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Abstract

Inheritance and constraints are two common techniques for safely man-
aging the complexity of large access control configurations. Inheritance is
used to help factor the model, while constraints are used to help ensure
that the complexity will not result in an unsafe configuration arising in
the future evolution of the system. In this paper we develop an integrated
mathematical approach to defining both inheritance and constraints in
the dynamically typed access control (DTAC) model. In the process we
identify several useful relationships among DTAC objects. The combina-
tion of DTAC and these relationships enables us to graphically construct
a greater variety and complexity of efficiently verifiable constraints than
any other model we are aware of.

Access Control

Access control models are basically a way to define a framework to support
authorisation decisions of the form

1.
2.
3.

4.
9.

Does entity z have right r to entity y ?
Who is authorised to give entity z right r to entity y ?

Will entity x ever acquire right r to entity y other than by being given it
by somebody who is authorised ?

What rights does entity z have to which entities ?

Which entities have right r to entity y ?

Unfortunately in large access control models these questions become hard to
answer and the answers hard to interpret simply due to the scale, and in dynamic
systems these questions can be NP-hard [HRU76]. Therefore many models have
been developed to structure the authorisation framework so that the questions
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can be easier to answer, and the answers easier to interpret. There are two
common approaches to structuring the access control model; the first, typically
used by capability models, is to limit the number of entities that need to be
considered; the second, typically used by ACL based models, is to introduce
some structure or grouping mechanism so that questions can be asked about a
conceptually smaller and simpler model.

Dynamically typed access control (DTAC) models [TP98] follow the latter
approach by introducing types to group collections of entities with similar prop-
erties (both security properties and structural properties). By defining abstract
types it is also possible to group rights to sets of types of entities, but it then
remains to define the relationships between abstract types and “concrete” types.
Unfortunately attempting to define relationships opens Pandora’s box of prob-
lems (see Sections 5 and 8). We present a mathematical approach to defining
relationships available in DTAC and relate these to relationships defined in the
RBAC model [SCFY96]. We believe that our approach is novel and that as a
result we can identify several new relationships with immediate uses.

There are four significant reasons that we began this work:

e to develop both a constraint mechanism and an inheritance model for our
DTAC model;

e to explore the parallels we saw between the mathematics underlying our
proposed models for both inheritance and constraints;

¢ to leverage the benefits from a combined approach to develop a constraint
model which is simpler than previous RBAC constraint models with an
efficient evaluation algorithm that still allowed us to specify complex con-
straints; and

e to find graphical representations for a larger number of constraints.

We believe we have achieved our goals: our DTAC relationships provide
a simple graphical model of access control that includes inheritance and con-
straint mechanisms that address previously identified types of separation of duty
constraints.

The remainder of the paper is organised as follows. We present a summary
of separation of duty constraints from the literature in Section 2, including a de-
scription of our newly identified constraint. In Section 3 we present an overview
of the DTAC model and define some relationships using our mathematical ap-
proach, for which we provide a graphical example in Section 4. In Section 5 we
investigate some algorithmic concerns regarding correctness and the complex-
ity of evaluating constraints and inheritance. The problems of shared rights in
mutually exclusive types and their use to implement the previously identified
separation of duty constraints are covered in Sections 6 and 7. In Section 8 we
compare our work to some other approaches, before presenting some concluding
remarks in Section 9.
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2 A Taxonomy of Separation of Duty Constraints

One of the important themes that resonates through (and predates) the liter-
ature on RBAC is separation-of-duty or conflict-of-interest constraints [SS75,
SCFY96, Kuh97, SZ97, TP98, NO99, SBM99, LS99, for example]. For the sake
of clarity we will present a harmonised merge of the taxonomies by Simon &
Zurko [SZ97] and the extensions by Nyanchama & Osborn [NO99], adding one
new constraint ourselves.

