Managing Access Control Complexity Using Metrics

Trent Jaeger
IBM T. J. Watson Research Center
30 Saw Mill River Road
Hawthorne, NY 10532, USA
Email: jaegert@watson.ibm.com

Abstract

General access control models enable flexible expres-
sion of access control policies, but they make the ver-
ification of whether a particular access control con-
figuration is safe (i.e., prevents the leakage of a per-
mission to an unauthorized subject) difficult. The
current approach to expressing safety policy in such
models is to use constraints. When the constraints
are verified, then the configuration is verified to be
safe. However, the addition of constraints to an access
control expression significantly increases the complex-
ity of the expression, so it quickly becomes difficult
to understand the access control policy expressed in
the model such that future changes can be made cor-
rectly. We propose an approach whereby the com-
plexity of each access control configuration is esti-
mated, so the administrators can see the effect of a
configuration change on the future ability to maintain
the configuration. We identify metrics for making
complexity estimates and evaluate these metrics on
some constraint examples. Our goal is to enable the
use of flexible access control models for safety-critical
systems by permitting limited use of constraints that
do not complicate the configuration beyond a main-
tainable complexity.

1 Introduction

In access control modeling, there is an inherent con-
flict between the need for flexibility in modeling the
access control policy and the need for restricting the
model in order to verify the safety of the access con-
trol policy. First, early work in access control focused
on the design of access control models that enable the
expression of arbitrary access control policies, such as
Lampson’s access control matriz [12]. Using an access
control matrix, the access control policy is expressed
as the operations that subjects (i.e., actors) can per-
form on objects. Each different policy that can be
expressed in such a model is called a configuration of

the model. Recent models, such as role-based access
control (RBAC) [16] and Dynamically Typed Access
Control (DTAC) [20], permit such general policy ex-
pression, but also introduce concepts to enable the
aggregation of statements to reduce the system ad-
ministrators effort.

Second, an important issue in the design of a con-
figuration is whether the configuration enforces the
safety policy that was intended in its design. That is,
does the configuration ensure that subjects can only
obtain the rights that are intended for them and no
others. Unfortunately, the model described above is
not sufficient to ensure that the safety of a configu-
ration can be proven [8]. Therefore, two approaches
have been taken: (1) the safety of the model is guar-
anteed for each configuration or (2) the safety of each
configuration change is verified against an explicit
safety policy. In the first case, access control mod-
els must be limited to ensure that each configuration
is safe. This restriction has been achieved by reduc-
tion of expressive power (e.g., take-grant model [6]),
limiting the means by which configuration changes
are possible (e.g., the fixed models and trusted ad-
ministration of Domain and Type Enforcement [7]
and Bell-LaPadula [4]), or through models with sub-
tle restrictions on how policy can be expressed (e.g.,
SPM [3] and TAM [2]. The most successful approach
has been the second type because the type of poli-
cies and administrative models have been useful in
some context. Interestingly, the third type of mod-
els have more expressive power, but were not applied
in practice because the subtleties of the restrictions
were difficult for administrators to understand and
enforce.

In models of the second type, an additional con-
cept called constraints is introduced to enable the
safety of the configuration to be verified. Safety is
verified by checking that each change in access con-
trol configuration does not violate any of the safety
constraints. While the notion that a constraint check-
ing can enforce safety is a theoretical solution to the

Page 1

safety problem, it leaves system administrators with
difficult practical problems. First, a system admin-
istrator must be able to express the system’s safety
properties correctly in terms of constraints. Tradi-
tionally, constraint languages are based on predicate
logic [1, 11, 5]. While these languages enable great
flexibility in the expression of constraints, it is quite
unlikely that typical system administrators will be
able to express more than a few simple constraints
properly. In addition, the system administrators must
also maintain the system as in evolves. This means
that constraints may need to be added or removed,
and the result must reflect the intended safety policy.

We believe that if system administrators can bet-
ter understand and manage the complexity of their
configurations and constraints, then such flexible ac-
cess control models can be used in high security envi-
ronments with non-trivial safety requirements. How-
ever, little attention has been paid to developing an
understanding of the complexity of access control mod-
els. In this paper, we propose and evaluate metrics
for access control model complexity. Our goal is to
find metrics that correlate reasonably well with our
intuitive notions of complexity. Given such metrics,
we envision that user studies can be done to deter-
mine the level of complexity that can be managed
effectively by system administrators. System admin-
istrators then will have a basis for balancing the com-
plexity of their configuration and constraints to de-
termine whether a safety policy can be enforced and
maintained. We expect that this will result in the
ability to use more flexible access control models in
high security environments.

