res-

olution andshow that it is distinct from traditionalpolicy conflict
resolution.

2.1 SELinux Policy Design
SELinux[18] is amandatoryaccesscontrol(MAC) policy mod-

ule for Linux that runsbehindthe Linux SecurityModulesinter-
face[23]. Bothareavailablein theLinux 2.6mainlinedistribution
from www.kernel.org. An SELinuxmoduleconsistsof a pol-
icy enforcementmechanismanda securitypolicy to be enforced.
In thispaper, wefocusonthelatter. SELinuxpoliciesareexpressed
in anextendedtype enforcement(TE) model[6]. In a TE model,
subjectsandobjectsarelabelledandtheselabelsarecalledtypes.
Assignmentsassociatesubjecttypeswith theobjecttypesthey can

accessby a specifiedsetof operations.Further, the setof opera-
tionsthatcanbeappliedto anobjecttypedependon its class(i.e.,
datatype).For example,theSELinuxpolicy statement

allow subject_t object_t:class operations

meansthatthesubjecttype(subject_t) canaccessobjectsof
typeobject_t of datatypeclass to performoperations.

SELinux also supportstype attributes that enableaggregation
of eithersubjectsor object types. For example,thedomain at-
tribute refersto all executablesubjectsand the file_type at-
tributerefersto all typesof files in persistentfilesystems(e.g.,reg-
ular anddevice). Thus,a singleassignmentcanpermit a subject
typeto accessall objecttypeswith thefile_type attribute.The
SELinux policy also hasdomaintransitions[2] that enableleast
privilege basedon the programbeing run, and roles to limit the
set of subjecttypesthat can be reachedby a particularuservia
transitions.TheSELinuxcompletepolicy modelis describedelse-
where[20].

The SELinux communityis alsodevelopinga MAC policy for
variousLinux applications,calledtheSELinuxexamplepolicy. The
aimof thepolicy is to definetheaccesscontrolrequirementsfor in-
dividual applications,not definea globally-securepolicy. In order
to createa policy that enforcesa desiredset of securityrequire-
ments,administratorsmustcustomizethepolicy basedon theap-
plicationsin their systemandtheir securityrequirements.This is
a very challengingtaskbecausetheSELinuxpolicy is ratherlow-
level, andtheexamplepolicy consistsof morethan30,000policy
statements(after macrosarepre-processed,but this is the level at
whichpolicy analysisis generallydone).

2.2 Gokyo Policy Analysis
BecauseSELinuxMAC policy is very low-level, it is a tremen-

douschallengeto customizethepolicy by handto meetthedesired
requirements.Thus, we have built a policy analysistool called
Gokyo [13] thatenablestheverificationof securitypropertiesover
SELinux policies. Gokyo representsan accesscontrol policy as
a graph

�������	��
�
wherethe nodesare the policy concepts,

subjects,permissions,androles,andtheverticesindicatedifferent
typesof assignmentsbetweentwo nodes,permission-roleassign-
ment,user-role assignment,aggregation,andinheritance.

For theSELinuxpolicy, we userolesto representsubjecttypes
andusepermissionsto representtriples(objecttype,class,andop-
erations)assignedto subjecttypes. SELinux allow statements
assignpermissionsto subjecttypesandmapto permission-roleas-
signmentsin Gokyo. Type attributesare handleddifferently de-
pendingonwhetherthey applyto subjecttypesor objecttypes.For
object types,type attributesimply an aggregateconsistingof all
theobjecttypeswith thatattribute,so they aretreatedasa typical
aggregate(i.e., setof object types). For subjecttypes,a type at-
tribute implies that all subjecttypeswith that attribute inherit the
permissionsassignedto thatattribute,sothetypeattributesof sub-
ject typesaretreatedassubordinaterolesin a role hierarchy.

We have mainly usedGokyo to examinesystemintegrity prop-
erties,in particularBiba integrity [5]. TheBiba integrity property
requiresthat: (1) a subjectmayonly reador executeobjectsat its
integrity level or at integrity levels thatdominateits integrity level
and (2) a subjectmay only write objectsat its integrity level or
thosethatit dominates.It canbethoughtof asthedualof theBell-
LaPadulasecrecy property[3], but insteadof prohibiting read-up
andwrite-down to prevent information leakage,we prevent read-
down andwrite-upto protecttheintegrity of objects.In Gokyo, we
identify highintegrity subjecttypesthatwewantto protectandadd
a Biba integrity constraintbetweenthesesubjecttypesandtherest

of thesystem.In onecase,weaddedaBiba integrity constraintbe-
tween� theApachesystem(high)andtheusersubjecttypes[13]. In
anotherexploration,wedefinedasetof processesasformingahigh
integrity, trustedcomputingbase(TCB) of servicesfor SELinux
relative to all othersubjecttypes[14].

In the formercase,very few constraintconflictswerefound,so
thesecould be handledeasilyasexceptions. However, whenwe
tried to identify theTCB subjecttypesfor SELinux,we foundthat
therewere a large numberof Biba constraintconflicts. In gen-
eral, thesecouldnot beeasilyresolved. Insteadof requiringBiba
integrity with few exceptions,we have examinedother integrity
policies, in particular Clark-Wilson [7] and low-water mark in-
tegrity (LOMAC) [11]. The Clark-Wilson integrity policy states
thathigh integrity datamustbeverified by specialsubjects(certi-
fied integrity verificationproceduresor IVPs) beforeuseandmay
only bemodifiedby anothersetof specialsubjects(certifiedtrans-
formation procedures or TPs). An additional, importantpoint is
thatTPscanalsoacceptlow integrity inputs,but theClark-Wilson
policy requiresthatsuchinputsareeitherdiscardedor convertedto
high integrity objectsbeforeuse.While UNIX TCB programsare
not certifiedasonewould desirefor Clark-Wilson IVPs andTPs,
they maybetrusted(with respectto somelimited inputs,perhaps)
to readobjectsof particularobject types. Using Gokyo, system
administratorscanidentify suchreadsandclassifythemassuch.

Anotheroption is to usetheLOMAC policy whenreadinglow
integrity data. The LOMAC policy statesthat a subjectexecutes
at the integrity level of the lowest integrity input that it hasused.
Typically, a subjectstartsat a high integrity level andhasthe in-
tegrity level reducedas low integrity inputs are used. That is, a
subjecttyperetainsits high integrity abilitiesaslong asit doesnot
readlow integrity dataor executea low integrity program. Such
semanticswould apply to subjectsthat executea wide variety of
programswithout transitioningto permissionsetsspecificto those
programs.In theSELinuxpolicy, thesystemadministratorsubject
type hasthis behavior. A systemadministratorsubjectwould be
high integrity aslong asno low integrity programsarerun or low
integrity datais read(that cannotbe handledusingClark-Wilson
upgrading).

