
Using Safety Properties to Generate Vulnerability Patches

Zhen Huang∗†, David Lie†, Gang Tan∗, Trent Jaeger∗
∗ Pennsylvania State University † University of Toronto

zhen.huang@psu.edu, lie@eecg.toronto.edu, gtan@cse.psu.edu, tjaeger@cse.psu.edu

ABSTRACT

Security vulnerabilities are among the most critical software
defects in existence. When identified, programmers aim to
produce patches that prevent the vulnerability as quickly as
possible, motivating the need for automatic program repair
(APR) methods to generate patches automatically. Unfortu-
nately, most current APR methods fall short because they
approximate the properties necessary to prevent the vulner-
ability using examples. Approximations result in patches that
either do not fix the vulnerability comprehensively, or may
even introduce new bugs. Instead, we propose property-based
APR, which uses human-specified, program-independent and
vulnerability-specific safety properties to derive source code
patches for security vulnerabilities. Unlike properties that
are approximated by observing the execution of test cases,
such safety properties are precise and complete. The primary
challenge lies in mapping such safety properties into source
code patches that can be instantiated into an existing program.

To address these challenges, we propose Senx, which, given
a set of safety properties and a single input that triggers
the vulnerability, detects the safety property violated by the
vulnerability input and generates a corresponding patch that
enforces the safety property and thus, removes the vulner-
ability. Senx solves several challenges with property-based
APR: it identifies the program expressions and variables that
must be evaluated to check safety properties and identifies
the program scopes where they can be evaluated, it generates
new code to selectively compute the values it needs if calling
existing program code would cause unwanted side effects,
and it uses a novel access range analysis technique to avoid
placing patches inside loops where it could incur performance
overhead. Our evaluation shows that the patches generated
by Senx successfully fix 32 of 42 real-world vulnerabilities
from 11 applications including various tools or libraries for
manipulating graphics/media files, a programming language
interpreter, a relational database engine, a collection of pro-
gramming tools for creating and managing binary programs,
and a collection of basic file, shell, and text manipulation tools.

I. INTRODUCTION

Fixing security vulnerabilities in a timely manner is critical
to protect users from security compromises and to prevent
vendors from losing user confidence. A recent study has shown
that creating software patches is often the bottleneck of fixing
security vulnerabilities [19]. As a result, an entire line of

This work is mostly done while the first author was a Ph.D candidate in the
Department of Electrical and Computer Engineering, University of Toronto.

research has studied Automated Program Repair (APR) [16],
[20], [26], [27], [30], [34], [39], [40], [54], [55], which takes
a program and a vulnerability and automatically provides a
patched program that fixes the vulnerability.

Like patches produced by human developers, patches gen-
erated by APR tools aim to fix a defect or vulnerability. Most
existing tools rely on a set of positive/negative example inputs
to find a patch that makes the program behaves correctly on
those examples. They check if the patched program satisfies
the positive example inputs but result in errors on the negative
example inputs [30], [34], [36]. However, it is often difficult
to obtain a complete set of example inputs, and the patched
program may not behave correctly on other inputs or the vul-
nerability that the patch intends to fix may still be exploitable
given other inputs. Therefore, they can result in generating
patches that either do not fix the vulnerability, or even worse,
introduce new bugs. We call this traditional method “example-
based”.

In this paper, we advocate a different approach, which we
term “property-based” APR. Property-based APR relies on
program-independent, vulnerability-specific, human-specified
safety properties. An example of such a safety property might
be that a program should not access beyond the end of a buffer
to rule out a buffer overflow vulnerability. The advantage
of this property-based approach is that a small set of safety
properties can be specified once and used on a vast number of
programs without the need to specify anything specific about
each of the programs, or collect a comprehensive set of test
cases. Moreover, such properties are inherently precise and
complete. In comparison to example-based APR, property-
based APR produces patches that work for all possible inputs;
this is especially important for security, which requires us not
leave holes for attackers.

Property-based APR differs from previous tools that enforce
a safety property comprehensively. Instead, APR enforces each
property with respect to a particular vulnerability and thus
can take advantage of the vulnerability’s context to generate
an efficient and custom patch. For instance, SoftBound [32]
instruments a program to enforce memory safety on all buffers
and often results in high performance overhead. Property-
based APR in contrast takes a specific vulnerability (e.g., a
buffer-overflow vulnerability) as input and generates a patch
that targets that vulnerability.

The challenge of property-based APR boils down to de-
veloping a method that ensures that the appropriate safety
property is enforced. Unfortunately, property-based APR has
received limited attention in the literature [24], and has several
outstanding challenges that limit its applicability.



First, because the safety properties enforced are
vulnerability-specific, the APR tool must identify the
correct property to enforce for a given vulnerability. In this
work, we assume that the input to the APR tool is only an
input that triggers the vulnerability, possibly crashing the
program. As a result, the APR tool must also correctly identify
the vulnerability and the corresponding safety property to
enforce.

Second, our goal is to generate source code patches that can
be adopted by developers. Because the safety properties are
generic and program-independent, they must be mapped onto
the variables in a program to generate a source code patch.
However, sometimes not all program constructs corresponding
to a safety property are available in the same program scope.
For example, the size of a buffer may be stored in a variable
available only in the function that allocates the buffer but not
in the function accesses the buffer. This requires a program
analysis that is able to generate equivalent expressions for
those safety property and select an intersecting set that is in
scope at a point in the program.

Third, some terms in a safety property may have to be
mapped onto expressions involving not only program variables
and constants, but also function calls. For example, a program
may always calculate the size of an object by making a
function call because the size is dynamic. Because function
calls may have side-effects, a patch must be careful not to
call any function with side-effects. As a result, an APR tool
need to check if a function has side-effects and may even need
to generate new functions in a program that compute required
values without introducing unwanted side effects.

Finally, many vulnerabilities depend on the number of times
a loop iterates. A naïve approach would simply check the
safety property on each loop iteration, resulting in performance
overhead. To reduce the performance impact of generated
patches, an APR tool should be aware of loops and generate a
patch that checks the safety property once outside of the loop
to avoid performance overhead.

In this paper, we propose Senx, which addresses the above
challenges to generate source code patches for security vulner-
abilities automatically using such vulnerability-specific safety
properties. Although Senx can in theory generate patches for
vulnerability for which a safety property can be specified, we
demonstrate Senx for three important classes of vulnerabilities:
buffer overflow, bad cast, and integer overflow. We find that
Senx is able to produce correct patches for over 76% of the
vulnerabilities. The main reason Senx fails to generate a patch
for the rest is that it is unable to find a place in the program
source code where all variables needed to evaluate the safety
property are in scope, which would require changes to function
prototypes to allow those variables to cross those scopes.

This paper makes the following main contributions:

• We describe how safety properties are specified in Senx
and demonstrate three example safety properties for
buffer overflow, bad cast, and integer overflow vulner-
abilities.

1 char * r e v ( c o n s t char * inp , char * o u t ) {
2 / / r e v e r s e a s t r i n g
3 / / i n p i s t h e i n p u t s t r i n g
4 / / o u t i s an o u t p u t b u f f e r
5 i f ( i n p != NULL) {
6 i n t i , l e n = s t r l e n ( i n p ) ;
7 / / F a i l e d t o check i f ( l e n + 1 <=

s i z e _ o f _ o u t )
8 f o r ( i = 0 ; i < l e n ; i ++)
9 o u t [ i ] = i n p [ l e n − i ] ;

10 o u t [ i ] = ' \ 0 ' ;
11 re turn o u t ;
12 } e l s e
13 re turn " ### " ;
14 }
15
16 void main ( i n t argc , char * a rg v [ ] ) {
17 i n t s i z e = a t o i ( a r g v [ 1 ] ) + 1 ;
18 char * o u t = ( char *) m a l l oc ( s i z e ) ;
19 / / p a t c h : i f ( s t r l e n ( argv [ 2 ] ) + 1 > s i z e ) . . .
20 p r i n t f ( "%s \ n " , r e v ( a rg v [ 2 ] , o u t ) ) ;
21 }

Listing 1: A program that reverses an input string. It contains
a buffer overflow in function rev.

• We describe the design of Senx, a property-based auto-
matic patch generation system that uses novel program
analysis techniques: expression translation, loop cloning,
and access range analysis.