In Section 2, we first examine the possible options
for a workable definition for complexity. Next, in Sec-
tion 3, we define the access control model that we will
use to express configurations and constraints. In Sec-
tion 4, we specify a series of example separation of
duty constraints each of increasing complexity to use
to compare the effectiveness of different complexity
metrics. In Section 5, we define a basic approach to
complexity measurement and define complexity met-
rics. In Section 6, we apply and evaluate the effective-
ness of different metrics. In Section 7, we summarize
and examine future work.

2 Defining Complexity

First, we need to identify a useful definition for con-
figuration complexity. By useful, we mean that such
a definition must be representative of some real task
of the system administrators and be practically mea-
surable.

An access control configuration is used for two

purposes: (1) authorization and (2) safety enforce-
ment. Primarily, we want to use the configuration
to authorize requests. Secondarily, we want to verify
that the current access control configuration does not
leak any permissions to any unauthorized subjects.
System administrators must understand a configura-
tion both to modify the authorization state (i.e., sub-
jects, permissions, and authorization types) and ver-
ify that the safety requirements are upheld (i.e., verify
that the assignment of authorization types and per-
missions to subjects satisfy the configuration’s con-
straints). Therefore, the complexity of safety enforce-
ment depends on the expression of both the autho-
rization state and safety requirements.

The complexity of an access control configuration
impacts system administrators when they want to
modify an access control configuration. They must
understand the current configuration sufficiently to
make the desired modification while ensuring that
the authorization and safety requirements are cor-
rect. Since different modifications are possible, in
theory, complexity is the difficulty of understanding
the configuration necessary to make any modifica-
tion. Therefore, one possible definition of configu-
ration complexity is the sum of the complexity of any
possible modification to that configuration. This de-
pends on the complexity of understanding the effect
of a change on the authorization and safety verifica-
tion behavior of the configuration before the change.
Whiile for each modification we may only need to con-
sider local effects, the configuration complexity must
take all changes into account.

Therefore, we define configuration complexity to
be the complexity of understanding the authorization
and safety verification operations. If system admin-
istrators understand exactly what happens in each
authorization and safety verification operation, then
presumably they can understand the effect of making
a change. Then, the complexity of the new configura-
tion depends on the complexity of authorization and
safety computation in the new configuration.

Therefore, our goal is to identify metrics to mea-
sure the complexity of understanding the concepts in
an access control configuration. First, we describe an
access control model to describing the access control
concepts. This model makes explicit the information
that must be computed and the interactions between
concepts that make the model complex. Second, we
identify some examples that can be used to give us
an expectation of the accuracy of the complexity met-
rics. We then develop complexity metrics for under-
standing each concept in the model and apply these
metrics to the examples. The degree to which the
combination of different complexities accumulate is
not obvious, so we experiment with a few combina-

Page 2

Figure 1: The basic access control model consists of sub-
jects, permissions, and authorization types (i.e., authorization
relationships, such as roles).

tion approaches for different combinations.

3 Access Control Concepts

In order to develop and test metrics for access control
configuration complexity, we must have some canon-
ical access control model in which configurations can
be described. This model must include: (1) the basic
access control concepts, such as subjects, objects, per-
missions, and authorization types; (2) some common
extension concepts, such as aggregation and inheri-
tance; and (3) a means for ensuring that the safety of
a configuration can be guaranteed: constraints. This
model is motivated by the graph role model work of
Osborn et al [14, 15].

3.1 Basic Access Control Model

We use the notation of the dynamically typed ac-
cess control model (DTAC) to express access con-
trol relationships. DTAC defines an authorization
relation ¢ (i.e., authorization type or role) as a data
type with three functions: (1) S(t) = {subjects}; (2)
P(t) = {permissions}; and (3) N(t) = name. In this
case, a type represents an authorization relationship
between sets of subjects and permissions (i.e., objects
and the operations that may be performed on them).
Further, permissions may be decomposed when de-
sired into their constituent objects and operations,
O(p) and Op(p), respectively.

Note that many access control models are isomor-
phic to the DTAC model at this level of abstraction.
For example, roles in role-based access control models
are also authorization relations with the same func-
tions. Even multilevel security can be expressed using
this model when we view the authorization relation-
ship as a level.