Kuhn [Kuh97] published an alternative taxonomy identifying two axes on
which to classify such constraints. His first axis — time — is synonymous with
static versus dynamic constraints, and is subsumed by the taxonomy of Simon &
Zurko. Kuhn’s second axis — the extent to which roles involved in mutual
exclusion relationships share rights with other roles — has been largely ignored
by the RBAC community, but we demonstrate that our DTAC relationships
naturally express these concepts in Section 6.

In the standard RBAC language [SCFY96] the harmonised taxonomies of
Simon & Zurko and Nyanchama & Osborn are:

User—user conflicts are defined to exist if a pair of users should not be as-
signed to the same role. In models extended to support groups of users
this extends to not assigning the users to the same group (except a logical
group containing everybody).

Privilege—privilege conflicts are defined to occur between two privileges (a
privilege is a pair rightxobject) when they should not both be assigned
to the same role.

Static user—role conflicts exclude users from ever being assigned to the spec-
ified roles. These constraints are intended to be used to capture restric-
tions imposed by factors (such as qualification or clearances) that are not
in the model.

Static separation of duty exists if two particular roles should never be as-
signed to the same person.

Simple dynamic separation of duty disallows two particular roles being as-
signed to the same person at the same time.

Object-based separation of duty constrains a user never to act on the same
object twice. They can also be specified to constrain the same role from
acting on the same object twice.

Operational separation of duty breaks a business task into a series of stages
and ensures that no single person can perform all stages. Thus the roles
that are entitled to perform each stage may have users in common so long
as no user is a member of all the roles entitled to perform each stage of a
business task.
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Order-dependent history constraints restrict operations on business tasks
based on a predefined order in which actions may be taken. These are a
variation of assured pipelines [BK85] and a potential part of well formed
transactions [CW8T].

Order-independent history constraints restrict operations on business tasks
requiring two distinct actions (such as two distinct signatures) where there
is no ordering requirement between the actions. These are a part of well
formed transactions [CW8T].

2.1 Separation of Duty for related users

Nyanchama & Osborn identified the user—user conflict listed above. We have
identified a generalisation: separation of duty for related users.

The goal of separation of duty is to improve security by forcing two or more
users to collude to perform some illegal activity. With groups of users (such as
family members) where the ties between the users are very strong the risk of
collusion appears higher; in these cases we may wish to exclude those users from
performing in mutually exclusive roles.

Thus where user—user conflicts disallow one role from being assigned to mul-
tiple users from some specified group, separation of duty for related users disal-
lows multiple roles being separately assigned to members of the specified group
of users if those roles would be disallowed from being assigned to any single user
in the group.

We illustrate with two simple pictures, in Figure 1 we show two unrelated
users legally inheriting from two mutually exclusive roles, while in Figure 2 we
show one group (of two related users) illegally inheriting from two mutually

exclusive roles.
incompatible _

member member

@

Figure 1: Separate users are allowed to be members of exclusive roles.

We will show how to enforce all these constraints in Section 7 after we have
defined the necessary relationships.
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Figure 2: Illegal dual membership of exclusive roles by related users.

3 The DTAC Model

We present the DTAC model in a series of stages: first we summarise the basic
DTAC model (which has no general constraints or inheritance), then we examine
the mathematical basis for defining relationships (such as constraints and in-
heritance) before proceeding to define inheritance and a few simple constraints.

3.1 DTAC Summary

This paper defines relationships in the DTAC framework, so we feel it necessary
to briefly review the conceptual pieces of the framework.

The dynamically typed access control (DTAC) model is defined [TP98] by
extending the (static) type enforcement model of Boebert and Kain [BK85] to
make almost all aspects of the model dynamic, in particular the typing rules.
In type enforcement subjects are grouped into security types representing the
subsystem to which they belong; and objects are grouped into security types
which encode both the format and trustworthiness of the information contained
within the objects.

Unlike many access control models DTAC does not distinguish between sub-
jects and objects. While we expect many implementations will make the dis-
tinction for pragmatic reasons it is not a universal distinction: this distinction
is simply not valid in some implementations, such as component based sys-
tems. Furthermore they are frequently ignored when modellers find it useful to
consider objects as subjects [HRU76, San96].