• We prototype Senx on top of the KLEE symbolic exe-
cution engine and evaluate it on a corpus of 42 vulner-
abilities across 11 popular applications, including PHP
interpreter, sqlite database engine, binutils utilities for
creating and managing binary programs, and various
tools or libraries for manipulating graphics/media files.
Senx generates correct patches in 32 of the cases and
aborts the remainder because it is unable to determine
semantic correctness in the other cases. The evaluation
demonstrates that all three techniques are required to
generate patches, and that failure to find a common
function scope in which to place a patch is the most
frequent reason for failure.

The structure of this paper is as follows. We motivate our
work in Section II. In Section III, we define and characterize
the problem Senx addresses. Section IV and Section V de-
scribe the design and implementation of Senx respectively.
Particularly we describe how Senx addresses the second
challenge in Section IV-D, the third and fourth challenges in
Section IV-C. We present evaluation results in Section VII and
discuss related work in Section VIII. Finally we conclude in
Section IX.

II. MOTIVATION

We discuss the limitations of state-of-art automatic patch
generation tools that Senx aims to address in this section. We
use the program in Listing 1 as the target program, which is
adopted from a real-world buffer overflow vulnerability CVE-
2012-0947 in a popular media stream processing library [42].

This program reverses an input string. It takes two inputs
from the command line, a string and an integer that specifies



Type argv[1] argv[2] output expected output
P 1 A A A
P 2 AB BA BA
N 1 ABC CBA ###
N 2 ABC CBA ###

TABLE I: Test inputs and outputs for the program in Listing 1.
Type ’P’ test inputs are positive test inputs, while type ’N’ test
inputs are negative test inputs.

the length of the string, and outputs the reversed string. If
an error occurs, the program outputs "###". To do this, it
dynamically allocates a temporary buffer based in a value
passed to it, and copies the input into the buffer. Like the
real vulnerability, the allocation of the output buffer and the
processing of the input string are implemented in two different
functions. This example is typical of programs that process
audio/video streams.

The buffer overflow occurs when the specified length, from
the input integer, is smaller than the actual length of the input
string. The buffer overflow can be fixed by adding a check that
enforces that the actual length of the string is smaller than the
allocated size of the buffer it is being copied into. Because the
buffer size is only known in main, the check should be added
at line 19 and compare size with strlen(argv[2]).
While such checks are easily added by human developers to
patch vulnerabilities — indeed such a check is found in the
human-generated patch for the vulnerability this code example
is based on [42] — it poses challenges for current APR tools.
We describe these challenges in more detail below.

Example-based approaches. Many APR tools use example
inputs as the basis for fixing vulnerabilities [29], [30], [34],
[55]. For example, SemFix and Angelix collect path con-
straints to generate fixes [30], [34].

This approach leads to two problems. First, the constraints
generated often only capture constraints based on the concrete
values used in the test cases and not constraints on the
relationships between program variables. To illustrate, Table I
lists typical test inputs needed to use such tools, which we
imagine might be used by such tools for our example in
Listing 1.

Given these test cases, SemFix and Angelix would see that
argv[1] having a value of 1 or 2 are not correlated with
the negative test cases, since they take on those values in both
positive and negative test cases. Thus, it would incorrectly
infer that strlen(argv[2]) < 3 needs to be added to
the code for it to be correct. The incorrect patch is generated
because the suite of test cases did not include a positive
test case with strlen(argv[2]) > 2. This illustrates the
shortcoming of example-based systems as they can easily fall
prey to missing cases in the test suite, which are notoriously
difficult to make complete.

Property-based approaches. AutoPaG [24] also uses a safety
property-like predicate to create patches. However, AutoPaG
only handles one type of vulnerability, buffer overflows, so
it does not need to identify the type of vulnerabilities to

enforce the appropriate safety property—it fails to generate
a correct patch if the vulnerability is any type other than a
buffer overflow.

In addition, AutoPaG cannot generate a patch if the location
that the safety property needs to be enforced is not in the same
function where the vulnerability occurs. In our example, the
buffer overflow occurs in the rev function, but the patch must
be places in main.

Finally, AutoPaG enforces its safety property by instru-
menting the code at runtime. In Listing 1, AutoPaG would
instrument and check the buffer size inside the for loop
on line 8, causing performance overhead. In contrast, Senx
symbolically extracts the memory range the loop accesses by
analyzing the loop bounds, allowing it to check the safety
property outside of the loop.

III. PROBLEM DEFINITION

We begin by defining what a Senx patch is, what guarantees
a Senx patch provides and how Senx’s vulnerability-specific
safety properties are defined.

A. Patch

To generate a patch, Senx requires an input that can trigger
the target vulnerability. Typically, this is the type of input that
one could derive from a proof-of-concept exploit or an input
generated by a fuzzer that can crash the program. From this,
Senx generates a patch that ensures that all safety properties
it supports hold, where each safety property corresponds to a
particular type of vulnerability. A Senx patch can take one of
two forms: a) detects if a safety property no longer holds and
if so, raises an error to direct program execution away from the
path where the vulnerability resides (we call this a check-and-
error patch); b) prevents a safety property from being violated
(we call this a repair patch).

B. Safety Properties

Each safety property corresponds to a vulnerability type,
and is an abstract boolean expression that when mapped to
concrete variables in a program can be evaluated. We describe
the two types of safety properties Senx currently supports.

Buffer overflows. A buffer overflow occurs when a series of
memory accesses traversing a buffer crosses from a memory
location inside the buffer to a memory location outside of the
buffer. The corresponding Senx safety property defines two
abstract values: a memory access and a buffer. Senx uses the
term buffer to refer to any bounded memory region, which
may include structs, objects or arrays. A memory access may
correspond to an array dereference or pointer dereference, but
must occur inside a loop. This safety property covers both the
case when the memory access exceeds the upper range of the
buffer and the case when the memory access falls below the
lower range (sometimes called a buffer underflow).

Bad casts. This safety property checks that a memory accesses
that results from a offset from a base pointer is less than the
upper bound of the buffer the base pointer is pointing to. While
such a vulnerability may occur for a variety of reasons, it
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Fig. 1: Workflow of Senx: each rounded rectangle represents
a step in Senx’s patch generation, each rectangle with vertical
bars represents a component of Senx.

is most often caused when a programmer mistakenly casts
a pointer to a type that is incompatible with the object the
pointer points to. This safety property can prevent both bad
casts for simple structs and objects, as well as nested structs
and objects.

Integer overflows. An integer overflow occurs when a vari-
able is assigned a value larger or smaller than what can be
represented in the variable. A vulnerability from an integer
overflow can occur if the result of an overflow is then used
to allocate a buffer, resulting in a buffer that is far smaller
than expected. As a result, the corresponding safety property
checks that value used in a memory allocation is not the result
of an integer overflow.

As a prototype, we have started with only these three vul-
nerability classes. Nevertheless, they are representative enough
to capture a good percentage of CVE vulnerabilities. We
conducted an informal analysis on the CVEs reported in 2018
[15]. At the time of our analysis, 8,507 vulnerabilities have
been reported and the most popular vulnerability categories are
denial of service, code execution, and overflow. By randomly
examining 100 CVE reports for each of the three vulnerability
categories, we find that 25% of CVE vulnerabilities fall into
buffer overflow, bad cast, and integer overflow. We believe the
principles behind Senx can be extended to other vulnerability
classes, which we intend to do in future work.

IV. DESIGN

A. Overview

The goal of Senx is to generate source code patches that
can be easily verified and adopted by developers. Senx gener-
ates patches in four distinct steps: vulnerability identification,
predicate generation, patch placement, and patch synthesis, as
illustrated in Figure 1.

First, during vulnerability identification, Senx takes a pro-
gram and an input that can trigger a vulnerability, and outputs
the violated safety property, the vulnerability point [4] in
the program, and the source code expressions for the ex-
ecution trace. Senx leverages concolic execution using the
vulnerability-triggering input to generate the execution trace
for the input. Senx then checks the execution trace to identify
which safety property is violated and the point at which safety
property is violated, the vulnerability point, which also serves

as the candidate location for the patch. Because not every
program operation affects safety properties, Senx checks safety
properties only for the set of operations that can affect them.
For example, Senx checks for overflow only on integers that
affect the size of for memory allocations. The execution trace
is transformed into expressions for synthesizing a source-
level patch. Since we aim to patch the source code, these
expressions must conform to the syntax of the programming
language of the target program.