Ultimately, sincethe problemis aboutidentifying and resolv-
ing low integrity informationflows, it doesnotmake sensethatwe
shouldrevisetheBibaintegrity constraintin Gokyo. Rather, weuse
thesimpleconstraintto testthepolicy, resolve wherepossible,and
managethe exceptionswhich identify Clark-Wilson or LOMAC
requirementsin thesystem.

2.3 RelatedWork
Weexaminerelatedwork in four categories:policy conflictreso-

lution, constraintmodels,policy reconciliation,andpolicy analysis
tools.

Policy conflictsinvolve resolvingwhethera negative authoriza-
tion or a positive authorizationappliesat runtime(i.e., when the
authorizationdecisionis made).Arbitrary rulescanbeusedto re-
solve suchconflicts, but typically a genericresolutionmethodis
defined,suchasfirst rule wins in firewalls or denialstake prece-
dencein ASL [15]. FerrariandThuraisinghamhave identifiedthat
several conflict resolutionstrategiesmay be usefuldependingon
thedomain[10]. Recentwork in conflict resolutionincludes[4].

In orderto ensurethatpropositionalauthorizationstatementsare
correct for all future policies, the notion of constraintsis intro-
duced.However, constraintsmayconflictwith authorizationpropo-
sitions forming constraint conflicts. We view constraintconflict
resolutionasa designprocessratherthana runtimeprocess.Be-

forethepolicy canbeused,all conflictsbetweenauthorizationsand
constraintsmustberesolved.

Constraintmodelsaredifficult to designbecauseconstraintsare
inherentlycomplex (i.e.,requireapredicatecalculus).Earlierwork
in simplifying constraintmodelsincludesAhn andSandhu[1] and
Jaeger andTidswell [12]. In the former case,separationof duty
constraintsarethe focus,andin the lattercase,binary constraints
arethe focus. Cramptonhasdefinedaneven morerestrictedcon-
straint model [8]. Thusfar, policy analysisconstraintshave been
fairly simple,soa simpleconstraintlanguageseemsmorerelevant
thanever.

We arenot awareof otherwork thatusesconstraintconflictsin
thepolicy designphaseformally beyondourown, but thisundoubt-
edly hasbeendonein many systems.Any systemthat supports
constraintsrequiresrevision whentheconstraintsconflict with the
policy specification. SELinux definessimple constraints,called
neverallows, thatit usesto checkits own policy, aswell asgeneral
predicateconstraints [20]. Many othersystemssupportconstraints
in variousforms,but we expectthatmanualconstraintandpolicy
revision is thenorm.

We considerthe relatedproblemof policy reconciliation [17,
22]. The problemhereis that two entitieshave policies(e.g.,for
securecommunicationsessionprovisioning)thatrequirereconcili-
ationbeforethey mayproceedwith a computation.Like constraint
conflict resolution,the problemis to find an overall policy where
the allowed actionsdo not violate constraints.Unlike constraint
conflict resolution,policy reconciliationinvolvesselectionof a set
of actionsthatsatisfybothpolicies,ratherthanensuringthateach
individual authorizationis consistentwith all constraintsandex-
ceptions. Policy reconciliationis intractablein general,whereas
constraintconflict resolutioncan be examinedlocally. For each
conflict, eitheran authorizationmust be removed or a constraint
mustberelaxed. As long asa constraintrelaxationdoesnot result
in thecreationof new conflictsandthemodificationof authoriza-
tionsdoesnot resultin new conflicts,constraintconflict resolution
is tractable(i.e., linear in thenumberof constraintsandauthoriza-
tions).

Policy analysistoolsarenecessaryto understandandrevisecom-
plex policies,suchasthosebasedon anaccessmatrix. Ferraioloet
al describetheRoleControlCenterfor managingrole-basedpoli-
cies[9]. Policy analysissystemsotherthanGokyo have alsobeen
built for SELinux [21, 19]. Both TresysandSLAT both support
informationflow analysesfor SELinux.Thus,constraintson infor-
mationflow, suchasBiba integrity canbedefined.They have not
yet startedto examinethe next stepof resolvingsuchconstraints
effectively.

3. CONSTRAINT CONFLICT PROBLEM

3.1 Constraint Conflict Definitions

Definition 1. An accesscontrol configuration � �����	��
��
is a

graphof nodeswhere:(1)
�������������

where
�

is thesetof
principals,

�
is asetof subjecttypes,and

�
is a setof permissions

and(2)

is asetof edgesdefinedby assignmentrelationsbetween
two membersof

�
(e.g.,a subjecttype-principalassignmentbe-

tweenprincipal � � andsubjecttype � � is ����� � �� "!$#
).

Definition2. A constraint % on anaccesscontrolconfiguration
� representsan-aryrelationwhosecombinationof assignmentsare
notpermittedin � , % �&
 �('
*) ',+-+-+.'
0/ .

We definethearity of a constraintby thenumberof assignment

sysadm
read

resolv

resolv
write

dhcpc

high integrity subject

low integrity subject

write permission

read permission

enables information flow
from low integrity subject

Figure1: A dir ectconflict of a Biba integrity constraint caused
by dhcpc writing to /etc/resolv.conf.

relationshipswhosecombinationis restricted.A unaryconstraint
forbidding particularsubjecttype-permissionassignmentswould
be, % � �1� ' �32 �546# �(� ��# �87:9�; �=<?>A@ � 4 � � � ! . For example,
neverallow statementsin SELinuxrepresenta typeof

9�; �B<C>A@ � 4 � � �
whereany 4 matchingthepermissionpartof thestatementandany� matchingthesubjecttypepartof thestatementareforbiddenfrom
beingassigned.

For constraintsof greaterarity, it is the combinationof assign-
mentsthatmatchthe

 � relationsthatis forbidden.

Example1. Figure 1 demonstratesa Biba integrity constraint
% �D
0E?FHGCI?I5JHK*/ '
 K*E �ML FONQP wheredhcpc is a low integrity subject
type(i.e.,dhcpc # ��R JHK) andsysadm is a high integrity subject
type(i.e.,sysadm # �TS �VU S). Theassignmentof dhcpc to write
resolv objects(i.e., typically /etc/resolve.conf) results
in a potentialwrite-uppermission.Sincewe verify thattheassign-
mentof sysadm to readthe sameresolv objecttype, thenwe
have confirmedthat the read-down permissionand write-up per-
missionconflict with the Biba integrity constraint. We draw the
conflict arrow in Figure 1 betweenthe permissionsbecausethis
shows theactualinformationflow.

 K*E �VL FWN"P �X� K*E �ML FONQP ' ��R JHK 2 �Y4Z# �(� ��# �[7B\�;=]^� � �Y_
] �B>A`ba � � � 4 � !

 E?FHG�I5I?JHK*/ �c� E?FHG�I5I5JdK*/ ' ��S �MU S^2 �54Z# �(� ��# �[70e >Af e0� � �Y_
; <CgQ`Ohi4�a � 4 �W�jK*E �ML FONQPk�l_ �Ba"mn@ ; � a"opa"� � � � 4 � !