In DTAC, types have dual security roles, which is not always obvious on
an initial reading. Firstly types are used to represent general abstract security
contexts, such as type enforcement domains, lattice labels or user identities.
Secondly types are used to capture the access control aspect of their interface;
the rights defined for an entity are a projection of the operations defined in the
abstract data type of which the entity is an instance. So, for example, start/stop
rights may be defined for entities implementing a thread interface but not for a
file system.

Thus a basic DTAC model configuration consists of a set of entities, a set of
security types, a many-to-one mapping from entities to types and a set of rights
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defined by the allowed operations on entities and a permissions matrix which
holds the rights entities of each type has to entities of other types based on the
types of entities.

3.1.1 Translating RBAC into DTAC

Most of the related work, and in particular the taxonomy of separation of duty
constraints, is defined in RBAC terminology so we present a brief mapping of
RBAC into DTAC.

In DTAC all security descriptors are modelled as types; therefore users,
groups of users, and roles are all types. This makes expressing many kinds of
constraints easier because they all resolve to type-type constraints, whether they
were initially role-role, user-role, user-user or user-group or group-role. One side
effect of the graphical aspect of the relationships of our DTAC model is that
relationships define a partial order on types; this helps resolve conflicts and
improve efficiency (see section 5) but alternative constructions must be found
for relationships whose natural construction runs against the order.

We also use types to model task-derived security descriptors, such as stages
of assured pipelines [BK85] or well formed transactions [CW87]. Thus many task
based separation of duty constraints are also easily modelled in DTAC. While
it is possible to construct types to capture the long term history of entities,
doing so results in a largely uncontrolled proliferation of types. Additional type
structuring techniques that may or may not address this problem are under
examination.

The mapping of RBAC into DTAC seems trivial, so it is sometimes easy to
overlook the distinction between types (sets of entities) and roles (sets of rights
to objects). The distinction is important because it is much easier to model
task based security models using DTAC types than RBAC roles.

3.2 Mathematical Basis for DTAC Relationships

The mathematical basis for DTAC is sets, so it seems entirely natural to use
set theory as a basis for both inheritance and constraints in DTAC. One ad-
vantage of consciously using set theory for both inheritance and constraints, is
the unification of application of constraints to inheritance and of inheritance to
constraints.

We do not wish to present a complete review of set theory, readers desiring
a more comprehensive review of set theory and propositional logic are referred
to [BS97, p501] or any introductory work on set theory for more information.
Nonetheless we introduce all the constructive operators that we will use for
“inheritance” and the comparative relationships that we will use to define con-
straints.

We classify as operators all those operations that can be used to change
the configuration of a DTAC model, and we classify as comparators all those
operations which cannot be used to change the DTAC configuration but which
are used to construct constraints on the allowed states of the configuration.
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3.2.1 Operators

There are four constructive operators that take two sets as input and produce
a new set as a result:

def

union AUB = {z|z € AVz € B}

def

difference A\ B = {z|lr € ANz ¢ B}

intersection AN B def A\ (A\B)={z|lr € ANz € B}

symmetric difference

AAB € A\ BYUB\A) = {slz € ANz ¢B)V (s e BAz g A)
Collectively these operators allow us to define all eight possible sets that can

be constructed from two input sets with at most one operator: §, A, B, A\ B,
B\ A, AnB, AAB, and AU B.

3.2.2 Comparators

There are several different ways of defining comparators, or comparative rela-
tionships, in set theory, so we will just give a definition of the ones we wish to
use:

Two sets are disjoint if they have no elements in common. A1 B @f ANB =10

Two sets are incomparable if they have (or may have) some elements in com-
mon, but neither is a subset of the other.

A4B ¥ UgBABZA VA=)V B=0)

Two sets are independent if we cannot, or choose not, to make any comparison.