Visualization of an access control policy is often
useful in understanding it. Abstracting the DTAC
model defined above, we get a graph as shown in Fig-
ure 1, in which elements of the set S are assigned to
elements of the set 7', and elements of the set P are
also assigned to elements of the set 7' (the assign-
ments are many-to-many).

Note that we are often also interested in the prop-
agation of assignments across the authorization rela-

P(D) = P(D)

P(E) = P(E)

P(B) = P(D) U P(B)

P(C) = P(E) U P(C)

P(A) = P(B) U P(C) U P(A)

S(A) = S(A)

S(B) = S(A) U S(B)
S(C) = S(A) U S(C)
S(D) = S(B) U S(D)
S(E) = S(C) U S(E)

Permissions
Subjects

Figure 2: In an inheritance relation, subjects are aggregated
in an inverse direction to permissions.

tionship. For any subject s € S, we would want to
determine the permissions available to that subject,
P(s) = Uer(s) P(t)). Similarly, we can determine
the subjects to which a particular permission is avail-
able. In general, any assignment to an authorization
relation can be propagated to concepts on the oppo-
site side of the relation (e.g., O(s) and S(0)).

For simplicity’s sake, we do not extend the model
further. The full model described in [10] also includes:
(1) the decomposition of permissions into objects and
operations; (2) the decomposition of subjects into ses-
sions and processes; and (3) the collection of autho-
rization current state and history.

3.2 Aggregation and Inheritance

Aggregation applies to any system concept by gener-
alizing each concept slightly to support a value X (z) =
{z1,22,....,2n} where X is the concept type and z
and z1,Z2,...,Z, are instances of that type. Thus,
the concepts which we used before were simply sin-
gleton sets. Note that an aggregation relationship in
the model will be denoted by a '+’.

There are two types of computations available on
aggregations: (1) summations over all members and
(2) iterations over each individual members. The se-
mantics of the summation concept functions for ag-
gregations are: fs(A) = f(a;) for all a; € A. That
is, the same functions of an aggregate union the val-
ues for the constituents of the aggregate. Since we
look at each node as a set, we use this as the default
semantics, so the subscript for summation does not
need to be expressed.

Also, we can apply a function once for every mem-
ber of an aggregation, like an iterator operator. The
semantics of iterator concept functions are: f;(A) =
{f(a;)} for each a; € A. Iteration is explicit in each
constraint.

Page 3

Unfortunately, the semantics of the aggregation
relation does not effectively cover all the types of con-
cept grouping in the model. In particular, the func-
tions in authorization types do not behave as sum-
mation and iteration functions in all cases. Another
relation, called inheritance, signified by a ’+/-’, by
the direction in which information is transferred by
the inheritance relationship. As shown in Figure 2,
permission information (e.g., permissions, operations,
and objects) is aggregated in the direction of inheri-
tance relationship (the '+’), but subject information
is aggregated opposite to the direction of the inheri-
tance relationship (the -’). Given the direction of the
aggregations, the aggregation computation semantics
still hold.

3.3 Constraint Model

The approach we advocate for safety verification is
to define an initial configuration of authorization re-
lationships and to place constraints that limit the
ways that the configuration can be modified. The
constraints are to ensure that the authorization re-
lationships do not grant an unauthorized permission
(i-e., are safe).

Since we define our basic model using sets, the
natural way to define constraints is as binary rela-
tionships between pairs of sets. We chose to limit our-
selves to binary relationships for two major reasons:
(1) they are easy to describe and draw as labelled
edges in a two-dimensional graph, which we hope
makes them easier to understand and (2) they are
simpler and more compact than ternary (or higher)
relationships so the algorithms and data structures
are more efficient. In addition, our initial investiga-
tions demonstrated that many common constraints
can be expressed using only binary relationships [18,
19, 10).

In addition to their algorithmic benefits, we be-
lieve that the minor loss of expressive power of binary
relationships versus ternary relationships is beneficial
to modelling: it simplifies the construction of a fixed
point, that point necessary to construct constraints
on constraints.

There are two broad categories of constraints. The
first is based around the notion of subsets and set
equality; thus for example, we have test for equality
(=), subset (C), and not subset or equal (Z). In ad-
dition to the standard subset operators we define two
sets to be incomparable (#£) if neither is a subset of
the other (except in the degenerate case in which one
is empty).

ArB ¥ ugBABZA VU=V B=0

Figure 3: The graphical representation of a user-user conflict
separation of duty constraint. Subject ul may not be assigned
any authorization type to which subject u2 is assigned and vice
versa. That is, their type sets must have a null intersection.