Thus, to violate this constrainttwo policy statements(i.e., as-
signments)mustmatchthespecifiedconstraintrelations.Further,
the relationsin theconstraintareassociated,suchthat theassign-
mentsof

0K*E �ML FONQP violate theconstraintonly in combinationwith
the associatedassignmentsof

0E?FHG�I5I5JdK*/
. In the caseof the Biba

integrity constraint,theassociationis createdbecausethereaddown
permissionmustbeto a writeupobjecttype.

Definition3. Wedefinea constraint violation tuple %rq of a con-
figuration � asa tupleof assignmentsfor eachrelationin thecon-
straint % that leadto a violation, % q � �Ys � � s) � +-+-+ � s / ! wheres � #
 � , s) #
*) , ..., s / #
0/ . Thesetof all constraintviolationsfor a
particularconfiguration� formsaconstraint violationset% q #ut q .

Formally, thereis nodifferencebetweenaconstraintconflictand
a constraintviolation. The differenceis in the interpretation: a

constraintconflict impliesa compile-timeissuethateitherthecon-
straintor theconflictingpolicy statementsmaynot accuratelyrep-
resentthe intendedsemantics.Thus,a revision is necessaryto re-
solve theconflict (i.e.,preventincorrectviolations).Thus,werefer
to %rq astheconstraint conflictsetfrom thispoint forward.

3.2 Conflict ResolutionProblems

3.2.1 DirectConflictResolution
The main differencebetweenconstraintconflict resolutionand

policy conflict resolution(i.e., positive/negative authorizationres-
olution) is that constraintsandconfigurationsmustbe changedat
designtimein orderto removeall constraintconflict tuples.For the
lattercase,resolutionis performedat runtime. Becauseconstraint
conflict resolutionis a design-timeprocess,tools to help the sys-
temadministratorscanbevaluable.Any policy conflictsatruntime
mustberesolvedautomaticallybecausethesystemadministratoris
likely to beoffline.

Like policy conflict resolution,however, the theoreticalresolu-
tion of constraintconflicts is basicallythe same:remove at least
oneof theassignmentsin eachconstraintconflict tuple %rq . In this
subsection,we assumethateachassignmentin % q is supportedby
onepolicy statementfor simplicity in our initial examination.We
generalizethesituationin thenext subsection.

If eachassignmentin %rq is associatedwith onepolicy statement,
theproblemis to determinewhich policy statementto remove. In
generaltherearethreeissuesto consider:(1) theremay be many
conflicts; (2) we want to specify as few resolutionsas possible;
and(3) we have to determinetheappropriateresolutionsandtheir
impacton thepolicy.

Determiningwhich policy statementto remove, includingmod-
ifying the constraint,is difficult becausetheremay be many con-
straintconflicts.Forexample,aBibaintegrity analysisof theSELinux
examplepolicy revealedperhapsoveronethousandconstraintcon-
flicts betweenread-down andwrite-uppermissionsinitially [14].

Onceall theconflictsareknown, we mustfind a way to resolve
them. Clearly, we would like to identify resolutionsthat have a
broadscope,suchthatmany conflictscanberemovedwith little ef-
fort. Wehave foundthatmany of thepolicy statementsinvolvedin
constraintconflictshavesimilarproperties,soit is possibleto spec-
ify broadresolutions.For example,avarietyof processesreadfrom
FIFOs(i.e., pipes)to determinethestatusof lower integrity child
processesthatthey maycreate.High integrity processesshouldbe
ableto filter suchinteractions,sothisconflictmayberemoved(i.e.,
thewrite-uppermissionwouldnot really applyassuch).

The typesof resolutionsdependon thenatureof theconflict in
general,but somefairly generalonescanbe identified. The fol-
lowing resolutionsweremadein the initial SELinuxpolicy analy-
sis[14]:

1. Type Elimination : Remove subjector objecttypefrom the
system.

2. Type Change: Terminalobjectsarechangedto a privileged
objecttypeuponaccessby ahigh integrity subject.

3. DenyDependency: Deny writesto/tmp directorythatcould
compromiseintegrity (e.g., deletion/recreationof high in-
tegrity files).

4. Deny Rights: Deny write-uprightson files.

5. Creation Rights: Usedby useradd to createa new user’s
initial home,soweneedto ensurethatthis is doneatomically
without dependenceon user(analysisexternal to SELinux
policy).

write permission

read permission

enables information flow
from low integrity subject

sysadm

user
domain

user

read
user
tty

dev

write
user

tty
dev

low integrity subject

high integrity subject

ttyfile

ttyfile

object attribute

object attribute

subject attribute

Figure 2: An indir ect conflict of a Biba integrity constraint
causedby assignmentof an subject type attrib ute userdo-
main to a permission basedon an object type attrib ute tty-
file.

6. Allow: Shouldbe able to sanitizeinputs from ptmx slave
anddoesnot affect master’s input data(on a differentchan-
nel).

Example2. The constraintconflict in Figure 1 is a real Biba
conflict in practice.SincetheDHCPclienthasbeenknown to con-
tainvulnerabilities(e.g.,in TurboLinux[16]), wecannotincludeits
subjecttypein ourtrustedcomputingbase.Thus,its ability to write
resolv objecttypespresentsa Biba constraintconflict. Oneway
to resolve the conflict is to excludethe useof thedhcpc subject
typein our system(i.e., typeelimination).

3.2.2 IndirectConflictResolution
A constraintconflictmaybetheresultof a chainof policy state-

mentsratherthana singlepolicy statement.Theuseof policy in-
directionconcepts,suchasattributesor groups,maypermita rela-
tionshipimplicitly via anindirectionthatleadsto a constraintcon-
flict.

Definition4. An assignmentchain is asequenceof policy state-
mentsthatrepresenttheassignmentbetweentwo policy objectsthat
maybeof differentpolicy types,mn� � �Yo � mwv � � mwv) � +M+-+ � mwv/ � �0v�x � m.xy �m xy(z � � +-+-+ � m x � � hl! , where: (1) o is an object of type { ; (2) h is
anobjectof type | ; (3) mlv� is anaggregationpolicy statementfor
objectsof type { (e.g.,principals);(4) m x is an aggregationpol-
icy statementfor objectsof type | (e.g., permissions);and (5)
�}v�x � { ' | is a relation betweenobjectsof types { and |
(e.g.,a subjecttype-permissionassignment).

The basicideais that aggregationenablesindirect assignments
(e.g.,subjecttype-permissionassignments)in modelsthatusethem.
Thus,for a subjecttype-permissionassignment,subjecttypesmay
beaggregatedby oneor moreaggregatestatements,andthey may
beassignedto a permissionaggregatewhich is constructedby one
or moreaggregatestatementsover permissions.The result is that
theindividualelementsof aconstraintconflictset%rq mayberepre-
sentedby assignmentchains,not individual relations,in general.