The operation of finding the cardinality of a set cannot be used to define a
new set, but we can compare the cardinality of a set to some specified natural
number. Therefore we use we use it to define a cardinality comparator which
tests whether a set has a particular cardinality.

3.3 Some Relationships in DTAC

The goal is to construct relationships (inheritance and constraints) from sim-
ple mathematical principles so that their interaction is well founded and easily
understood.

There are two parts to defining a relationship: (1) on what is the relationship
defined, and (2) how is the relationship defined.

We can define relationships on each of the three aspects of DTAC types:
(1) the mapping of entities to types; (2) the presence (or absence) of rights
between types; and (3) the presence (or absence) of relationships between these
types. Some relationships are only defined on one aspect, some are defined
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on multiple aspects, while some are only defined on all aspects at once; where
confusion can arise as to which aspect(s) a relationship is defined on we subscript
the relationship symbol with information identifying the aspect (e.g L) for all
aspects other than rights. In particular we presume that distinct constraints will
be defined that distinguish between constraints and constructive relationships,
such as inheritance.

Relationships on DTAC types are defined using (1) set theory, and (2) a
simple lexical substitution based on subtypes. The use of substitution in inher-
itance allows us to apply constraints defined on the parent (supertype) to the
child (subtype).

Space does not permit us to provide a full taxonomy of relationships in
DTAC, so we will focus on those relationships necessary for our examples using
separation of duty and largely ignore other relationships, and the classification
of those relationships we do present. In total there are four constraints and two
constructive relationships:

3.3.1 Cardinality Constraints

Cardinality constraints are simple constraints on the size of a set. We can apply
them separately to the number of entities mapped to a type, to the number of
constraints applied to a type, or to the number of constructive (inheritance or
substraction) relationships applied to a type.

The cardinality constraint of a set A is written |A| = n for some natural
number n, but when we draw it graphically we will typically just label the edge
with the number n.

3.3.2 Disjoint Constraints

We can define two types as being disjoint in the following aspects we identi-
fied above: the existence of rights; the existence of constructive relationships;
existence of other constraints; or some combination of these aspects.

If two types A and B are disjoint we write AL, B, and we label an edge in
the graph from A to B with the symbol L, to indicate a disjoint relationship
in aspect = of the model.

3.3.3 Incomparable Constraints

Incomparable constraints were designed to implement the semantics of “shared/shared”
mutual exclusion identified by Kuhn [Kuh97], which we investigate in more de-
tail in Section 6.

We can define a pair of types to be incomparable on the same aspects as for
disjoint.

Incomparable constraints are expressed the same as disjoint constraints only
we use the symbol #,.
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3.3.4 Incompatibility Constraints

We give a special name, incompatability, to the constraint between two types
that is the combination of an incomparable relationship on rights and a dis-
joint relationship on constructive (substraction and inheritance) relationships.

Mathematically incompatibility is defined:

A)B % (44B)AALLB) A (AL B)

We use the incompatibility constraint as the primary constraint to enforce
separation of duty. Several similar alternative constraints exist which could be
used for separation of duty constraints. We choose this one because it appeared
to offer the most flexibility without sacrificing control. However it is trivial to
define new constraints as needed.

Incompatibility constraints are also expressed the same as disjoint con-
straints only we use the symbol .

3.3.5 Inheritance Relationships

Where RBAC defines inheritance to be a transitive set union operator on rights
we define it to be a set union on rights and application of all the relationships
(constraints and constructive relationships) of the parent on the child as speci-
fied by substituting the child for the parent in the constraint. We examine the
algorithms for evaluating inheritance of relationships in Section 5.

We indicate inheritance with an arrow from parent to child, or supertype too
subtype. Occasionally it is necessary to label an inheritance edge or to identify
some constraint as operating on the inheritance aspect of types, in which case
we use the set union symbol U.

3.3.6 Subtraction (rights exclusion) Relationships

It is possible to build up the set of rights a type needs, but it is frequently
more convenient, and typically more concise, to construct types by inheriting
from another well known type and excluding some rights. Therefore we define
a substraction relationship using the set difference operator on rights.