Second, in predicate generation, Senx takes the violated
safety property, which also implies the type of the vulnerabil-
ity, and the source code expressions generated by vulnerability
identification, and outputs a predicate required to prevent the
safety violation. Predicate generation maps the safety property
identified in the previous step to concrete expressions over
variables and function calls in the source code of the program.
Thus, the resulting predicate represents the safety property in
terms of source code expressions suitable for synthesizing the
source level patch.

Third, during patch placement, Senx uses the vulnerability
point found in vulnerability identification and the predicate
produced in predicate generation to find a program location
to insert the patch. This step solves the problem of finding a
program location where all necessary variables in the predicate
are in scope. Senx uses expression translation, described in
Section IV-D, to translate all necessary variables into the
common scope. For check-and-error patches, Senx requires
the current scope to have some error handling code to call. It
uses Talos [19] to find and select the error handling code.

Finally, in patch synthesis, Senx takes the patch location
and the instantiated predicate to generate the patch code.
Currently the only vulnerability class for which a repair patch
can be generated are integer overflows. In all other cases,
Senx generates a check-and-error patch that checks the patch
predicate and calls the error handling code if the predicate
evaluates to true.

B. Vulnerability Identification

The concolic execution engine Senx uses during vulner-
ability identification is based on KLEE [7]. Senx executes
the program in LLVM IR instructions with the vulnerability-
triggering input until a safety property is violated. It labels this
point the vulnerability point. The main output of this phase is
the vulnerability point, the violated safety property, and a set
of symbolic expressions that represent the symbolic values of
the variables in the executed program.

We modified KLEE’s LLVM IR execution engine to extract
expressions that retain enough information to be easily trans-
lated back into source code. For the most part, this involves
storing the source code symbol names along with the LLVM
IR instructions.

Senx also extends KLEE with support for complex data
types such as C/C++ structs, making it possible to translate
symbolic expressions back into source-code syntax for patch
generation. For example, a field of a struct must be attached to
its parent object, and the generated syntax changes depending



on whether the parent object is referenced using a pointer or
with a variable holding the actual object. Arrays and structs
can also be nested and the proper syntax must be used to
denote the level of nesting relative to the top level object.
Senx has its own IR that records these relationships so a
value can be converted back to a source code expression that
contains the parent struct or array’s name and not just the field
name or array index. In this way, Senx can recover the full
expression for a variable such as foo→f.bar[10], where
as without these extensions, Senx would only know that the
variable corresponds to the 10th element in an array.

C. Predicate Generation

The objective of predicate generation is to take the abstract
boolean expression of the violated safety property identified
in the previous phase and map it to concrete expressions in
the program source code. Senx uses the variables that violated
the safety property at the vulneraility point as a starting point
for generating the predicate.

The case of the integer overflow property is the simplest.
In this case, the property is violated when an integer that has
overflown is used to determine the size of a buffer allocation.
As a result, Senx generates a predicate that would prevent
the integer variable from overflowing. There are two possible
causes for such a vulnerability. In the first case, the program
assigns the result of an overflowed operation into a variable
whose size is larger than the size of the operation (e.g.,
assigning the result of an overflowed 32-bit multiplication into
a 64-bit variable). In this case, Senx generates a repair patch
by modifying the type of the operation so that the overflow
does not happen (e.g., changing the 32-bit multiplication into
a 64-bit multiplication). In the second case, there is no such
assignment. So Senx generates a check-and-error predicate
that checks whether the result is smaller than expected (for
example, if the result of an addition is smaller than either of
its inputs).

A predicate to detect a bad cast takes the form

(mem_access > buffer_upper ||mem_access < buffer_lower)

To generate this predicate, Senx must map mem_access to a
source code expression that gives the address of the memory
access and develop expressions that capture buffer_upper
and buffer_lower. To extract the expression for the memory
access, Senx traverses nested struct or class relationships to
generate an expression that includes any parent structs or
objects that are needed to generate a proper source code
expression. For example, to determine the offset of a field
in a nested struct, Senx first determines the offset of the field
from its immediate parent struct, and recursively accumulates
the offset of each level of nesting until the full offset from the
base struct can be determined.

For a bad cast that involves a memory access with a base
pointer and an offset, the lower bound of the buffer is given
by the base pointer. To generate the expression for the upper
bound, Senx needs to find the point where the buffer is
allocated so that it can extract the size of the buffer. Senx

first tries to match the accessed buffer with an allocation point
using intraprocedural path-sensitive dataflow analysis. If this
does not resolve to a unique allocation point, Senx refines
the analysis using interprocedural call history derived from
the execution of the program on the vulnerability-triggering
input. Once Senx finds the allocation point, it derives the size
from the expression passed to the allocation function (i.e.,
malloc or some variant). This computation is sound if the
expressions extracted are sound and the memory allocation is
correctly identified, which is true if the application only uses
standard memory allocation functions that Senx understands.
Our Senx prototype currently only supports standard libc and
C++ memory allocation functions.

Finally, the predicate to detect a buffer overflow has the
form

(mem_access_upper > buffer_upper ||
mem_access_lower < buffer_lower)

The procedure for extracting the buffer range expressions is
based on the bad cast case but with some small differences.
Because there is no base pointer for the memory access of a
buffer overflow, Senx instead infers which buffer the illegal
memory access was likely trying to access by recording the
buffer of the last legal access made by the same instruction.
The size of the buffer is then computed similarly by finding
the allocation point of the buffer. In this case, rather than a
sizeof() argument being passed to the memory allocation
function, it may involve an arithmetic expression passed to the
memory allocation function to allocate a variable-size array.
This difference does not affect Senx as its goal is to extract
the expression and inject it into the source code patch, where
it will be compiled and evaluated at runtime by the program.

For the buffer overflow predicate, the other requirement is to
extract expressions for the range of memory access in the loop
that issues a set of sequential memory access. This is more
complex because the number of iterations the loop can execute
may vary. To compute the memory access range, Senx uses
two complementary loop analysis techniques: loop cloning and
access range analysis. Both loop cloning and access range
analysis take as input a function F in the target program and
an instruction inst that performs the faulty access in the
buffer overflow, and returns the symbolic memory access range
[A1, An] of inst. This symbolic access range can then be
compared with the allocation range in a generated patch for
safety.

Access Range Analysis. Senx relies on LLVM’s built-in loop
canonicalization functionality [8] to perform access range
analysis, which computes the access range of canonicalized
loops. Loop canonicalization seeks to convert the loop into a
standard form with a pre-header that initializes the loop iterator
variable, a header that checks whether to end the loop, and a
single backedge. Extracting the access range for a single loop
in this way is straightforward. The main difficulty is extending
this to handle nested loops.

Access range analysis is implemented for nested loops using
the algorithm described in Algorithm 1. It analyzes the loops



1 char * f o o _ m a l l o c ( x , y ) {
2 re turn ( char *) m a l lo c ( x * y + 1) ;
3 }
4
5 i n t foo ( char * i n p u t ) {
6 + i f ( ( double ) ( c o l s +1) * ( s i z e / c o l s ) + 1 >
7 + rows * ( c o l s + 1) + 1)
8 + re turn −1;
9 char * o u t p u t = f o o _ m a l l o c ( rows , c o l s + 1 ) ;

10 i f ( ! o u t p u t )
11 re turn −1;
12 b a r ( p , s i z e , c o l s , o u t p u t ) ;
13 re turn 0 ;
14 }
15
16 void b a r ( char * s r c , i n t s i z e , i n t c o l s , char * d e s t ) {
17 char *p = d e s t ; char *q = s r c ;
18 whi le ( q < s r c + s i z e ) {
19 f o r ( unsigned j = 0 ; j < c o l s ; j ++)

20 *( p ++) = *( q ++) ;
21 * ( p ++) = ' \ n ' ;
22 }
23 *p = ' \ 0 ' ;
24 }

Listing 2: A buffer overflow CVE-2012-0947 with a patch
(prefixed with ’+’).

enclosing a memory access instruction inst in function F,
starting with the innermost loop and iterating to the outermost,
accumulating increments and decrements on the loop induction
variables including the pointer used by inst.

We use the loop in bar of Listing 2 as an example of
how Algorithm 1 can be applied to a nested loop. In this
case, bar is function F and inst is the memory write using
pointer p at line 42. For each loop, Sen retrieves the loop
iterator variable and the bounds of it by calling helper function
find_loop_bounds. Senx also gets the list of induction
variables of the loop and their update, which is the fixed
amount that an induction variable is increased or decreased
by on each loop iteration by calling another helper function
find_loop_updates. In our example, we have iter =
j, initial = 0, end = cols and j 7→ 1,p 7→ 1,q 7→ 1 in
updates for the innermost for loop from lines 19-20.