Example3. Figure2 shows two chainsof policy statementsthat
leadto a conflict over the useof user_tty_device_t object

types2. In this case,principalsobtain the permissionindirectly
throughtheir assignmentto theuserdomain attribute. Further,
accessto theobjectitself is definedthroughanattributettyfile
of theobjecttype.

Resolutioncould entail changesto any of the assignmentsin
the two chains. For example, we could simply deny accessto
user_tty_device_t. However, that would not changethe
otherconflictsdueto thepermissionassignmentto ttyfile. On
the other hand, the removing the assignmentof subjecttypesto
userdomain is possible(althoughit makes no sensesemanti-
cally). Finally, the subjecttype-permissionassignmentbetween
principals,systemadministratorsandttyfile objectscould be
resolved. Typically, we would like to resolve the subjecttype-
permissionassignmentsinceit hasthegreatestimpactin this case.

Notethat if thesystemadministratorshave accessto ttyfile
becausethey areassignedtheuserdomain attribute(ratherthan
beingdirectly assigneda permissionto ttyfile), then the res-
olution shouldbe different. In this case,removing thettyfile
permissionassignmentfrom userdomain doesnot addressthe
otheruserdomain permissionsthatthesystemadministratorand
otherswould shareby sharingthisattribute.

Thus,we identify two additionalproblemsin constraintconflict
resolutiongiven that theremay be indirectionsin model: (1) we
want to identify the assignmentsthat are indicative of the most
constraintviolationsand(2) we needto identify the assignments
whosemodificationwill leadto resolution.We do not show it ex-
plicitly in Example3, but indirectionscan lead to many similar
constraintconflicts becausethey enablemore entitiesto become
involvedin oneconflict. In orderto simplify theresolutiontask,as
few representativesof conflictsshouldbeshown aspossible.Sec-
ond,basedon thechainof assignmentsthat leadto a conflict, we
needto identify thosewhoseresolutionwould addresstheconflict
mosteffectively. Sincetheremaybemany conflicts,thechoiceof
assignmentis not necessarilya local issue.As we saw above, re-
moving the userdomain to ttyfile subjecttype-permission
assignmentwould resolve theconstraintconflict,but it maynot be
possiblegiven the permissionrequirementsof the system. How-
ever, removing thesystemadministratorfrom userdomain also
may not be sufficient to globally resolve the conflict if otherhigh
integrity principalsbelongto userdomain.

4. CONFLICT RESOLUTION APPROACHES
In this section,we identify two computablepropertiesthat en-

ableus to get a handleon how to resolve constraintconflictsin a
large accesscontrol policy. At the endof this section,we outline
an approachthatusesthesepropertiesto guideconstraintconflict
resolution.

4.1 Minimal Conflict Cover
Thefirst problemis to identify theconflictsbetweenaconstraint

andthepolicy statements.Whatwewantto find is theminimalcon-
flict cover for a constraintwhich is theminimal numberof policy
statementsthat representall constraintconflicts. If thereis aggre-
gation in the policy, a large numberof conflictsarepossible,but
many of theseconflictsmaybearesultof asmallnumberof policy
statementsthatapply to aggregates.Thequestionis how to orga-
nizetheconstraintconflicts,suchthatwe only have to examinethe)
Thisexampleisslightly embellishedfrom theactualconflictin the

SELinux 2.4.19examplepolicy for explanatorypurposes.There
area variety of indirectionsthat lead to conflicts in the SELinux
examplepolicy, but not for bothprincipalsandobjects.

user
domain

read
user
tty

dev

user
tty

dev

write

devpts
readdevpts

rd-wr

user
tty

dev

rd-wr

ttyfile
rd-wr

httpd

user

user subject attributes

object attributes

permissions

sub-permissions

subject types

assignment
subject type-permission

Figure 3: Assignmentsrelate model entities of two differ ent
types (e.g., subject types and permissions),and the objects of
thosetypesare aggregatedat theseassignmentpoints.

minimumnumberof policy statementsthatareresponsiblefor the
conflicts.

The intuitive notion that we build upon is shown in Figure 3.
We claim thatconstraintsaredesignedto controlassignments,not
aggregations,so it is theassignmentpolicy statementsthatarethe
onesof interest.For example,in anintegrity constraintwearecon-
cernedaboutthe assignmentof high integrity subjectsto permis-
sionsthatenabledependenceon low integrity data.In thiscase,we
are trying to control subjecttype-permissionassignments.In the
caseof separationof dutyconstraints,wearetrying to controlsub-
ject type-principalassignments3. Aggregationsthemselvesarenot
constrainedunlessit is to limit anassignmentindirectly. For effec-
tive constraintresolution,theactualassignmentbeingconstrained
shouldalwaysbeconsidered.

In the policy graphshown in Figure3, it is easyto seethat the
maximal numberof subjectsassociatedwith the read-down per-
missionarethoseassociatedwith the subjecttype-permissionas-
signment. Likewise, it alsoappearsthat the maximal numberof
permissionsarethoseassociatedwith the assignmentaswell. In-
terestingly, this is alwaysthecase.

Definition 5. We definea conflict cover set ~ � of all assign-
mentchains�T~ for all constraintconflicts % q to bea setof policy
statements��#��5{ � | � � v� � � x �W� v�x ! whereeachmn��#���~ hasat
leastoneof thesestatements.

Definition6. Wedefineaminimalconflictcoverset(or minimal
coverset)asaelementin thepowersetof coversets~ � � #6� � ~ ���
astheconflictcoversetthatincludesthesmallestnumberof assign-
ments.Thesetof assignmentsin a minimal conflict cover setare
calledtheminimalcover assignments.

Theorem 1. The minimal conflict cover set for �T~ are com-
prisedof theassignmentstatements� v�x� .

ProofSketch. Eachconstraintrelation
� � correspondsto anas-

signmentchain mn� in a constraint% that hasa conflict. Each mi�
containsan o , which is the conflicting elementof type { , and h ,
which is the conflicting elementof type | . Sincethe other m v�
andm x statementssimplyaggregateelementsof types{ and| to-
gether, themaximalsizeof theaggregationsareat m v/ andm xy (see

�
Separationof duty is ultimatelyanattemptto control thepermis-

sionsthat a principal can obtain, so the subjecttype-permission
assignmentmayalsobeleveraged.

logrotate

rd-wr
user
ssh

sshd
tmp

write

lastlog
write

lastlog
write

sysadm
read

file_type

logfile
read

sshd

high integrity
subject-permission

assignments
subject-permission

assignments

low integrity

user

xdm

httpd
admin

Conflicts

rd-wr
user
ssh

sshd
tmp

read

read
lastlog

setfiles

Figure 4: Assignmentslead to conflicts and thosethat lead to
the most conflicts have the highestpotential impact for resolu-
tion. However, other assignmentsmay overlap thus reducing
the baseimpact of oneconflict. For example,the sysadm and
setfiles assignmentsto readfile type objects resultsin
thr eeconflicts, but theseconflicts overlap with thoseof sshd
and logrotate.