We use the set difference symbol (\) for subtraction, if at some later date we
allow subtraction of relationships we will subscript the symbol appropriately.

4 A Graphical Example

As an example of integrated inheritance and constraints we present techniques
to enforce four kinds of mutual exclusion constraints. Two of these rely on in-
heriting a simple constraint, one relies on inheriting a constraint on inheritance,
and the fourth inherits a subtraction relationship that removes potentially con-
flicting rights.

Readers not comfortable with switching between RBAC and DTAC termi-
nology may wish to refer to Section 3.1.1.



Draft Submitted to RBAC 2000

In Figure 3 we show a simple inheritance graph where solid arrows are used
to represent inheritance relationships (from parent to child) over both rights
and constraints. In RBAC, if user U is a member of role R then an arrow
is drawn from U to R, and U inherits the rights of R; whereas in DTAC the
corresponding inheritance edge is drawn directly from R to U.

Figure 3: An inheritance graph amoungst DTAC types.

There are then four ways that we can define mutual exclusion between
types A and B and their descendants:

1. By placing a disjoint rights relationship between type A and B:
AlB

Attempting to define X as shown would have X inherit the rights and
constraints of both types A and B (via C and D respectively) which is
contradictory — X would have A’s rights by inheritance via C' and be
defined to have no rights in common with A via inheritance from B.

Therefore no type may be defined that inherits rights from both A and B.
2. By placing an incomparable relationship between types A and B:

A4 B

Attempting to define X as shown would have X inherit the rights and
constraints of both A and B (via C and D respectively) which is con-
tradictory — anything inheriting A’s (B’s) rights would have a superset
of A’s (B’s) rights and clearly be comparable to A (B).

3. By placing an incompatibility relationship between types A and B:
ANB

10
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Any type inheriting from A is constrained by the incompatability relation-
ship to have no inheritance relationships with B, and vice versa. There-
fore it is illegal to try to define any type that inherits from both A and B,
independent of the rights held by any of the types; thus unlike incompa-
rable constraints incompatibility constraints are enforced even if a later
substraction removes conflicting rights or they are never added.

4. By placing subtraction relationships between A and D and between B
and C:
C'+~C\B, D'« D\A

The subtraction relationship explicitly removes from C' and its descendants
any rights held by B, and from D and its descendants any rights held by A.
The result is mutual exclusion, so long as the rights are not directly added
to a descendant type.

In these examples we only specified constraints within a fragment of the
whole type graph. Using our integrated model of inheritance and constraints we
can easily extend these to cover the whole graph by applying constraints between
these types (A and B) and the roots of the other subgraphs. Inheritance will
propagate the constraints throughout the rest of the graph. This is a major
benefit of the integrated approach to inheritance and constraints.

5 Algorithmic Concerns

A naive algorithm for calculating the rights possessed by a particular type works
like this:

1. start with the type we wish to calculate the rights for

2. construct the inheritance antecedents of the type by recursively following
inheritance links in reverse

3. starting at the top of the constructed inheritance graph for this type,
evaluate each relationship (at this point treat inheritance relationships
as set unions on rights) lexically replacing all occurrences of the type
currently being examined with the type we wish to calculate rights for

This algorithm is highly inefficient, and we will examine some significant effi-
ciencies that flow from imposing a few restrictions on arbitrary relationships.
There are four simple restrictions on the order of the combination of the ef-
fects of multiple relationships: (1) relationships defined using set union must be
evaluated before relationships defined using set difference; (2) the constructive
relationships must be evaluated before the constraints; (3) all the relationships

11
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must be evaluated for one type before relationships on other types that refer-
encing the first type; and (4) that inherited relationships are evaluated in the
same order that the types they were inherited from were evaluated.