Algorithm 1 then symbolically accumulates the update to
each induction variable to a data structure referred to by acc,
which maps each induction variable to an expression denoting
the accumulated update to the induction variable. As for the
example, it will store j 7→ 1,p 7→ 1,q 7→ 1 into acc for the
innermost for loop. After that, it synthesizes the expression
to denote the total number of iterations for the loop. At line
16 of the algorithm, we will have count = cols which is
simplified from (cols-0)/1.

Having the total number of iterations, it multiplies the
accumulated update for each induction variable by the total
number of iterations. So acc will have j 7→ cols,p 7→
cols,q 7→ cols after the loop from line 18 to 19 in
Algorithm 1.

Once this is done, it moves on to analyze the next loop
enclosing inst, which in Listing 2 is the while loop en-
closing the inner for loop. As a consequence, we will have

Algorithm 1 Finding the access range of a memory access.

Input: F : a function
inst: a memory access instruction in F

Output: acc_initial: initial address acccessed by inst
acc_end: end address accessed by inst

1: procedure ANALYZE_ACCESS_RANGE
2: . acc: accumulated updates to induction variables
3: acc← ∅
4: innermost_loop← innermost_loop(inst)
5: outermost_loop← outermost_loop(inst)
6: visited← ∅
7: for l ∈ [innermost_loop, outermost_loop] do
8: iter, initial, end ←find_loop_bounds(F, l)
9: updates, visited←find_loop_updates(l, visited)

10: . Symbolically add up induction updates
11: for var, upd ∈ updates do
12: acc{var} ← sym_add(acc{var}, upd)
13: end for
14: . Symbolically denote the number of iterations of

l as count
15: upd_iter ← updates{iter}
16: count←sym_div(sym_sub(end, initial), upd_iter))
17: . Symbolically multiply induction updates by the

number of iterations of l
18: for var, upd ∈ acc do
19: if ¬is_initialized_in_last_loop(var) then
20: acc{var} ←sym_mul(acc{var}, count)
21: end if
22: end for
23: end for
24: ptr ←get_pointer(inst)
25: first_inst←loop_head_instruction(outermost_loop)
26: . Find the definition of ptr that reaches first_inst
27: acc_initial←reaching_definition(F, first_inst, ptr)
28: acc_end←sym_add(acc_initial, acc{p})
29: return acc_initial, acc_end
30: end procedure

iter = q, initial = src, end = src+size and p 7→ 1
in updates at line 10 of the algorithm, j 7→ cols,p 7→
cols + 1,q 7→ cols in acc and count = size/cols
at line 17 of the algorithm, and finally j 7→ cols,p 7→
(cols+1)*(size/cols),q 7→ size in acc. Note that
the algorithm will not multiply the number of iterations of the
loop to j because j is always initialized in the last analyzed
loop, the innermost for loop.

After analyzing all the loops enclosing inst, the algo-
rithm gets the pointer ptr used by inst and performs
reaching definition dataflow analysis to find the definition
that reaches the beginning of the outermost loop. As for
the example, we will have ptr = p and the assignment
p=dest at line 16 of bar as the reaching definition for
p. From this reaching definition, it extracts the initial value
of p, acc_initial = dest. Finally it gets the end value



of p, acc_end = dest+(cols+1)*(size/cols)+1
by adding the initial value dest to the accumulated up-
date of p, (cols+1)*(size/cols) from acc, plus
the last write via pointer p at line 22. Hence it returns
[dest,dest+(cols+1)*(size/cols)+1] as the ex-
pressions denoting the access range [A1, An].

Our access range analysis can be considered as a form of
pattern-based loop analysis [14] with several differences. On
one hand, access range analysis aims to derive the number of
loop iterations as an expression involving program variables
and/or constants, while pattern-based loop analysis aims to
derive the number of loop iterations as a constant. On the other
hand, access range analysis requires loops be normalized to fit
the pattern required by pattern-based loop analysis, and relies
on loop canonicalization to normalize loops.

Loop Cloning. Access range analysis cannot be applied to
loops that LLVM cannot canonicalize. For those loops, Senx
uses loop cloning. As an example, consider the loop in
Listing 3, where Senx applies loop cloning to produce new
code code that preserves the number of loop iterations, but
removes code that causes side-effects. The new code can then
be used to safely return the access range in the generated patch.

Because the patch must be inserted into a function where
both the access range and allocation range are available, loop
cloning first searches on the call between the function where
the buffer is allocated and the function where the loop resides
(i.e. F). If no such function can be found, Senx will not be
able to generate a patch. Otherwise, it designates the function
it finds Fp and then clones each function Fi along the call
chain from F until Fp into the new code that returns the access
range. As a result, each Fi is either a direct or indirect caller
of F or is F itself.

Loop cloning needs to satisfy two requirements: 1) F must
compute the access range and pass the access range to its
caller; 2) any direct or indirect caller of F must pass the
access range that it receives from its callee upwards to the
next function along the call chain. Each Fi is cloned using the
following steps.

1) Loop cloning clones the entire code of Fi into
Fi_clone.

2) Using program slicing, it removes all statements that are
not needed in order to compute the access range or pass
the access range to Fp. If Fi is F, it retains statements
on which the execution of inst is dependent. If Fi is
a direct or indirect caller of F, it retains statements on
which the call to F is dependent.

3) It changes the return type of Fi_clone to void and
removes any return statement in Fi_clone.

4) It adds two output parameters start and end to
Fi_clone. If Fi is F, it inserts statements immediately
before the (nested) loops to copy the initial value of
the pointer or array index used in the faulty access into
start, and statements immediately after the loops to
copy the end value of such pointer or array index into
end. If Fi is a caller of F, it changes the call statement

1 i n t decode ( c o n s t char * in , char * o u t ) {
2 i n t i ;
3 char c ;
4 i = 0 ;
5 whi le ( ( c = *( i n ++) ) != ' \ 0 ' ) {
6 i f ( c == ' \ 1 ' )
7 c = *( i n ++) − 1 ;
8 o u t [ i ++] = c ;
9 }

10 re turn i ;
11 }
12
13 char * udf_decode ( c o n s t char * da ta , i n t d a t a l e n ) {
14 char * r e t = m a l l o c ( d a t a l e n ) ;
15 i f ( r e t && ! decode ( d a t a +1 , r e t ) ) {
16 f r e e ( r e t ) ;
17 r e t = NULL;
18 }
19 re turn r e t ;
20 }

Listing 3: A complex loop involving a complex loop exit
condition and multiple updates to loop induction variable on
multiple execution paths.

1 + void d e c o d e _ c l o n e ( c o n s t char * in , char * out , char
** s t a r t , char ** end ) {

2 char c ;
3 + * s t a r t = i n ;
4 whi le ( ( c = *( i n ++) ) != ' \ 0 ' ) {
5 i f ( c == ' \ 1 ' )
6 c = *( i n ++) − 1 ;
7 }
8 + * end = i n ;
9 }

10
11 char * udf_decode ( c o n s t char * da ta , i n t d a t a l e n ) {
12 char * r e t = m a l l o c ( d a t a l e n ) ;
13 + char * s t a r t , * end ;
14 + d e c o d e _ c l o n e ( d a t a +1 , r e t , &s t a r t , &end ) ;
15 i f ( r e t && ! decode ( d a t a +1 , r e t ) ) {
16 f r e e ( r e t ) ;
17 r e t = NULL;
18 }
19 re turn r e t ;
20 }

Listing 4: A cloned and sliced loop that no longer contains
any statements that have side-effects and returns the number of
iterations. Statements prefixed with ’+’ are added or modified
by Senx to count and return the number of loop iterations.

to include the two output parameters in the list of call
arguments.

After cloning each Fi, loop cloning inserts a call to the
last cloned function into Fp, which returns the access range
in start and end. Subsequently a patch will be synthesized
to leverage the returned access range.