The second is based around the notion of overlap
between two sets when neither is necessarily a subset
of the other, and is defined by limiting maximal car-
dinality of their intersection; so we write [ANB| <n
for two sets A and B. The notion of two sets having
no overlap, which we refer to as being disjoint, is so
common that we give it a special symbol (1), and
write A L B for |[AN B| =0.

It is frequently convenient to denote the applica-
tion of the same function to both sides of a constraint
operator by subscripting the operator with the func-
tion name. Thus instead of P(A) L P(B) we may
write A Lp B. The most common usage of this
is apply to constraints to the objects assigned to a
node (subscripted O), the permissions held by a node
(subscripted P) or the types assigned to a node (sub-
scripted T).

4 Complexity Examples

In order to get an intuitive sense of complexity such
that we can evaluate the various metrics that can
be proposed, we define a series of constraint exam-
ples representative of various incarnations of user-
user conflict separation of duty constraints [17, 14].
In general, such a constraint restricts subjects from
sharing a common authorization type. Since the as-
signment of authorization types implies the assign-
ment of permissions, a user-user conflict may also be
stated in terms of the permissions that a user can be
assigned. Below, we provide the examples and discuss
the intuitive complexity of each.

Example 1 In a user-user conflict separation of
duty constraint, it is forbidden for two users to both
be assigned to any common authorization type. This
constraint is enforced by requiring that the authoriza-
tion type sets of the two users be disjoint as shown in
Figure 3, T'(ul) L T'(u2). Also, using our compressed
notation we write ul L7 u2.

In the second example, the set of authorization
types to which common assignment is prohibited is
limited. The complexity of this constraint is similar

Page 4

Figure 4: The graphical representation of yet another alterna-
tive interpretation of the user-user conflict separation of duty
constraint. In this constraint, 41 and 42 must be restricted
from sharing an authorization type in the set of restricted types
rt. That is, the set of authorization types in rt that are shared
between ul and u2 must be null.

to Example 1, but we claim that the need to under-
stand the restricted set of authorization types makes
this constraint slightly more complex.

Example 2 In another interpretation, we want to
restrict two users from a particular authorization type
or from sharing one authorization type from a set of
types. In this constraint the restricted authorization
types are grouped in an aggregate named restricted
types rt. Then, a constraint is made between the two
users (or subject aggregates as above), ul L1, u2 as
shown in Figure 4. This constraint checks for a null
intersection between the types of the two users that
are within the restricted types.

In a third example, the number of users to which
a conflict is possible may be greater than 1. Clearly,
this is more complex than either of the first two con-
straints.

Example 3 We consider an alternative interpreta-
tion of the user-user conflict constraint expressed in
Example 1 in which the two sets of users are restricted
from being assigned to any common authorization
type. This constraint is shown graphically in Fig-
ure 5. The users ul,u2, ... and v1,v2,... are assigned
to two separate subject sets S1 and S2. There is a

Figure 5: The graphical representation of an alternative in-
terpretation of the user-user conflict separation of duty con-
straint. In this constraint, no subject in S1 may assigned to an
authorization type to which a member of the S2 is assigned.
That is, the set of shared authorization types between these
groups of subjects must be null.

Figure 6: The graphical representation of yet another alterna-
tive interpretation of the user-user conflict separation of duty
constraint. In this constraint, S1 and S2 must be restricted
from sharing any permission. That is, the set of permissions
that are shared between S1 and S2 must be null.

disjoint relationship on the types that these two sets
may be assigned: S1 Lr S2. In this case, the con-
straint is between each of the members of the sets S1
and S2 since T'(S;) is the union of the values of T for
each element in S;.

In the last example, the user-user conflict is taken
to the permission level. That is, rather than restrict-
ing the set of authorization types, we restrict the set
of permissions that each user set may obtain. Since
the additional issue of how permissions are assigned
to authorization types must be understood this con-
straint is more complex than any of the first three.

Example 4 In another interpretation, we want to
restrict the two sets of users from sharing any com-
mon permission. Like Example 3, the users are grouped
into two sets S1 and S2 and the permission sets of
the users must be disjoint: S1 Lp S2 as shown in
Figure 6.

Intuitively , we state the progression of complexity
of these constraints is: F1 << E2 < E3 << FE4. Ex-
ample 1 is a very simple constraint. Examples 2 and
3 represent two uses of aggregations, so they should
be approximately the same. We give Example 3 a
more complex rating because it uses two aggregates.