Definition 3), respectively. Sincestatement� v�x relatesthesetwo
largestsets,it will appearfor eachaggregatestatementor object
definition in thosesets. Thus, the latter two groupswill have to
appearin at leaston mi� in which � v�x appears.Thus,thenumberof
�}v�x will be minimal. They will form a cover setwhenall �T~ is
accountedfor. �

The intuitive notion is that sincethe assignmentsare the only
way to relatethe setsof objects(e.g., subjecttypesand permis-
sions),they arerequiredfor eachconstraintconflict. Thus,all the
constraintconflictscanbe identifiedby theminimal cover assign-
mentswhich we aim to useto reducethe complexity of reason-
ing aboutconstraintconflicts.Unfortunately, we find that it is still
necessaryto computethe individual conflicts to reasonaboutthe
relationshipsbetweenconflicts and the minimal cover set, so no
computationaladvantageis gained.

Weshouldnotethatif theaggregatesof oneassignmentsubsume
another, thenoneassignmentmay itself becoveredby anotheras-
signmentof greaterscope. Suchcasescan be identified (by the
aggregatesassigned),sotheseassignmentstatementscanbeelimi-
natedfrom thecover set.

Example4. For theBibaintegrity analysisof theSELinuxexam-
ple policy, we identifiedthe subjecttype-permissionassignments
that led to eitherwrite-up or read-down permissionsasour setof
constraintconflicts.Thenumberof read-down statementswasini-
tially around100,whereasthenumberof write-upstatementswas
over 700.

4.2 Maximal Conflict Impact
Ultimately, wewouldliketo selectconstraintconflictresolutions

thathave thebiggestimpact(i.e., themaximalimpactresolution).
Impactcanbe definedin a variety of ways,but sinceour interest
is resolvingconflicts,we say that the maximal impact resolution
resolvesthegreatestnumberof conflicts.

In Figure4, we seethreedifferenttypesof conflictsthatenable
low integrity data (user_ssh, sshd_tmp, and lastlog) to
reachhighintegrity subjecttypes(sysadm,sshd, andlogrotate).
In thesecases,a conflict is causedbecausethehigh integrity sub-
ject typeshave assignmentsto permissionsthatenablereadto one

or moreobjecttypesthatcanbemodifiedby low integrity subject
types.� Notethattheassignmentof readpermissiontofile_type
to sysadm resultsaccessto three(in actuality many more than
three)permissionsto readlow integrity files.

An important thing to note is that the removal of the assign-
mentbetweenthesysadm subjecttypeandthefile_type read
permissionresultsin the removal of threeconflicts, the maximal
number in this figure. However, even if this assignmentis re-
moved,all of thethreeconflictswill remaindueto theassignment
of setfiles to readfile_type.

Given this informal analysis,we identify two typesof conflict
impacts:(1) a basicimpact that identifiesthenumberof conflicts
that aredueto an assignmentand(2) a real impactthat identifies
thenumberof conflictsthatwill beresolved by the removal of an
assignment.Theseimpactsassociateeachassignmentwith their
conflictsandtheimpactof theassignment’s removal on constraint
conflict resolution.

Wedefinetheconceptsthatunderliethesenotionsbelow.

Definition 7. The basic impact value of an assignmentis the
numberof constraintsthat are linked to all assignmentchainsto
which thatassignmentbelongs.

Example5. For Figure4, the basicimpactvaluesfor both the
setfiles-file_type(r) andsysadm-file_type(r) as-
signmentsare3. The other subjecttype-permissionassignments
have a basic impact of 1. In the SELinux example policy, the
file_type attributeis associatedwith all files,somany conflicts
resultsdueto this assignment.

If weresolve theassignmentwith thelargestbasicimpactvalue,
then this combinationof assignmentchainsis removed from the
constraint% q . However, theremay be other assignmentsthat re-
sult in someof the sameconflicts. Examplesof this are shown
in Figure 4 wherethe sshd-sshd_tmp(r) assignmentresults
a conflict that is commonwith thesysadm-file_type(r) as-
signment’s conflicts. If theformerassignmentis removedor miti-
gated,thelatterassignmentstill causesaconflict. Thus,theimpact
of changingthisassignmentis reduced.

Definition8. Thereal impactvalueof anassignmentis its basic
impactvaluelessany conflictsthatarecausedby assignmentchains
thatdonot includethis assignment.

Example6. In Figure4, all thesubjecttype-permissionassign-
mentshave real impact valuesof 0. Thus, the removal of one
of theseassignmentshasno direct impacton the constraintcon-
flicts shown. In the SELinux examplepolicy, all file constraint
conflicts are coveredby generalassignments,suchassysadm-
file_type(r).

As is intuitive,choosingto resolvetheassignmentwith thehigh-
estreal impactvaluewill remove thegreatestnumberof conflicts.
However, asindicatedin Example6, thereareoftenconflictscaused
by very generalassignments,somany assignmentsmay have real
impactvaluesof 0.

Further, the computationof the real impact of an assignment
is non-trivial. In general,we must computethe setsof conflicts
coveredby anassignment(i.e., basicimpactvalue)anddetermine
whetheranotherassignmentalsocoversthis conflict. We canuse
the minimal cover setcomputedearlier to reducethe costof this
analysis,however. If wecomputethesetof constraintconflictsthat
comprisethebasicimpactfor aminimalcoverassignment,thenwe

can color thoseconflicts that are causedby 0, 1, or multiple as-
signments.For thoseconflictswith 1 assignment,we canexamine
thetargetassignment’s basicimpactsetto determineif it is theone
assignmentresponsible.Theworst-caseperformanceof suchanal-
gorithmis thenumberof conflictssincewe never look at thesame
conflict morethantwice.

Ultimately, the basic impact valuesmay have more useful se-
manticsin generalbecausethey indicateassignmentsthatarelikely
to have a significantnumberof commonconflicts. Further, it is
often difficult to determinehow to resolve a generalassignment
becauseit has such broad impact. For example, the sysadm-
file_type(r) impactsevery file in thesystem,so it is not un-
til we know which files aremodifiedby low integrity processand
whichoursystemadministratorreallyneedsto reador execute,that
we know theextentof this resolution.

Thelastissueto consideris thattheresolutionof anassignment
otherthanonein theminimal cover setmayhave a significantim-
pact. For example,a commonresolutionis to remove a low in-
tegrity subjecttypefrom thesystem,henceeliminatingall conflicts
that it causes.If the low integrity subjecttype is a causeof the
conflictsof multiple minimal cover assignments,thenit maybea
betterchoicefor resolution.Thereis nothingin thedefinitionof ba-
sic impactthatlimits it to theminimalcoversetassignments,sowe
envision thatimpactassignmentmaybedoneonotherassignments
if resolutionof a minimal cover assignmentis not practical.