To see how loop cloning works, consider the example
in Listing 3, which presents a loop adapted from a real
buffer overflow vulnerability CVE-2007-1887 [38] in PHP,
a scripting language interpreter. The buffer overflow occurs
in function decode. The loop features a complex loop exit
condition and multiple updates to loop induction variable in
that depend on the content of the buffer that in points to. The
result of loop cloning is shown in Listing 4. Loop cloning is
invoked with decode as F, and the faulty access at line 5



as inst. It first finds that function udf_decode is on the
call chain to decode and in which the allocation range is
available. Because udf_decode directly calls decode, it
only needs to clone decode. It then clones function decode
into decode_clone, after which it applies program slicing
to decode_clone with line 5 and variable c and in that
are accessed at line 5 as the slicing criteria. decode also has
a potential write buffer overflow at line 8, but in this example,
we focus on generating a predicate that will check whether
in can exceed the end of the buffer it points to. The program
slicing uses a backward analysis and removes all statements
that are irrelevant to the value of c and in at line 5, including
line 2, 4 and 8. After program slicing, it changes the return
type of decode_clone into void and removes all return
statements. And it adds two output parameters start and
end to the list of parameters of decode_clone. Then it
inserts a statement at line 3 to copy the initial value of in to
start before the loop and a statement at line 8 to copy the
end value of in to end after the loop. Finally it inserts into
function udf_decode a call to decode_clone at line 14
and a statement to declare start and end at line 13.

The new code produced by loop cloning must not have any
side-effects. If such a side-effect free slice cannot be produced,
Senx aborts patch generation.

Function Calls. In some cases, the extracted expressions
contain the results of function calls. In such cases, Senx
must be careful that it does not call functions in a generated
predicate that have side-effects.

Senx defines a side-effect as: 1) a possible change to the
memory visible outside of a function, or 2) an invocation of
a system call that has external impact, or 3) an invocation of
a function that has any side-effect. We refer to a function that
has no side-effects as a safe function. First, it considers any
write to a global variable as a side-effect. To be conservative,
it also considers any write via a pointer argument passed to
the function as a side-effect. Second, it uses a white-list of
common API functions and system calls that have no external
impact such as changing file system state or outputting to a
device or the network. An invocation of a function or system
call on the white-list is considered as having no side-effects.

Senx uses a flow-sensitive, context-insensitive intraprocedu-
ral static analysis to identify the list of safe functions. In the
beginning, the list contains only the functions on the white-
list. Senx performs the analysis for every function of a target
program and adds each function that has no side-effects to the
list.

For each function, Senx maintains a set of its callee func-
tions that might be "unsafe". Whenever a new function F is
added to the list, Senx removes F from the set of "unsafe"
callee functions for each function that calls F. When such a
set becomes empty for a function, Senx considers the function
as "safe" and also adds the function to the list.

D. Expression Translation

Because the patches Senx generates are source code patches,
the predicate of the patch must be evaluated in a single

function scope. However, sometimes the allocation range is
computed in one function scope, while the memory access
range is computed in a different function scope. So the
expression denoting the allocation range and the expression
denoting the memory access range are not both valid in a
single function scope. To make the expressions both valid in
a single function scope, one possible solution is to send the
expression valid in a source function scope as a call argument
to a destination function scope where the expression is not
valid. This approach requires adding a new function parameter
to the destination function, and adding a corresponding call
argument at every call site of the destination function. We
decided not to use this approach because it requires code
changes to any function on the call chain from the source
function to the destination function. In addition, unrelated
functions that call any of the changed functions will also have
to be changed, resulting in a very intrusive patch.

Expression translation solves this problem by translating
an expression exps from the scope of a source function fs to
an equivalent expression expd in the scope of a destination
function fd. It does not require adding new function parame-
ters or call arguments like the aforementioned solution. Senx
uses expression translation to translate both the buffer size
expression and memory access range expression into a single
function scope where the predicate will be evaluated. We call
this process converging the predicate.

At a high level, expression translation can be considered
as a form of lightweight function summarization [17]. While
function summarization establishes the relations between the
inputs to a function and the outputs of a function, expression
translation establishes the relations between the inputs to a
function and a subset of the local variables of the function.
It works by exploiting the equivalence between the arguments
that are passed into the function by the caller and the parame-
ters that take on the argument values in the scope of the callee.
Using this equivalence, expression translation can iteratively
translate expressions that are passed to function invocations
across edges in the call graph. Formally, expression translation
can converge the comparison between an expression expa, the
memory access range expression in fa, and exps, the buffer
size expression in fs iff along the set of edges E connecting
fa and fs in the program call graph, an expression equivalent
to either expa or exps form continuous sets of edges along
the path such that expa and exps can be translated along those
sets into a common scope.

Note that variables declared by a program as accessible
across different functions such as global variables in C/C++
do not require the translation, although the use of such kind
of variables is not very common. We refer to both function
parameters and such kind of variables collectively as nonlocal
variables. And we refer to an expression consisting of only
nonlocal variables as a nonlocal expression.

The low-level implementation of expression
translation in Senx consists of two functions. Function
translate_se_to_scopes, listed in Algorithm 2, is
the core of expression translation. It translates a particular



expression expr to the scope of all candidate functions along
the call stack stack.

Algorithm 2 Translating an expression to the scope of each
function on the call stack.
Input: stack: a call stack consists of an ordered list of call

instruction
expr: the expression to be translated
inst: the instruction to which expr is associated

Output: translated_exprs: the translated expr in the scope
of each caller function on the call stack

1: procedure TRANSLATE_SE_TO_SCOPES
2: . Translate expr to an expression in which all the

variables are the parameters of func
3: func←get_func(inst)
4: expr ←make_nonlocal_expr(func, inst, expr)
5: if expr 6= ∅ then
6: for call ∈ stack do
7: . Substitute each parameter variable in expr with

its correspondent argument used in call
8: expr ←substitute_parms_with_args(call, expr)
9: func←get_func(call)

10: translated_exprs[func]← expr
11: expr ←make_nonlocal_expr(func, call, expr)
12: if expr = ∅ then
13: break
14: end if
15: end for
16: end if
17: return translated_exprs
18: end procedure

We illustrate how it works with the code in Listing 2.
For simplicity, we use source code line numbers to represent
the corresponding instructions. To translate the buffer size
involved in the buffer overflow, Senx finds that the buffer
is allocated from a call to malloc at line 2 from the call
stack that it associates with each memory allocation, and
invokes translate_se_to_scopes with stack =[line 9
], expr =“x*y+1”, inst =line 2 , func = foo_malloc.
The function first converts “x*y+1” into a definition in which
variables are all parameters of foo_malloc, which we call
a nonlocal definition, if such conversion is possible. This con-
version is done by function make_nonlocal_expr listed
in Algorithm 3, which tries to find a nonlocal definition for
each variable in expr and then substitutes each variable with
its matching nonlocal definition. make_nonlocal_expr
relies on find_nonlocal_def_for_var, which recur-
sively finds reaching definitions for local variables in a func-
tion, eventually building a definition for them in terms of the
function parameters, global variables or the return values from
function calls. Note that a nonlocal definition can only be in
the form of an arithmetic expression without involving any
functions. In this case, the resulting expr is also “x*y+1”
because both x and y are parameters of foo_malloc.

Algorithm 3 Making a nonlocal expression.

Input: f : a function
inst: an instruction in f
expr: the RHS expression associated with inst

Output: nonlocal_expr: the nonlocalized expr

1: procedure MAKE_NONLOCAL_EXPR
2: . mapping stores the nonlocal definition for each

variable within expr
3: mapping ← ∅
4: for var ∈ expr do
5: if ¬ is_var_nonlocal(f, var) then
6: def ←find_nonlocal_def_for_var(f, inst, var)
7: if def = ∅ then
8: . We cannot find a nonlocal definition for var
9: return ∅

10: else
11: mapping[var]← def
12: end if
13: end if
14: end for
15: . Substitute the occurrence of each variable with its

nonlocal definition
16: nonlocal_expr ←substitute_vars(expr,mapping)
17: return nonlocal_expr
18: end procedure

It then iterates each call instruction in stack, starting
from line 9. For each call instruction, it substitutes the
parameters in expr with the arguments used in the call
instruction. For line 9, it substitutes x with rows and
y with cols+1, respectively, by calling helper function
substitute_parms_with_args. As a consequence,
“x*y+1” becomes “rows*(cols+1)+1”. Hence it as-
sociates “rows*(cols+1)+1” with function foo and
stores the association in expr_translated, because line 9
exists in function foo. After that, it tries to convert
“rows*(cols+1)+1” into a nonlocal definition with respect
to foo. At this point, it halts because both rows and
cols are assigned with return values of calls to function
extract_int. Otherwise, it will move on to the next
function on the call stack and continue the translation upwards
the call stack. However, in this case, expression translation is
also able to translate the memory access range expression from
the scope of bar into the scope of foo. Thus, Senx places
the patch predicate in foo. If expression translation fails to
converge the expression, Senx will abort patch generation.