These requirements effectively define a partial order on types, which we do
for three reasons:

1. the cyclic definition of types using constructive relationships is not sound;

2. the sensible resolution of conflicts resulting from multiple relationships
requires some ordering; and

3. there are well known efficient algorithms for working with directed acyclic
graphs.

Our partial ordering of types makes it easy to natural the path override ca-
pability and denials over grants policies for conflict resolution [BJSS97, JSS97].
This policy favors allowing denial-of-service attacks (by denying too much) over
breaches of integrity and confidentiality (by allowing too much). We feel this
is justified because denial of service attacks are more likely to brought to an
administrators attention, and thus can thus be addressed, sooner than breaches
of integrity and confidentiality which are likely to go unnoticed even if they are
not actively hidden.

Dynamic programming is the main approach for improving the performance
of the naive algorithm described above. With dynamic programming, DAG
traversal algorithms have worst case complexity that is quadratic in the number
of nodes in the graph (number of types). However the worst case only occurs in
what is recognisably a poorly structured set of types — a completely backwards
connected linear sequence of types. In general we believe that in a well struc-
tured set of types, most types will inherit from only one or two other types; in
this case the complexity will approach linear-log time. Furthermore the algo-
rithm only needs to examine the subtrees rooted at the types that changed; we
believe that an additional characteristics of a well designed tree of types is that
core types will be near the root of the graph and will change much less often
than supplementary types which will form the leaves.

6 Shared Rights in Mutual Exclusion

This section focuses on the question of sharing rights between mutually exclusive
roles that was identified by Kuhn [Kuh97] as one of the important criteria in
defining mutual exclusion. We believe this question goes to the heart of the
definition of separation of duty, though it appears to have largely ignored by
the RBAC community.

The question has two parts:

A) what rights may be shared between mutually exclusive roles? and

B) what rights may be shared between roles that are part of some specified
mutual exclusion and other roles in the system?

12



Draft Submitted to RBAC 2000

While Kuhn did not clearly state this, the question can only be asked rela-
tive to some fixed set of objects. We demonstrate this with a simple example.
Consider two mutually exclusive roles that have security relevant implications:
to enable these roles to generate audit trail information they must both have
append access to an audit trail object. Clearly these roles are not mutually
exclusive with respect to the audit trail.

Let us explore this example in more detail to show how we implement it in
DTAC. If we define two types T and T which we wish to be mutually exclusive
with respect to some other types, but we wish both 77 and 75 to have access to
the audit log which is granted by inheriting from type A. Then we have the two
situations shown in Figure 4 in which 77 and 75 are constrained to be disjoint,
and Figure 5 in which 77 and T, are constrained to be incomparable. The
descendent types T} and Tj are now incomparable (7] # T3) to each other, but
T/ 1T, and T7 LTj. So the semantics of the separation requirement is upheld.
This illustrates that while we can choose to define mutual exclusion as a disjoint
constraint with regard to other types (all types 71 and Ty have rights to) the
types which will most often be used are are simply incomparable (T} #£ T3).

Figure 4: Inheritance of mutual exclusion enforced with a disjoint relationship.

With the richer set of relationships in the DTAC model we can define two
additional questions:

C) what relationships may be shared between mutually exclusive roles ? and

D) what relationships may be shared between roles that are part of some
specified mutual exclusion and other roles in the system 7

Another example is that a pair of mutually disjoint roles may share a disjoint
relationship with a third role with which they are disjoint, though they may not
share an inheritance relationship with some fourth role as they would no longer
be disjoint.

In our examples (Section 4) we presented four different ways of enforcing
mutual exclusion. These identify two types of mutual exclusion that did not
occur in Kuhn’s model which lacked such relationships.

13
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Figure 5: Inheritance of mutual exclusion enforced with an incomparable rela-
tionship.

7 Implementing Separation of Duty Constraints

In this section we wish to show how to specify the separation of duty constraints
of Section 2 using the DTAC relationships of Section 3.3. The constraints were
originally defined without inheritance, to demonstrate the simple expressiveness
of relationships in DTAC. We specify these constraints using inheritance to
provide structure and simplify the specification.