Page 5

Example 4 expands the constraint from types to the
permissions of types. We expect that this will signif-
icantly increase the constraint’s complexity.

While this is nowhere near a sufficiently exhaus-
tive sample to validate a complexity metric, our aim
in this initial work is to identify promising complexity
metrics, not the optimal. We envision that the order
and magnitude of complexity differences are signifi-
cant measures toward this cause.

5 Approach

Previous research has found that people think effec-
tively in terms of chunks of information [13]. For ex-
ample, in programs the use of structured code where
short, simple code blocks form programs enable pro-
grammers to convert programs into higher level con-
cepts such as reference counters that represent their
semantic intent. Also and more importantly, such
"chunked’ concepts can be stored in long-term mem-
ory for reuse. As the complexity of a particular pro-
gram increases, the harder it is for the programmers
to create useful chunks. Thus, they must re-learn
complex each time that they need to use them.

In the context of an access control model, the
smallest chunks of information are the nodes in the
access control graph. These represent the basic con-
cepts of the access control model: subjects, permis-
sions, and authorization types. However, we imagine
that the complexity of chunks is not always equal.
Given that different information is stored in each type
of access control node, we surmise that their complex-
ity depends on how many types of information must
be understood from the node to complete an opera-
tion.

5.1 Complexity in Authorization

In order to compute authorization, we need to com-
pute whether a particular subject has a particular
permission. The relevant functions are the permis-
sion assignment to authorization types P(t) for all
t € T and the assignment of subjects to authorization
types S(t) for all t € T. From these functions, we can
determine whether one of the authorization types of
a subject have the desired permission. Therefore, for
authorization, two functions must be understood to
perform authorization. Therefore, we can think of
the complexity of the node chunks in authorization
as the number of functions that must be computed.
This has the result that primitive entities, subjects
and permissions, have a complexity of zero.

The complexity of authorization is increased by
the use of other relationships, such as aggregation

and inheritance. For aggregation, the functions au-
thorization types and hence permissions are compli-
cated by the fact that the subject may belong to some
aggregates with additional permissions assigned to
them. Similarly, inheritance of authorization types
also has the potential to increase the number of ways
that a permission may be assigned to a subject. Since
these relationships have a similar effect to assignment,
the complexity of these relationships is approximately
the same as one function for individual relationship.
Since these relationships introduce new nodes (e.g.,
aggregates) with additional relationships, the overall
increase in complexity is higher.

Note that inheritance along multiple relationships
is often perceived to be much more complex than sin-
gle inheritance. In a graphical model, we can see that
limiting a model to single inheritance limits the chunk
that must be evaluated to compute permissions to a
branch of an inheritance tree. However, the use of
multiple inheritance creates chunks that are graphs,
S0, in worst case, the entire inheritance hierarchy may
need to be examined. Thus, the complexity measure
for multiple aggregation and/or inheritance relation-
ships may not simply be the number of relationships,
but rather it may depend on the number of additional
nodes that must be examined or be even greater.

5.2 Complexity in Safety

The other important computation in an access control
configuration is that of safety. Safety is computed by
verifying that each constraint is satisfied for that con-
figuration. Therefore, understanding safety requires
understanding the complexity of computing each con-
straint. Interestingly, common constraints, such as
separation of duty, are comparisons between nodes
for which we desire that no common relationship ex-
ist. Therefore, constraints often have much greater
chunks than other concepts. Also, constraints, in
general, are comparisons between two or more sets,
so much more computation is necessary to verify a
constraint. Lastly, constraints may require the com-
putation of functions that are not necessary for au-
thorization, so additional computations not typically
in the model must be made.

Given this intuition, we can see why the use of
constraints to enforce safety creates a problem for
access control model designers. The desire to pro-
vide a means for ensuring safety in an access control
model cannot be provided by a tool that is even more
error-prone. Unfortunately, constraints, by their very
nature, create a significant amount of complexity in
the model. Therefore, the use of constraints must be
managed to keep the complexity from overtaking the
potential value.

Page 6

Complexity in constraints derives from the arity
of the constraint relationship (i.e., the number of sets
being compared), the number of concepts involved in
the computation, and the number of new functions
that must be computed.

The number of nodes upon whom a constraint
is applied defines its arity. This is indicated in the
graphical access control model by the number of nodes
connected by a constraint edge. We consider con-
straint arity to be a major source of constraint com-
plexity. A data structure in which edges can be be-
tween more than two nodes is no longer a graph. In
this case, we would have to consider access control
models with more complex data structures, such as
hypergraphs.