V. IMPLEMENTATION

We have implemented Senx as an extension of the KLEE
LLVM execution engine [7]. Like KLEE, Senx works on
C/C++ programs that are compiled into LLVM bitcode [48].

We re-use the LLVM bitcode execution portion of KLEE,
and as described in Section IV-B, to implement our expression
builder, but do not use any of the constraint collection or
solving parts of KLEE. For simplicity and ease of debugging,



we represent our expressions as text strings. To support arith-
metic operations and simple math functions on expressions, we
leverage GiNaC, a C++ library designed to provide support for
symbolic manipulations of algebra expressions [1].

We implement a separate LLVM transformation pass to
annotate LLVM bitcode with information on loops such as the
label for loop pre-header and header, which is subsequently
used by access range analysis. This pass relies on LLVM’s
canonicalization of natural loops to normalize loops [8]. We
extend LLVMSlicer [46] for loop cloning. To locate error
handling code, we use Talos [19].

Our memory allocation logger uses KLEE to interpose on
memory allocations and stores the call stack for each memory
allocation. Senx extends KLEE to detect integer overflows and
incorporates the existing memory fault detection in KLEE to
trigger our patch generation. For alias analysis, Senx leverages
DSA pointer analysis [22].

Senx is implemented with 2,543 lines of C/C++ source code,
not including the Talos component [19] used to identify error
handling code.

VI. DISCUSSION

Our prototype of Senx supports three vulnerability types:
buffer overflow, bad cast, and integer overflow. And we believe
that safety properties can be used to produce patches for
many other vulnerability types. Because our goal is to produce
source code patches that can be adopted by developers, this
approach can be applied to any vulnerability type as long as the
safety property for the vulnerability type can be concretized
to program expressions in the source code of target programs.

For example, a safety property can be written for temporal
vulnerabilities such as time-of-check-to-time-of-use vulnera-
bilities with the information on what operations are considered
as a check and what operations are considered as a use. A
safety property can also be written for missing security check
vulnerabilities with information on what operations require
security checks and what API functions are used to perform
those security checks. Although providing such information
can require some effort from the developers, it only needs to
be done for one time.

We note that additional instrumentation in the source code
is needed for certain vulnerabilities. In our evaluation of
Senx on real-world vulnerabilities we found that the most
common reason that prevents Senx from generating a patch
is the inability to find a common program scope where all
program expressions required to synthesize a predicate are
available. For such cases, the ability to create function clones
with additional arguments that pass the required expressions
between function scopes would enable Senx to also cover these
cases. We plan to add such capability to Senx in our future
work.

VII. EVALUATION

First, we evaluate the effectiveness of Senx in fixing real-
world vulnerabilities. Second, we evaluate the quality of the
patches generated by Senx. We manually examine all the

App. Description SLOC
autotrace a tool to convert bitmap to vector graphics 19,383
binutils a collection of programming tools for

managing and creating binary programs
2,394,750

libming a library for creating Adobe Flash files 88,279
libtiff a library for manipulating TIFF graphic

files
71,434

PHP the official interpretor for PHP program-
ming language

746,390

sqlite a relational database engine 189,747
ytnef TNEF stream reader 15,512
zziplib a library for reading ZIP archives 24,886
jasper a codec for JPEG standards 30,915
libarchive a multi-format archive and compression

library
158,017

potrace a tool for tracing bitmap graphics 20,512
Total N/A 3,817,268

TABLE II: Applications for testing real-world vulnerabilities.

produced patches for correctness and compare them to the
developer created patch. For the sake of space, we only
describe two of the patches in detail. Third, we compare
Senx against state-of-art APR tools including Angelix and
SemFix. Last, we measure the applicability of loop cloning,
access range analysis, and expression translation using a larger
dataset.

A. Experiment Setup

We choose vulnerabilities in popular applications for Senx
to attempt to patch by searching online vulnerability databases
[10], [15], [33], software bug report databases, developers’
mailing groups [5], [37], [41], and exploit databases [35]. We
focus on vulnerabilities that fall into one of the three types
of vulnerabilities Senx can currently handle. We then select
vulnerabilities that meet the following three criteria: 1) an
input to trigger the vulnerability is either available or can
be created from the information available, 2) the vulnerable
application can be compiled into LLVM bitcode and executed
correctly by KLEE, and 3) the vulnerable application uses
standard memory allocation functions such as malloc to
allocate memory as Senx currently relies on this to infer the
allocation size of objects. Applications that use custom mem-
ory allocation routines are currently not supported by Senx.
We obtain the vulnerability-triggering inputs or information
about such inputs from the blogs of security researchers, bug
reports, exploit databases, mailing groups for software users,
or test cases attached to patch commits [2], [3], [6], [35], [44],
[56].

From this, we select 42 real-world buffer overflow, bad cast,
and integer overflow vulnerabilities along with proof of con-
cept exploits to evaluate the effectiveness of Senx in patching
vulnerabilities. The vulnerabilities are from 11 applications
show in Table II, which include 8 media and archive tools and
libraries, PHP, sqlite, and a collection of programming tools
for managing and creating binary programs. The associated
vulnerabilities consist of 19 buffer overflows, 13 bad casts,
and 10 integer overflows.

All our experiments were conducted directly on these vul-
nerable applications on a desktop with quad-core 3.40GHz



Intel i7-3770 CPU, 16GB RAM, 3TB SATA hard drive and
64-bit Ubuntu 14.04.

B. How Effective is Senx in Patching Vulnerabilities?

For each vulnerability of an application, we run the corre-
sponding program under Senx with a vulnerability-triggering
input. If Senx generates a patch, we manually examine the
patch for correctness. If Senx aborts patch generation, we
examine what caused Senx to abort.

Our results are summarized in Table III. Column “Type”
indicates whether the vulnerability is a ’B’ buffer overflow,
’C’ bad cast, or ’I’ integer overflow. Column “Expressions”
shows whether Senx can successfully construct all expressions
that are required to synthesize a patch, as some code constructs
may contain expressions outside of the theories Senx supports
in its symbolic ISA. “Loop Analysis” describes whether loop
cloning or access range analysis (ARA) is used if the vulner-
ability contained a loop. “Patch Placement” lists the type of
patch placement: “Trivial” means that the patch is placed in
the same function as the vulnerability and “Translated” means
that the patch must be translated to a different function. “Data
Access” describes whether or not the patch predicate involves
complex data access such as fields in a struct or array indices.
Finally, “Patched?” summarizes whether the patch generated
by Senx fixes a vulnerability. The 10 vulnerabilities where
Senx aborts generating a patch are highlighted in red.

Over the 42 vulnerabilities, Senx generates 32 (76.2%)
patches, all of which are correct according to our three criteria.
Of the 13 patched buffer overflows, loop analysis is roughly
split between loop cloning and access range analysis (6 and 8
respectively). Senx elects not to use loop cloning mainly due
to two causes. First, due to an imprecise alias analysis that
does not distinguish different fields of structs correctly, the
program slicing tool utilized by Senx may include instructions
that are irrelevant to computing loop iterations into slices.
Unfortunately these instructions call functions that can have
side-effects so the slices cannot be used by Senx. Second, for
a few cases the entire body of the loops is control dependent
on the result of a call to a function that has side-effects.
For example, the loops involved in CVE-2017-5225 are only
executed when a call to malloc succeeds. Because malloc
can make system calls, Senx also cannot clone the loops.

Senx must place 23.8% of the patches in a function dif-
ferent from where the vulnerability exists. This is particularly
acute for buffer overflows (31.6% of cases), which have to
compare a buffer allocation with a memory access range. This
illustrates that expression translation contributes significantly
to the patch generation ability of Senx, particularly for buffer
overflows, which make up the majority of memory corruption
vulnerabilities. Senx’s handling of complex data accesses is
also used in 48.5% of the patches, indicating this capability is
required to handle a good number of vulnerabilities

Senx aborts patch generation for 10 vulnerabilities. The
dominant cause for these aborts is that Senx is not able to
converge to a function scope where all symbolic variables
in the patch predicate are available. There is also one case

(jasper-CVE-2017-5501) where Senx cannot find appropriate
error-handling code to synthesize the patch. In these cases,
the patch requires more significant changes to the application
code that are beyond the capabilities of Senx. In other cases,
Senx detects that there are multiple reaching definitions for
patch predicates that it does not have an execution input for.
Currently, Senx only accepts one execution path executed by
the single vulnerability-triggering input. In the future we plan
to handle these cases by allowing Senx to accept multiple
inputs to cover the paths along which the other reaching defini-
tions exist. Finally, Senx aborts for a couple of vulnerabilities
because both loop cloning and access range analysis fail.