When they defined their taxonomies, Simon & Zurko and Nyanchama &
Osborn, did not include aspects of shared rights (see section 6 above) so we will
take the “shared/shared” approach of Kuhn. The “shared/shared” approach
explicitly allows some but not all rights to be shared between mutually exclu-
sive roles — it is exactly what the incomparable relationship was defined to
implement. Thus we define separation of duty constraints using incomparable
and incompatible relationships bound together using inheritance relationships.

We begin by showing how to specify a simple separation of duty constraint,
and then how to specify our related user separation of duty constraint (see Sec-
tion 2.1). Finally we sketch the outlines of the solutions for the other constraints.

A simple dynamic separation of duty constraint disallows two particular roles
being assigned to the same person at the same time.

This is easily implemented by placing an incompatible relationship between
the pair types representing the mutually exclusive roles, see Figure 7. It is then
illegal for any type to inherit from both of the types (as it will inherit from each
an incompatibility with the other from which it is also inheriting).

Then when users are assigned to either type by inheritance they automati-
cally inherit the exclusion with the second role for as long as they are assigned
the first role.

Our related individual separation of duty constraint is implemented using
the same technique, but now a new type is created which inherits from all the
related users, as shown in Figure 6. To ensure that the type representing the
group of related users is never (mis)used we place a zero cardinality constraint

14
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incompatible _

melpber ember
Figure 6: Illegal dual membership of exclusive roles.

on entities assigned to the group type.

Figure 7: Implementing sepation of duty for related users.

Most of the remaining separation of duty constraints are implemented using
similar techniques. We provide sketches of those techniques below.

Static separation of duty exists if two particular roles should never be as-
signed to the same person.

This is easily implemented by placing an incompatible relationship between
the type representing the user and the type representing the disallowed
role when the user is first assigned to one of the mutually exclusive roles.
Thus the user can never inherit rights from the mutually exclusive role,
whether or not they give up the first role.

Privilege—privilege conflicts are defined to occur between two privileges (a
privilege is a pair rightxobject) when they should not both be assigned
to the same role.

This is easily implemented by creating two types which are each assigned
one of the sets of rights from the conflicting privileges, and then defining
either a static or a dynamic separation of duty constraint between these

types.

15
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Static user—role conflicts exclude users from ever being assigned to the spec-
ified roles. They are used to capture restrictions imposed by factors (such
as qualification or clearances) that are not in the model.

This is implemented using an incompatible relationship between the type
representing the user and the types representing the roles the user may
not be assigned to.

User—user conflicts are defined to exist if a pair of users should not be as-
signed to the same role.

This is implemented via a disjoint constraint on the inheritance relation-
ship of the users Uy LyU2. Thus, the inheritance relationships between
the users must be disjoint.

Operational separation of duty breaks a business task into a series of stages
and ensures that no single person can perform all stages. Thus the roles
that are entitled to perform each stage may have users in common so long
as no user is a member of all the roles for a single business task.

This can be implemented by defining a type to represent the task as a
whole and assigning types for each stages to this task type. By placing
a cardinality constraint (on inheritance from the task type) of at most 1
less than the number of stages on the task type, any user that tries to
be assigned to too many stage types will run afoul of the cardinality con-
straint.

Object-based separation of duty constrains a user never to act on the same
object twice.

This constraint should be enforced by adding disjoint relationship between
the user and the object upon use. This prevents the user from inheriting
the restricted rights to the object. Clearly, the number of these relation-
ships can increase rapidly, but we view this as an unusual constraint.

Order-dependent History constraints restrict operations on business tasks
based on a predefined order in which actions may be taken.

This is an assured pipeline [BK85] and can be implemented by defining
a type for each stage and changing the types of entities as they progress
through the stages. This constraint is easy to implement because DTAC
is a series of extensions to type enforcement [BK85] which was designed
to implement assured pipelines.