To prevent the need for such data structures, we
convert references to other nodes into new concept
functions. For example, in Example 2, we compare
the authorization types of subjects ul and u2 to en-
sure that they are disjoint to the type set 7,;. To
verify this constraint, we must compute the functions
Trt(ul) and T4 (u2) and determine whether the inter-
section is null.

This clearly is more complex than a constraint us-
ing existing nodes and concept functions, so we must
determine how to account for this additional complex-
ity. We again revert back to identifying the chunk.
First, understanding of a constraint requires under-
standing of each of the nodes involved in computing
the constraint, including aggregation and inheritance.
Therefore, we count the number of concept functions
that are included in a computation of the two sets
that comprise the constraint comparison.

5.3 Complexity Metrics

For each aggregation and authorization type, we count
the following classes of complexity metrics.

e Authorization Types: The base complexity
for each authorization type is the two functions
necessary to compute authorization.

o Aggregation: Each aggregation counts as one
function that is computed to return the set in
the aggregation.

e Inheritance: Each inheritance counts as two
functions as each authorization type has a new
permission assignment and a new subject as-
signment.

For each class, we apply a function to compute the
complexity value by applying a combination function
to the metric value. The combination function can
either be the identity function, a polynomial function

of the metric value, or an exponential function of the
metric value. Similarly, another combination func-
tion can be used to combine the values of all three
metrics. The metrics may be combined by addition,
multiplication, or exponentiation to give the overall
complexity metric per node. Finally, the node metric
values are collected. Initially, we will sum the node
metrics.

For each constraint, we count the following classes
of complexity metrics:

e Arity: The number of nodes involved in the
comparison (one or two)

e Functions: The number of functions that must
be computed to verify the constraint

e New Functions: The number of functions that
are added for the constraint

Again, the metric values for each metric type are
collected, and combination functions are applied to
these metrics. Then, another combination function
is used to combine the combination metrics. Finally,
the constraint metric values are summed.

To compute the overall complexity of an access
control graph, the constraint metric values are added
to the authorization metric values.

Thus, the experiment is to compute the autho-
rization and constraint metric values for the different
types, and try different combination functions to see
which have the closest relationship to our intuitive
expectation.

6 Evaluation

We now measure the complexity of our examples us-
ing different combination functions to determine: (1)
whether the choice of metrics correspond to our in-
tuition of the relative complexities of the examples
and (2) which of the combination functions best cor-
responds to our intuition of the relative complexities.

In order to perform the experiment, we need to
add some further details regarding the examples. We
assume a configuration that contains 11 authorization
types. We assume a three-level authorization hierar-
chy with a root type, two second-level types, two sets
of four third-level types.

Given this inheritance hierarchy, we have the fol-
lowing measure for the base authorization complex-
ity metrics: (1) 2 points for each of the 11 autho-
rization types; (2) 0 points for aggregations; (3) 2
points for the inheritance functions for two second-
level types and 1 point for the root and the third
level types. Using the combination function choice of

Page 7

addition per node, we get 3 points for the first and
third-level nodes and 4 for the second-level nodes.
Using addition over all nodes, we get 35 points to-
tal for authorization complexity. Using the combina-
tion choice of multiplication of product by 2, we get
(2(2pts = 2pts * 2nodes) + 2(2pts = 1pt x Inodes) = 52.
If we use exponentiation combination (i.e., 2"), then
we get (2% x 2nodes) + (22 * 9nodes) = 104.

We now examine the complexity of the configura-
tions that include the constraint examples.

Example 1 In Example 1, we have a simple binary
constraint of two functions, T'(u1) and T'(u2). There-
fore, we have an arity of 2 and a function count of
2. No new functions were necessary. Using additive
combination, we get a complexity of 4. Using multi-
plicative combination, we get a complexity of 8 (2 * 2
arity * 2 functions). Using exponential combination,
we get a complexity of 16 (2(212)).

Example 2 In Example 2, we add the notion that
the users’ authorization types must be disjoint with
respect to a set of types T,;. Therefore, we have an
arity of 2. Two new functions must be computed:
Trt(ul) and T (u2). In order to compute these func-
tions, we need to know T'(ul) and T'(u2), so the new
of functions that need to be computed is 4. Using ad-
ditive combination, we get a complexity of 8. Using
multiplicative combination, we get a complexity of 32
(2 * 2 arity * 4 functions * 2 new). Using exponen-
tial complexity, we get a complexity of 256 (2(214+2)),
The additional complexity of testing a new function
is high. We also penalize the constraint because T,
is limited by T, and this makes some sense as the
need to understand two functions to compute the con-
straint does increase the complexity significantly.
Plus, must add the aggregation of T).; to the con-
figuration which creates an aggregate cost of 1.