4.3 ResolutionApproach
Given the resultsabove, we define the following approachto

constraintresolution.

1. Identify theminimalcoverset(i.e.,assignmentsresponsible)
for constraintconflicts.

2. Computethebasicimpactvalueof eachassignmentabove.

3. Computetherealimpactvalueof eachassignmentabove.

4. Try to resolvetheassignmentswith arealimpactvaluegreater
than0 andreal impactvaluesthat equaltheir basicimpact
value.

5. If we cannotresolve the assignment,examine resolutions
basedonotherassignmentson a commonassignmentchain.

6. For theremainingassignments,choosetheassignmentwith
thelowestbasicimpactvalue.

7. Try to resolve this assignmentasin step4 and5.

8. Repeatstep6 and7 until all constraintconflictshave been
resolved.

Thisapproachdeviatesfrom a naive approachin threeways:(1)
we requirethatassignmentswith somereal impactarecompletely
independent(i.e., do not partially overlapwith otherassignments)
in step4; (2) weexaminetheuseof otherassignmentsonanassign-
mentchainfor resolutionin step5; and(3) we resolve the lowest
basicimpactassignmentsfirst in step6.

First, assignmentswhoseresolutionhassomereal impactmay
not becompletelyindependent.In this case,it is oftendifficult to
determinehow to resolve these.We have foundit easierto resolve
lower-level constraintconflictsfirst beforeproceedingto thosethat
involve aggregateassignments.

Second,in thecourseof resolutionweconsidertheotherassign-
mentsbesidesthosein the minimal cover setasdescribedin the
previoussection.In general,it maynot bepracticalto resolve the

SubjectType Read-downPermission R-DPerms SubjectTypes W-U Perms Resolution

sysadm file type:file 183 3 185
sysadm file type:dir 168 2 180
sysadm file type:chrfile 18 3 174
sysadm file type:lnk file 147 3 166
sysadm devtty t:chr file 1 24 134 2
logrotate logfile:file 18 2 119 6
sysadm tmp t:dir 1 19 117 3
sysadm file type:sockfile 121 3 114
sysadm tmpfs t:dir 1 19 85 3
sysadm ptyfile:chr file 7 1 84 2
sysadm ttyfile:chr file 3 1 83 2
sysadm tty device t:chr file 1 3 15 2
sysadm sysadmhomet:file 1 3 13 4
privhome userhomet:file 1 3 12 5
sysadm ptmx t:chr file 1 3 11 6
sysadm sysadmhomet:dir 1 2 11 4
privhome userhomet:dir 1 3 10 5
sshd sshdtmp t:dir 1 2 10 3
sshd sshdtmp t:file 1 3 9 4
privhome userhomet:lnk file 1 3 9 5
privhome userhomet:sockfile 1 3 6 5
sshd userhomessht:dir 1 2 4 3
sshd sshdtmp t:lnk file 1 2 4 4
sshd sshdtmp t:sockfile 1 2 4 4
sysadm httpd adminhomessht:dir 1 2 4 3
sysadm catmant:dir 1 19 4 3
sysadm file type:blk file 2 3 3
sysadm sysadmhomessht:dir 1 2 3 3
logrotate httpd config t:dir 1 2 2 3

Table 1: The subject type-permissionassignmentsthat result in read-down Biba conflicts in SELinux examplepolicy with countsof
associatedread-down permissions,assignedsubjects,conflicting write-up permissions,and resolutions(seeSection3.2.1).

subjecttype-permissionassignmentdirectly, so the resolutionof
otherassignmentson commonassignmentchainsmustbeconsid-
ered.

Third,perhapscounter-intuitively, weresolvetheremainingcon-
flicts in orderusingthelowestbasicimpactvalues.Theseconflicts
aregenerallyeasierto understand,andimportantly, they mayindi-
cateotherassignmentson their assignmentchainthatmaybeeas-
ily resolvable. Theseareinterestingbecauseof thesemay have a
significant impact themselves (i.e., apply acrossmultiple subject
type-permissionassignmentsandtheir conflicts). Thus,we enable
thecomputationbasicimpactvaluesfor otherassignmentsaswell
for consideringtheir resolution.In thatcase,maximalimpactreso-
lutionsareoftenchosen.

Ultimately, theselectionof conflict resolutionactionsis a man-
ual processgiven this impactinformation. As we discussed,there
arespecifictypesof resolutions,but theactionsdependon thena-
tureof theconstraint.For a particularconstraint,suchasBiba in-
tegrity, it shouldbepossibleto describetheconditionsunderwhich
variousresolutionsarepossible.Thus,eitheraparticularresolution
canbeselectedor all thepossibleresolutionbeidentified.Wehave
notyet lookedinto thispossibility.

5. APPLICATION TO SELINUX
In this section,we examineconstraintconflict resolutionfor a

Biba integrity constrainton theSELinuxexamplepolicy. Conflict
detectionand the analysesthat guideresolutionare implemented
in theGokyo policy analysistool [13]. TheGokyo policy analysis
tool andtheBiba integrity constraintanalysisusingit aredescribed
in Section2.

5.1 Gokyo Conflict Detection
The goal is to identify the minimum cover set for the Biba in-

tegrity conflicts in the SELinux examplepolicy. As describedin
Section4.1, the minimal cover set is definedby the subjecttype-
permissionassignmentstatements.Recall that the Biba integrity
constraintis a binary constrainton two assignmentrelationsbe-
tweensubjecttypesandpermissions(seeSection3.1). Therefore,
the subjecttype-permissionassignmentsthat result in read-down
or write-up accessdefinethe minimal cover set for the constraint
conflicts.

We implementthe following processto find constraintconflicts
usingtheGokyo policy analysistool. We identify a setof subject
typesuponwhichtheintegrity of thesystemdependsandaggregate
theseinto the trustedsubjecttype. The selectionof thesesubject
typesis determinedbasedon theability to containtheseprograms.
For example,sincesshd enablestransitionto a wide variety of
subjecttypes, its compromisewould compromisethe entire sys-
tem.Therefore,it mustbehigh integrity. Thoseof thelow integrity
subjecttypesareaggregatedinto an untrustedsubjecttype. The
aggregationof subjecttypesresultsin theinheritanceof all theper-
missionsof all thesubjecttypesin theaggregate.Thus,thepermis-
sionsin theaggregatedefinethescopeof possibleconstraintcon-
flict (read-down permissionsfor trustedandwrite-up permissions
for untrusted).