Order-independent History constraints restrict operations on business tasks
requiring two distinct actions (such as two distinct signatures) where there
is no ordering requirement between the actions.

This can be implemented by creating multiple interwoven assured pipelines
to represent every possible order that the actions may be performed in.

16
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8 Related Work

The most commonly used RBAC models (as identified by references from the
ACM RBAC workshop proceedings [RBA95, RBA97, RBA98, RBA99]) define
roles to be collections of privileges, and privileges to be a pair rights X objects.
Using this definition there is no facility for the object labelling necessary for
several of the object and task based separation of duty constraints, such as
operational separation of duty. Therefore it is not possible in these models to
express all the separation of duty constraints.

Constraints have been part of most RBAC models of recent years [SCFY96,
NO99, SBM99, LS97, BFA99, BJSS97] but with the exception of Nyanchama
& Osborn they have always been specified with a rule-based systems (previous
papers about DTAC [TP98, TOP99] used graph theory to bound the complex-
ity of constraint solving but did not include details). Unfortunately rule-based
systems, while highly expressive are harder to visualise and thus to use; thus
they are frequently avoided by non-experts, or worse (because it creates a false
sense of security), they are incorrectly specified. A fact evidenced by the lack of
commercial RBAC implementations that include a rule-based constraint model.
Although we have previously advocated a rules based approach to specifying
constraint [TP97] because we identified safe aspects of change control that can-
not be effectively expressed in simple tables or graphs, we now advocate using
a graphical approach as it is more important to get the common separation of
duty constraints correctly than to allow some esoteric but safe dynamism.

Nyanchama’s & Osborn’s role-graph model of RBAC is the most similar
to our work: they have a simple graphical model for role-role relationships
based on a lattice which includes a combined view of role inheritance and those
separation of duty constraints that can be expressed within the role-graph. Some
constraints, such as those involving users, cannot be expressed entirely within
the role-lattice. As we have demonstrated it is possible to construct graphical
representations for most these, though it is not clear whether Nyanchama &
Osborn have done so.

In every RBAC model that we are aware of, inheritance is defined by subset
inclusion of the privileges of the parent role in the privileges of the descendant
role [Bal90, SCFY96, LS99, NO99, for example]. As simple as this subtype
preserving definition is, there are several problems with it. Firstly, there is no
reason to limit inheritance to roles — it can be usefully applied to rights and
objects as well [TOP99], and, as we have now shown, to other relationships
such as constraints. Secondly, many real world scenarios require role hierar-
chies which do not obey a strict subtype relationship [Mof98, ML99] so that
inheritance structures are less useful than might be hoped. Thirdly inheritance
defines only an additive way of constructing subtypes, and does not provide an
intuitive way of defining exceptions.

We identify three specific problems in the related work that our work ad-
dresses:

1. the typed objects of DTAC allow us to express constraints that cannot be
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expressed using privileges based on a rights x objects pair;

2. we have a simple graphical representation of more types of constraints
than any previous work constraints; and

3. by constructing constraints and inheritance from mathematical principles
we have a more integrated and coherent picture of their interaction.

A major benefit of our constructing relationships from mathematical prin-
ciples is that we have identified new kinds of relationships that are naturally
included in a graphical model. These new relationships directly contribute to
the increased simplicity and expressivity of our model over previous work.

9 Conclusions and Future Work

We set out to develop a simple integrated model for inheritance and constraints
in DTAC. Basing our design on a mathematical foundation resulted in an in-
tegrated model of inheritance and constraints. The integrated model allows a
simpler and more expressive graphical representation than previous graphical
models.

In the process of developing our model we have made some simple contribu-
tions to general RBAC modelling: (1) we have identified a new constraint, (2)
we have defined new operators, and (3) we have shown that a simple graphical
model of constraints is sufficient to accomplish the most common constraints.

We are currently implementing a prototype that uses this model to imple-
ment access control for componentized system services. In the future, we expect
to both gain practical experience using the model as well as develop a complete
theoretical model based on these results and further analysis.
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