Example 3 Example 3 is like Example 1, except
the constraint is between two aggregates S1 and 52
rather than two individual nodes. Therefore, we in-
crease the aggregate complexity by two, but the con-
straint is otherwise the same complexity as Example
1. Since the chunking is done in the aggregate, the
additional complexity is minimal.

Example 4 Example 4 is like Example 3, except
that the constraint is over permissions. This means
that we must compute the permissions for all the
types to which all the subjects in S1 and S2 belong
(P(t)). If we presume that the subjects in S1 belong
to one or more of the types in one of the second-level
branches and S2 to one or more of the other, then we

get one inheritance function plus the five type func-
tions for each. These functions would be necessary
for computing authorizations, so no new functions are
added.

Therefore, we get the following complexities. Us-
ing additive combination, we get a complexity of 14
(2 for arity and 6 functions for each of the two aggre-
gates). Using multiplicative combination, we get 48
(2 * 2 arity * 12 functions). Using exponential com-
bination, we get 16K (2'4). As we can see, a severe
penalty is incurred if the constraint refers to concepts
within an assignment. In this case, a larger chunk of
the configuration had to be assessed to determine the
result.

In summary, our intuitive ordering of the Exam-
ples is close to that which the metrics indicated. Ex-
ample 1 is indeed the simplest. However, it was only
slightly simpler than Example 3. The addition of a
single independent aggregate had little effect on the
complexity. In hindsight this makes some sense.

However, our intuition differed from the metric’s
ordering of Examples 2 and 3. The addition of a
new function for computing the number of restricted
types held by a subject T;.; had a significant effect on
complexity. This was primarily for two reasons: (1)
the function had to added especially for computing
the constraint, thus requiring additional understand-
ing, and (2) the value of the function is limited by
the value of the function 7. Recall that this func-
tional approach has been created to avoid needed to
express this as a ternary constraint, so while some
graph simplicity was maintained the complexity of
this approach is still apparent in the metric.

As expected, Example 4 was the most complex.
The reason for this is that it required the considera-
tion of a greater portion of the graph (i.e., the chunk
became bigger). We expect that constraints on ob-
jects which comprise permissions will add a similar
increase in complexity to the constraint.

The choice of which combination function best
displayed the complexity of the graph is hard to dis-
cern from four examples, but we would tend to pre-
fer the multiplicative combination at present. The
additive combination means that the complexity of
the constraint is only a small percentage of the com-
plexity of our sample configuration (10%). Since
we expect that constraints are a significant percent-
age of the overall complexity, the multiplicative com-
bination came closer to our expectation. While we
think that there is a exponential facet to the increas-
ing complexity of a constraint, exponential combina-
tion seemed excessive as it currently stands. We do
not believe that Example 4 is 64 times more complex
than Example 2.

Lastly, we noticed in the execution of the exper-

Page 8

iment that the metrics as specified are both too in-
formally specified and too complex to compute. In
the cases, of Examples 2 and 4, further definition of
the formal semantics of the metrics was necessary to
compute them. Thus, more work in defining a formal
semantics for these metrics is necessary. However, we
found that the metrics themselves were fairly com-
plex, so a search for a somewhat simpler set of metrics
would be beneficial.

7 Conclusions

This goal of this paper is two-fold: (1) to motivate
the complexity of safety expression as the key factor
preventing the use of general-purpose access control
models for highly safety-critical applications and (2)
to propose a mechanism for measuring the complexity
of access control configurations in hopes of managing
complexity, such that such models may be used in
safety-critical applications with confidence. The de-
sign of complexity metrics is based on notion that
understanding the complexity of the configuration is
key to making correct configuration changes. Under-
standing is based on the notion of chunks. That is,
the simpler the independent chunks in a configuration
are, the easier it is to understand the model. We use
a graphical access control model to define the system
which aids us in seeing the effect of the addition of
concepts on the complexity of the graph. For exam-
ple, since constraints connect graphs that are typi-
cally intended to be independent (e.g., in separation
of duty), they add links that significantly impact the
size of the chunks that need to be considered.