Constraintconflict detectioninvolvescollectingtheassignments
thatmayleadto aconstraintviolation(e.g.,read-down to anobject
thatcanbewritten by a low integrity subjecttype). In Gokyo, the
constraintobjectsdefinefunctionsfor thesetwo steps. First, the
Biba integrity constraintcollectstheassignmentsthat includeread
andexecutepermissionsfor the high integrity subjecttype in the

constraint(trusted) andwrite permissionsfor thelow integrity sub-
ject type� (untrusted). Second,theassignmentsetsarecomparedto
determineif they correspondto thesameobjecttypeandclass(i.e.,
datatype).By hashingassignmentsby objecttypeandclass,such
correspondenceis founddirectly.

For eachconflict,we collectthesubjecttype-permissionassign-
mentsfor eachread-down andwrite-up permissioninvolved in a
conflict. This setof assignmentsforms the minimal cover set for
thepolicy.

5.2 Gokyo Conflict Analysis
Oncetheminimalcoversethasbeenidentified,Gokyo computes

analysisdatato guideresolution.Recallfrom Section4.2 thatwe
identifiedtwo analysesthat arebasedon reducingthe numberof
constraintconflict sets,baseimpactvalue and real impactvalue.
As defined,impactis associatedwith thenumberof conflicts(i.e.,
eitherread-down or write-uppermissions)that resultfrom this as-
signment.Ourintuitiveunderstandingof theSELinuxexamplepol-
icy is thatthereareno assignmentsthatareindependent(i.e.,have
a non-zeroreal impactandanequalbasicandreal impact),sowe
proceedwith usingbasicimpact for resolution(steps6 and 7 in
Section4.3).

Impactis definedasthenumberof conflictsthat resultfrom an
assignment.Sinceonepermissionmayconflict with multiple oth-
ers,thenotionof a conflict hasdifferentviews. For a binarycon-
straint,suchasBiba integrity, we identify two usefulviews of the
conflict: (1) thenumberof read-downpermissionsassociatedwith
conflictsof theassignmentand(2) thenumberof write-uppermis-
sionsassociatedwith conflictsof theassignment.Impactcouldbe
consideredfrom eitherof thesedimensions.Wealsofoundit useful
to computea third valuefor resolution,thesubjectimpactwhich is
the numberof subjecttypesassociatedby this assignment.This
valueis usefulin determininghow easyit is to applysubjectreso-
lutions,suchaswhetherremoving a subjecttype from thesystem
will resolve aconflict.

It turnsout that the easeof resolutionplaysa biggerrole than
theimpactof performingtheresolutionasdiscussedin thefollow-
ing subsection.If a permissionassignmenthasa largeimpact,but
is difficult to resolve, thenit is not asmuchhelp asa permission
assignmentthat is easyto resolve, but haslittle impact. A setof
simpleresolutions,mayeliminatea high impactconflict.

5.3 Gokyo Conflict Resolution
We useGokyo to computesubjecttypepermissionassignments

that leadto constraintconflicts. Table1 shows theread-down per-
missionassignmentconflicts,andTable2 shows thewrite-upper-
missionassignmentconflicts4. For theread-down permissions,we
show oneof the subjectsto which the permissionis assigned,the
numberof read-down permissionsto which this refers,the num-
ber of subjecttypesthat obtain read-down accessusing this per-
mission,andthe numberof write-up permissionassignmentsthat
conflict with this read-down assignment.Note that the sameper-
missionmay be assignedin multiple statements,but we show the
first subjectto which it is assigned.

For our analysis,the read-down permissionsare sortedby the
numberof write-upassignmentsto which this permissionconflicts
(last column). It is clearthat thereis a wide variancebetweenthe
numberof conflictingwrite-uppermissions.Accordingto theba-
sic impactmetric,we wouldwantto resolve conflictsstartingfrom
the top of the list. Clearly, if we could resolve thebroadconflicts�
We performedsomeconflict resolutionprior to deriving thetech-

niquesusedat this stage,sothis datareflectsin intermediatepoint
in theSELinuxpolicy analysis.

Write-upPermission R-D Impact SubjImpact

userhomet:dir 2 5
userhomet:file 2 5
userhomet:lnk file 2 5
userhomet:sock file 2 5
userhomessht:dir 2 3
sshdtmp t:dir 2 4
sshdtmp t:file 2 6
sshdtmp t:lnk file 2 4
sshdtmp t:sock file 2 4
lastlog t:file 2 4
ptmx t:chr file 2 9
usernetscaperw t:file 1 2
usernetscaperw t:dir 1 2
mail spool t:file 1 3
catmant:lnk file 1 3
catmant:sockfile 1 3
usertmpfs t:dir 1 2
usertmpfs t:file 1 2
usertmpfs t:lnk file 1 2
usertmpfs t:sockfile 1 2
userhomet:chr file 1 2
userhomet:blk file 1 2
userhomessht:file 1 4
userhomessht:lnk file 1 4
userhomessht:sock file 1 3
usertmp t:dir 1 3
usertmp t:file 1 3
usertmp t:lnk file 1 3
usertmp t:sock file 1 3

Table 2: Write-up permission assignmentsand their impacts
for Biba integrity conflicts in the SELinux examplepolicy.

causedby assignmentto all files (via thefile_type attribute)
this would have a major impact. Unfortunately, resolvingsucha
conflict is difficult becausewe would like to precludeeithercon-
flicting readsor writes, but we do not know which to preclude
(dependson functional requirements)andmany conflictsmay be
removedby theresolutionof otherconflicts.

Examiningthewrite-uppermissionconflictsin Table2 showsus
thattherearealot of low-level conflictsthathaveapproximatelythe
sameimpact.Thus,it is difficult to distinguishamongthemrelative
to impact. The typical action is to examinethe write-up subject
typesthatpossessthesepermissions(not shown) anddetermineif
they canbe excludedfrom the system. Most of the low integrity
subjecttypesthat could be excludedwere excludedprior to this
stagein theconflict resolutionanalysis.

As describedin Section4.3, step6 indicatesthat we selectthe
lowest basic impact assignmentfor resolution. Given the read-
down andwrite-upviews of conflicts,we found it usefulto select
assignmentswith a read-down impactof 1 andamaximalwrite-up
impact. Theseindicateassignmentsthatareeasierto resolve, but
hada significantimpacton resolution.

Theresultanttableafter resolution(seeSection3.2.1)is shown
in Table3. Thenumbersareslightly differentbecausesomeaddi-
tional low integrity subjecttypeswerealsoremovedfrom thesys-
tem.Furtheranalysisis necessaryto determinewhetherread-down
permissionsor write-uppermissionsareto beprecludedfor there-
mainingassignment.An alternative would beto applyLow-Water
Mark Policy such that high integrity processeswould be down-
gradedto low integrity upontheuseof low integrity data[11]. This
would apply to thesystemadministratorswheretheir permissions
do truly indicatebothhigh andlow integrity actions.