C. What is the Quality of the Produced Patches?

For each patch generated by Senx, we manually examine
the patch for correctness. To determine if a patch is correct,
we apply the three following tests: a) we apply the patch
to the target program and verify that the vulnerability is no
longer triggered by the vulnerability-triggering input, b) we
run the built-in test suite provided by the vendor of the target
program to verify that the entire test suite is passed, c) we
check for semantic equivalence with the official patch released
by the vendor, if available, by manually examining if the patch
generated by Senx affects the behavior of the target program in
the same way as the official patch, and semantic correctness by
analyzing the code manually. We consider a patch is correct
only when all three tests are passed. Our examination finds
that all produced patches are correct.

Out of the 32 generated patches, we select 2 patches to
describe in detail.

libtiff-CVE-2017-5225. This is a heap buffer overflow in
libtiff, which can be exploited via a specially crafted
TIFF image file. The overflow occurs in a function
cpContig2SeparateByRow that parses a TIFF image into
rows and dynamically allocates a buffer to hold the parsed
image based on the number of pixels per row and bits per
pixel. By using an inconsistent bits per pixel parameter, the
attacker can cause libtiff to allocate a buffer smaller than the
size of the pixel data and cause a buffer overflow.

When Senx captures the buffer overflow via running
libtiff with a crafted TIFF image file, it first identifies
that the buffer is allocated using the value of variable
scanlinesizein and the starting address of the buffer is
stored in variable inbuf. Hence it uses [inbuf, inbuf +
scanlinesizein] to denote the buffer range. Senx then
finds that the buffer overflow occurs in a 3-level nested loop
and that the pointer used to access the buffer is dependent on
the loop induction variable. Senx classifies the vulnerability
as a buffer overflow.

Loop cloning fails because the loop slice is dependent
on a call to _TIFFmalloc, which subsequently calls
malloc. Thus, Senx applies access range analysis. Access
range analysis detects that only the outer and inner-most
loops affect the memory access pointer and from the ex-
tracted induction variables, computes the expression [inbuf,
inbuf+spp*imagewidth] to represent the access range.



App. CVE# Type Expressions Loop Analysis Patch Placement Data Access Patched?
sqlite CVE-2013-7443 I Determinate — Failed — 7

CVE-2017-13685 I Determinate — Trivial Simple 3
zziplib CVE-2017-5976 B Determinate Cloned Translated Complex 3

CVE-2017-5974 I Determinate — Translated Complex 3
CVE-2017-5975 I Determinate — Translated Complex 3

Potrace CVE-2013-7437 C Determinate — Trivial Complex 3
libming CVE-2016-9264 I Determinate — Trivial Simple 3
libtiff CVE-2016-9273 B Indeterminate — — — 7

CVE-2016-9532 B Determinate Cloned Trivial Complex 3
CVE-2017-5225 B Determinate ARA Trivial Simple 3
CVE-2016-10272 B Determinate ARA Translated Simple 3
CVE-2016-10092 I Determinate — Translated Simple 3
CVE-2016-5102 I Determinate — Trivial Simple 3
CVE-2006-2025 C Determinate — Trivial Complex 3

libarchive CVE-2016-5844 C Determinate — Trivial Complex 3
jasper CVE-2016-9387 C Determinate — Trivial Complex 3

CVE-2016-9557 C Determinate — Trivial Complex 3
CVE-2017-5501 C Determinate — Failed/Error handling — 7

ytnef CVE-2017-9471 B Determinate Cloned Trivial Simple 3
CVE-2017-9472 B Determinate Cloned Trivial Simple 3
CVE-2017-9474 B Determinate Failed — — 7

PHP CVE-2011-1938 B Determinate ARA Translated Simple 3
CVE-2014-3670 B Determinate ARA Translated Complex 3
CVE-2014-8626 B Determinate Cloned Trivial Simple 3

binutils CVE-2017-15020 B Determinate ARA Translated Simple 3
CVE-2017-9747 B Determinate Cloned Translated Simple 3
CVE-2017-12799 I Determinate — Trivial Simple 3
CVE-2017-6965 I Determinate — Failed — 7
CVE-2017-9752 I Determinate — Translated Simple 3
CVE-2017-14745 C Determinate — Failed — 7

autotrace CVE-2017-9151 B Indeterminate — — — 7
CVE-2017-9153 B Indeterminate — — — 7
CVE-2017-9156 B Determinate ARA Trivial Simple 3
CVE-2017-9157 B Determinate ARA Trivial Simple 3
CVE-2017-9168 B Determinate Failed — — 7
CVE-2017-9191 B Determinate ARA Failed — 7
CVE-2017-9161 C Determinate — Trivial Simple 3
CVE-2017-9183 C Determinate — Trivial Complex 3
CVE-2017-9197 C Determinate — Trivial Complex 3
CVE-2017-9198 C Determinate — Trivial Complex 3
CVE-2017-9199 C Determinate — Trivial Complex 3
CVE-2017-9200 C Determinate — Trivial Complex 3

TABLE III: Patch generation by Senx

Because both the buffer range and the access range
start at inbuf, Senx synthesizes the patch predicate
as spp*imagewidth > scanlinesizein. Senx then
finds that cpContig2SeparateByRow contains error han-
dling code, which has a label bad, and generates the patch as
below. As the buffer allocation and overflow occur in the same
function, Senx puts the patch immediately before the buffer
allocation.

i f ( spp * imagewid th > s c a n l i n e s i z e i n )
goto bad ;

The official patch invokes the same error handling and
is placed at the same location as Senx’s patch. However,
the official patch checks that “(bps != 8)”. From further
analysis, we find that both patches are equivalent, though the
human-generated patch relies on the semantics of the libtiff
format, while Senx’s patch directly checks that the loop cannot
exceed the size of the allocated buffer.

libarchive-CVE-2016-5844. This integer overflow in the ISO
parser in libarchive can result in a denial of service via a
specially crafted ISO file. The overflow happens in function

choose_volume when it multiplies a block index, which is
a 32-bit integer, with a constant number. This can exceed the
maximum value that can be represented by a 32-bit integer
and overflow into a negative number, which is then used as a
file offset.

Senx detects the integer overflow when it runs libarchive’s
ISO parser with a crafted ISO file. It generates an expres-
sion of the overflown value as the product of 2048 and
vd→location. Further Senx detects that the overflown
value is assigned to a 64-bit variable skipsize, thus clas-
sifying this as a repairable integer overflow. Senx patches the
vulnerability by casting the 32-bit value to a 64-bit value
before multiplying:

− s k i p s i z e = LOGICAL_BLOCK_SIZE * vd−> l o c a t i o n ;
+ s k i p s i z e = 2048 * ( i n t 6 4 _ t ) vd−> l o c a t i o n ;

The official patch is essentially identical to the patch gener-
ated by Senx. The only difference is that the official patch
uses the constant LOGICAL_BLOCK_SIZE rather than its
equivalent value 2048 in the multiplication.



D. Comparison with Other Work

To illustrate whether Senx can address the limitations of
state-of-art APR tools, we evaluate the effectiveness of Senx
against SemFix [34] and Angelix [30]. Because SemFix and
Angelix require considerable effort for each application and
vulnerability, we were only able to make this comparison on
2 vulnerabilities for one application, autotrace. We use all four
built-in test inputs for autotrace, and 50 randomly generated
inputs for examples and one vulnerable-triggering input for
each vulnerability.

In both cases Semfix and Angelix are unable to generate
a patch either because they are unable to locate an existing
program constructs to change to pass both positive test inputs
and negative test inputs, or they are unable to synthesize
a guard statement to prevent the vulnerabilities from being
triggered. Senx, on the other hand, is able to generate working
patches for both vulnerabilities.