We identified metrics for computing both autho-
rization and safety. Derivation of authorization met-
rics was useful in understanding how to generate safety
metrics and also in verifying that the magnitude of
the safety metric calculations were reasonable. We
applied the metrics to four constraint examples in a
single configuration. The results indicate that such
metrics might give an indication of relative complex-
ity. The constraints that require new functions or
the examination of more concepts were rated as sig-
nificantly more complex. However, this is just an
initial investigation of this issue, and the difficulty
of computing the metrics given these definitions indi-
cate that simpler metrics may be necessary. Since we
only considered a subset of a graphical access control
model, the difficulty will only increase.

Acknowledgements

The author thanks Peter Gutmann for his insight into
cognition that motivated the development of com-

plexity metrics.

References

[1]

[2]

[3]

[4]

[7]

[10]

[11]

G. Ahn and R. Sandhu. The RSL99 language
for role-based separation of duty constraints. In
Proceedings of the 4" Workshop on Role-Based
Access Control, 1999.

P. Ammann and R. Sandhu. One-representative
safety analysis in the non-monotonic transform
model. In Proceedings of the 7" IEEE Computer
Security Foundations Workshop, pages 138-149,
1994.

P. E. Ammann and R. S. Sandhu. Safety analysis
for the extended schematic protection model. In
Proceedings of the IEEE Symposium on Research
in Security and Privacy, 1991.

D. Bell and L. La Padula. Secure computer
systems: Mathematical foundations (Volume 1).
Technical Report ESD-TR-73-278, Mitre Corpo-
ration, 1973.

E. Bertino, E. Ferrari, and V. Atluri. The spec-
ification and enforcement of authorization con-
straints in workflow management systems. ACM

Transactions on Information System Security,
1(2), Feb. 1999.

M. Bishop and L. Snyder. The transfer of in-
formation and authority in a protection system.
In Proceedings of the 7" ACM Symposium on
Operating System Principles, pages 45-54, 1979.

W. E. Boebert and R. Y. Kain. A practical alter-
native to hierarchical integrity policies. In Pro-
ceedings of the 8" National Computer Security
Conference, Gaithersburg, Maryland, 1985.

M. A. Harrison, W. L. Ruzzo, and J. D. Ullman.
Protection in operating systems. Communica-
tions of the ACM, 19(8), August 1976.

T. Jaeger, A. Prakash, J. Liedtke, N. Islam. Flex-
ible control of downloaded executable content.
ACM Transactions on Information and System
Security (TISSEC), 2(2), May 1999.

T. Jaeger and J. Tidswell. Practical safety for
flexible access control models. Submitted for
publication.

S. Jajodia, P. Samarati, and V. S. Subrahma-
nian. A logical language for expressing autho-
rizations. In Proceedings of the IEEE Symposium
on Security and Privacy, 1997.

Page 9

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

B. W. Lampson. Protection. In Proceedings Fifth
Princeton Symposium on Information Sciences
and Systems, March 1971. reprinted in Operat-
ing Systems Review, 8, 1, January 1974, pages
18 — 24.

G. Miller. The magical number seven, plus or
minus two: Some limits on our capacity for pro-
cessing information. Psychological Review, 63(2),
March 1956.

M. Nyanchama and S. Osborn. The role graph
model and conflict of interest. ACM Transac-
tions on Information and System Security (TIS-
SEC), 2(1), Feb 1999.

S. Osborn and Y. Guo. Modelling users in role-
based access control. In Proceedings of the 5"
ACM Role-Based Access Control Workshop, July
2000.

R. S. Sandhu, E. Coyne, H. L. Feinstein, and
C. E. Youman. Role-based access control models.
IEEE Computer, 29(2):38-47, February 1996.

R. Simon and M. E. Zurko. Mutual exclusion of
roles as a means of implementing separation of
duty in a role-based access control system. In
Proceeding of the 10" IEEE Computer Security
Foundations Workshop, June 1997.

J. E. Tidswell and T. Jaeger. Integrated con-
straints and inheritance in DTAC. In Proceed-
ings of the 5t" ACM Role-Based Access Control
Workshop, July 2000.

J. E. Tidswell and T. Jaeger. An access control
model for simplifying constraint expression. In
Proceedings of the T"" ACM Conference on Com-
puter and Communication Security, November
2000.

J. Tidswell and J. Potter. A dynamically typed
access control model. In Proceedings of the Third
Australasian Conference on Information Secu-
rity and Privacy, July 1998.

Page 10