Subject R-DPerm R-D Subj W-U

sysadm file type:dir 149 2 176
sysadm file type:file 157 2 173
sysadm file type:lnk file 127 2 152
sysadm file type:sockfile 104 2 92
sysadm file type:chrfile 10 5 40
sysadm file type:blk file 2 5 3

Table 3: Read-down permissionsremaining at resolutionend.
Remaining conflicts requiremanual resolution.

6. CONCLUSIONS
In thispaper, wearguedthatconstraint conflictsaredistinctfrom

traditionalpolicy conflictsanddemandtheconstructionof special-
ized tools to assistin their resolution.This motivatedtheneedto
definea formal modelfor constraintconflictsandto defineproper-
tiesfor guidingtheresolutionof theseconflicts.Thenew properties
that we identifiedareminimal conflict cover which representsthe
minimal setof policy statementsthatcover all conflictsandimpact
which representstheeffect that theremoval of anassignmentwill
haveontheresolutionof conflicts.Minimal conflictcover is useful
in conflict detectionbecauseit identifiestheminimal numberpol-
icy statementsthatcover all conflicts.Impactis usefulto guidethe
resolutionprocess.At present,systemadministratorsmustmake
theresolutiondecisions,sometricsthathelpin resolutiondecision
makingarevaluable.

We appliedthesemetricsto resolvingBiba integrity violations
in the SELinux examplepolicy. We found that minimal conflict
covergreatlyhelpedin reducingthenumberof individualconflicts.
Many of theconflictsweredueto asmallnumberof coarse-grained
assignments.Impactwasusefulin identifying which assignments
canbemosteasilyresolvedwith theremoval of themostconflict-
ing permissions.For example,anassignmentthat leadsa high in-
tegrity subjecttypeto readlow integrity datais easierto resolve if
it impactsfew subjecttypesandread-down permissions.Further,
resolutionof this assignmentis morevaluableif therearea variety
of write-uppermissionsthatleadsto conflictswith it.

In the future, we needto integrate the resultantresolved pol-
icy with SELinux. This mainly involvescreatingSELinuxpolicy-
level resolutionstatementsthatcanbecompiledinto thelow-level
SELinuxrepresentation.ImplementingLOMACpoliciesonSELinux
is moredifficult becauseSELinuxdomaintransitionsonly occurat
processexecutiontime.

7. REFERENCES
[1] G.-J.Ahn andR.Sandhu.Role-basedauthorization

constraintsspecification.ACM Transactionson Information
andSystemSecurity(TISSEC), 3(4),Nov 2000.

[2] L. Badger, D. F. Sterne,D. L. Sherman,K. M. Walker, and
S.A. Haghighat.A DomainandTypeEnforcementUNIX
prototype.In Proceedingsof the1995USENIXSecurity
Symposium, 1995.

[3] D. Bell andL. LaPadula.SecureComputerSystems:
MathematicalFoundations(Volume1). Mitre Technical
Report,ESD-TR-73-278,1973.

[4] S.Benferhat,R. El Baida,F. Cuppens.A stratification-based
approachfor handlingconflictsin accesscontrol.In
Proceedingsof the � L

S
SymposiumonAccessControl

ModelsandTechnologies, 2003.

[5] K. J.Biba. Integrity considerationsfor securecomputer
systems.TechnicalReportMTR-3153,Mitre Corporation,
Mitre Corp,BedfordMA, June1975.

[6] W. E. BoebertandR. Y. Kain. A PracticalAlternative to
HierarchicalIntegrity Policies.In Proceedingsof the8L

S
NationalComputerSecurityConference, Gaithersburg,
Maryland,1985.

[7] D. D. ClarkandD. R. Wilson.A comparisonof commercial
andmilitary computersecuritypolicies.In Proceedingsof
the1987IEEE SymposiumonSecurityandPrivacy, 1987.

[8] J.Crampton.Specifyingandenforcingconstraintsin
role-basedaccesscontrol.In Proceedingsof the � L

S
SymposiumonAccessControl ModelsandTechnologies,
2003.

[9] D. F. Ferraiolo,R. Chandramouli,G-J.Ahn, S. I. Gavrila.
Therole controlcenter:featuresandcasestudies.In
Proceedingsof the � L

S
SymposiumonAccessControl

ModelsandTechnologies, 2003.
[10] E. FerrariandB. Thuraisingham.Securedatabasesystems.

In O. Diaz andM. Piattini,editors,AdvancedDatabases:
Technology andDesign, 2000.

[11] T. Fraser. LOMAC: Low Water-Mark Integrity Protectionfor
COTS Environments.In Proceedingsof the2000IEEE
SymposiumonSecurityandPrivacy, 2000.

[12] T. JaegerandJ.E. Tidswell.Practicalsafetyin flexible
accesscontrolmodels.ACM Transactionson Information
andSystemSecurity(TISSEC), 4(2),May 2001.

[13] T. Jaeger, A. Edwards,andX. Zhang.Theaccesscontrol
spacesmodel.ACM Transactionson InformationandSystem
Security(TISSEC), 6(3),August2003.

[14] T. Jaeger, R. Sailer, andX. Zhang.Analyzingintegrity
protectionin theSELinuxexamplepolicy. In Proceedingsof
the ��� L

S
USENIXSecuritySymposium, August2003.

[15] S.JajodiaandP. SamaratiandV. S.Subrahmanian.A logical
languagefor expressingauthorizations.In Proceedingsof the
1997IEEE SymposiumonSecurityandPrivacy, 1997.

[16] LinuxSecurity.comAdvisories.
www.linuxsecurity.com/advisories/turbolinux
advisory-587.html,July 2000.

[17] P. McDanielandA. Prakash.Methodsandlimitationsin
securitypolicy reconciliation.In Proceedingsof the2002
IEEESymposiumon SecurityandPrivacy, 2002.

[18] NationalSecurityAgency. Security-EnhancedLinux
(SELinux).http://www.nsa.gov/selinux,2003.

[19] J.Ramsdell.SELinuxAnalysisTools
www.ccs.neu.edu/home/ramsdell/tools/selinux/
slat-1.0.1.tar.gz,2003.

[20] S.Smalley andT. Fraser. A securitypolicy configurationfor
Security-EnhancedLinux. Availableat
http://www.nsa.gov/selinux,2003.

[21] TresysTechnology. Security-EnhancedLinux research.
www.tresys.com/selinux.html,2003.

[22] H. B. Wang,S.Jha,P. McDanielandM. Livny. Security
policy reconciliationin distributedcomputingenvironments.
To appearin Proceedingsof 5th InternationalWorkshopon
Policiesfor DistributedSystemsandNetworks, June2004.

[23] C. Wright, C. Cowan,S.Smalley, J.Morris, and
G. Kroah-Hartman.Linux SecurityModules:General
securitysupportfor theLinux kernel.Proceedingsof the
EleventhUSENIXSecuritySymposium, August2002.