E. Applicability

We evaluate how applicable loop cloning, access range
analysis and expression translation are across a larger dataset.
To generate such a dataset, we extract all loops that access
memory buffers and the allocations of these buffers from the
11 programs in GNU Coreutils, regardless of whether they
contain vulnerabilities or not. We then apply Senx’s loop
analysis to all loops and find that loop cloning can be applied
to 88% of the loops and access range analysis can be applied
to 46% of the loops. This is in line with our results from the
vulnerabilities. For the sake of space, we describe the details
of these experiments in the Appendix.

VIII. RELATED WORK

A. Automatic Patch Generation

Leveraging Fix Patterns. By observing common human-
developer generated patches, PAR generates patches using fix
patterns such as altering method parameters, adding a null
checker, calling another method with the same arguments, and
adding an array bound checker [20]. Senx differs from PAR
in two aspects. First, PAR is unable to generate a patch when
the correct variables or methods needed to synthesize a patch
are not accessible at the faulty function or method. Second,
PAR uses a trial-and-error approach that tries out not only
each fixing pattern upon a given bug, but also variables or
methods that are accessible at the faulty function or method
to synthesize a patch. On the contrary, Senx employs a guided
approach that identifies the type of the given bug and chooses
a corresponding patch model to generate the patch for the
bug and systematically finds the correct variables to synthesize
the patch based on semantic information provided by a patch
model.

LeakFix fixes memory leak bugs by adding a memory
deallocation statement for a leaked memory allocation at the
correct program location [16]. By abstracting a program into
a CFG containing only program statements related to memory
allocation, deallocation, and usage, LeakFix transforms the

problem of finding a fix for a memory leak into searching for
a CFG edge where a memory deallocation statement can be
added to fix the memory leak without introducing new bugs.

Using Program Mutations. GenProg is a pioneering work
that induces program mutations, i.e. genetic programming,
to generate patches [55]. Leveraging test suites, it focuses
on program code that is executed for negative test cases but
not for positive test cases and utilizes program mutations to
produce modifications to a program. As a feedback to its
program mutation algorithm, it considers the weighted sum
of the positive test cases and negative test cases that the
modified program passes. Treating all the results of program
mutations as a search space, its successor improves the scal-
ability by changing to use patches instead of abstract syntax
trees to represent modifications and exploiting search space
parallelism [23].

Using SMT Solvers. SemFix [34] and Angelix [30] use
constraint solving to find the needed expression to replace
incorrect expressions used in a program. By executing a target
program symbolically with both inputs triggering a defect and
inputs not triggering the defect, they identify the constraints
that the target program must satisfy to process both kinds of in-
puts correctly. They then synthesize a patch using component-
based program synthesis, which combines components such as
variables, constants, and arithmetic operations to synthesize a
symbolic expression that can make the target program satisfy
the identified constraints.

Learning from Correct Code. Prophet learns from exist-
ing correct patches [27]. It uses a parameterized log-linear
probabilistic model on two features extracted from the ab-
stract trees of each patch: 1) the way the patch modifies
the original program and 2) the relationships between how
the values accessed by the patch are used by the original
program and by the patched program. With the probabilistic
model, it ranks candidate patches that it generated for a defect
by the probabilities of their correctness. Finally it uses test
suites to test correctness of the candidate patches. Like other
generate-and-validate automatic patch generation techniques,
its effectiveness depends on the quality of the test suites.

B. Mitigating Security Vulnerabilities

Fortifying Programs. One way to prevent vulnerabilities from
being exploited is by fortifying programs to make them more
robust to malicious inputs. Software Fault Isolation (SFI) in-
struments checks before memory operations to ensure that they
cannot corrupt memory [18], [31], [52], [57]. Control Flow
Integrity (CFI) learns valid control flow transfers of a program
and validates control flow transfers to prevent execution of
exploit code [13], [51], [58]. Alternatively, some techniques
modify the layout or permissions of critical memory regions
to detect or prevent exploits [9], [12], [43], [45], [49], [50].

By contrast, Talos introduces the notion of Security
Workarounds for Rapid Response (SWRR), which steers pro-
gram execution away from a vulnerability to error handling



code, and instruments SWRRs to programs to prevent mali-
cious inputs from triggering vulnerabilities [19].

While these techniques prevent exploit of vulnerabilities
at the cost of extra runtime overhead or loss of program
functionality, Senx generates patches to fix vulnerabilities
without imposing such a cost.

Filtering Inputs. Some techniques detect and simply filter
out malicious inputs [4], [11], [28], [47], [53]. Among them,
Bouncer combines static analysis and symbolic analysis to
infer the constraints to exploit a vulnerability and generates an
input filter to drop such malicious inputs [11]. Shields models
a vulnerability as a protocol state machine and constructs
network filters based on it [53].

While most of these techniques identify malicious inputs
by the semantics or syntax of the malicious inputs, some
of them focus on the semantics of vulnerabilities [4], [28].
Similar to these techniques, Senx also uses the semantics of
vulnerabilities to synthesize patches. However, Senx has a
different goal of generating patches to fix vulnerabilities.

Rectifying Inputs. Alternative to filtering inputs, some tech-
niques rectify malicious inputs to prevent them from triggering
vulnerabilities. With taint analysis, SOAP learns constraints
on input by observing program executions with benign inputs.
From the constraints that it has learned, it identifies input that
violates the constraints and tries to change the input to make
it satisfy the constraints. By doing so, it not only renders the
input harmless but also allows the desired data in the rectified
input to be correctly processed [25].

Based on the observation that exploit code embedded in
inputs is often fragile to any slight changes, A2C encodes
inputs with a one-time dictionary and decodes them only
when the program execution goes beyond the paths likely to
have vulnerabilities in order to disable the embedded exploit
code [21].

IX. CONCLUSION

This paper presents the design and implementation of
Senx, a system that uses human-specified safety properties
to generates patches for buffer overflow, bad cast, and inte-
ger overflow vulnerabilities. Senx uses three novel program
analysis techniques introduced in this paper: loop cloning,
access range analysis and expression translation. In addition,
Senx utilizes an expression representation that facilitates the
translation of expressions extracted from symbolic execution
back into C/C++ source code. Enabled by these techniques,
Senx generates patches correctly for 76% of the 42 real-world
vulnerabilities. Senx’s main limitations are limited precision in
alias analysis for loop cloning, and the inability to converge
expressions to find a location in the program where all
necessary variables are in scope.
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APPENDIX

We measure how often expression translation is able to
converge the memory access range and buffer allocation size
into a single function scope, and find that it is able to do so
in 85% of the cases.

We use 11 programs from the GNU Coreutils as listed
in Table IV to evaluate the applicability of our analysis
techniques. The most common reasons for Senx’s access range
analysis to be aborted is that loops cannot be normalized by
LLVM. For example, the number of times a loop that parses
string input iterates depends on the content of the string. Such
a string cannot be symbolically analyzed by access range
analysis.

To understand the reasons that can cause expression trans-
lation to abort, we try to converge the buffer size and memory
access range for the loops that we could successfully analyze
and tabulate the results in Table V. The “Access Range”
column tabulates the average percentage of functions in the
loop’s call stack that expression translation could translate
the memory access range into and “Buffer Range” tabulates
the average percentage of functions in the buffer allocation’s
call stack that expression translation could translate the buffer
allocation size into. Finally “Converged” indicates out of all
loops, what percentage could expression translation find a



Program Type SLOC LLVM bitcode
sha512sum data checksum 581 135KB
pr text formatting 1,723 194KB
head text manipulation 761 109KB
dir directory listing 3,388 418KB
od file dumping 1,368 237KB
ls directory listing 3,388 418KB
base64 data encoding 238 91KB
wc text processing 784 120KB
cat file concatenating 495 182KB
sort data sorting 3,251 433KB
printf format and print data 694 198KB
AVG N/A 1,516 230KB

TABLE IV: Programs for evaluating applicability.

Program Access Range Buffer Range Converged
pr 100% 10% 100%
head 100% 25% 100%
tr 86% 36% 100%
od 54% 16% 58%
cat 100% 33% 100%
dir 71% 14% 57%
ls 42% 33% 34%
base64 100% 33% 100%
md5sum 100% 33% 100%
sha512sum 97% 80% 97%
sort 91% 10% 90%
AVG. 85% 29% 85%

TABLE V: Convergence of expression translation.

common function scope in which to place the patch. As we
can see, it seems that the buffer allocation size frequently takes
parameters that are calculated fairly close in the call stack to
the allocation point, and those values are not available higher
up in the call chain, thus limiting the functions scopes many
of these cases could be converged to.


