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ABSTRACT

Open-source software is increasingly reused, complicating the pro-
cess of patching to repair bugs. In the case of Linux, a distinct
ecosystem has formed, with Linux mainline serving as the up-
stream, stable or long-term-support (LTS) systems forked from
mainline, and Linux distributions, such as Ubuntu and Android,
as downstreams forked from stable or LTS systems for end-user
use. Ideally, when a patch is committed in the Linux upstream, it
should not introduce new bugs and be ported to all the applicable
downstream branches in a timely fashion. However, several con-
cerns have been expressed in prior work about the responsiveness
of patch porting in this Linux ecosystem. In this paper, we mine
the software repositories to investigate a range of Linux distribu-
tions in combination with Linux stable and LTS, and find diverse
patch porting strategies and competence levels that help explain
the phenomenon. Furthermore, we show concretely using three
metrics, i.e., patch delay, patch rate, and bug inheritance ratio, that
different porting strategies have different tradeoffs. We find that
hinting tags(e.g., Cc stable tags and fixes tags) are significantly
important to the prompt patch porting, but it is noteworthy that
a substantial portion of patches remain devoid of these indicative
tags. Finally, we offer recommendations based on our analysis of the
general patch flow, e.g., interactions among various stakeholders
in the ecosystem and automatic generation of hinting tags, as well
as tailored suggestions for specific porting strategies.
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1 INTRODUCTION

Open-source software has greatly lowered the cost of software
development. It is a common practice to reuse, customize, and
even rebrand open-source projects. This also means that multiple
versions or forks of the same upstream project can co-exist. In
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this study, we focus on the Linux kernel ecosystem. It is widely
reused in numerous desktop and server distributions like Ubuntu,
Fedora, and Red Hat, as well as in billions of Android, Amazon
AWS, and Internet of Things (IoT) devices. These Linux forks are
often based on specific Linux stable or long-term support (LTS)
branches of the kernel source, which in turn were originally forked
from the Linux mainline (also sometimes called Linux upstream).
The Linux mainline is where all the development and bug fixes
occur — including feature commits and patch commits. In contrast,
stable or LTS branches only port patch commits from mainline, as
their goal is to maintain stability.

For large and complex open-source projects like Linux that are
being actively developed, it is inevitable that there will be a contin-
uous stream of bugs being discovered (and introduced), including
security vulnerabilities. Unfortunately, the co-existence of many
forked downstream branches makes it challenging to keep track
and fix issues in a timely manner. In Linux specifically, all bugs are
supposed to be fixed in the mainline first (a.k.a., upstream first) [22].
Once a patch is merged into the mainline, downstream kernel main-
tainers are responsible for porting patches from upstream. But, as
we will show, it is often not straightforward to figure out which of
the upstream patches should be ported, especially considering that
downstream branches may be forked from older versions that have
diverged from the upstream, requiring more complex backporting.
This problem is further exacerbated because the downstream Linux
distributions are maintained by independent organizations with
differing priorities.

Ideally, all of downstream branches, including Linux distribu-
tions and Linux stable/LTS branches should port all necessary and
applicable patches from Linux mainline, and do not introduce any
new bugs at the same time. However, we know anecdotally that
the patch porting process is far from ideal. Several studies have
been conducted to measure the vulnerability lifetime and patch
timeliness [8, 29, 30, 39, 47], though few studies [61] focus on an
ecosystem with upstream and downstream kernels. We believe a
study of existing patch porting practices or strategies employed
by the individual parties in the ecosystem is beneficial in several
ways. For example, we hope to understand the pros and cons of dif-
ferent patch porting strategies, evaluate their implementation, and
identify opportunities for enhancing the patch process in the Linux
ecosystem (some of which may generalize to other open-source
software at large).
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To conduct this research, we utilized various publicly available
data sources to produce measurements, which we then form hy-
potheses. To validate the hypotheses, we also engage in commu-
nication with 23 Linux distributions and LTS maintainers, who
are among the top contributors in public Linux git repositories.
In addition to measurement results, we also relied on (1) publicly
available documents and (2) reverse-engineering labels in commit
messages, which were then verified through discussions with the
maintainers.

For measurements, we focus on three main metrics: (1) patch de-
lay: how long it takes a patch to port from upstream to downstream;
(2) patch rate: the frequency of patch porting, i.e., number of ported
patches per unit time; (3) bug inheritance ratio: the fraction of
mainline bugs introduced in a downstream branch (in a given time
period). In addition, to understand patch practices and implications
better, we also categorize patches based on various information,
e.g., security patches, labels provided by patch authors.

At a high level, we are interested in these high-level questions:

RQ1 What are the patch porting strategies employed by down-
stream kernel maintainers?

RQ2 What is the performance of these strategies in terms of the
three metrics we defined? How far away are they from ideal?

RQ3 What improvements can be made to enhance the patch port-
ing practices?

Overall, by studying 21 branches across 8 popular Linux dis-
tributions (including Android), we find drastically different patch
porting strategies are employed by the various downstream kernel
branches, and none of the strategies can achieve best results in all
three metrics simultaneously. Specifically, if they choose to favor
porting as many patches as possible and as quickly as possible, then
they unavoidably introduce many more bugs at the same time. Con-
versely, if they choose to favor stability (i.e., fewer bugs introduced),
then they tend to miss patches or port them with significant delays.
Interestingly, even for the downstream branches that do favor sta-
bility, their patch porting performance can still differ drastically,
indicating that there is significant room for improvement.

We summarize our contributions as follows:

e We investigate patch porting strategies in the Linux ecosystem
both qualitatively and quantitatively. Specifically, we define three
metrics that comprehensively and objectively capture the perfor-
mance of patch porting strategies.

e In our study, we do not only report objective metrics but also
look for factors that contribute to the performance captured by
the metrics. This helps us understand the operational burden and
rationale behind their strategies.

e Based on the study, we distill the results into a list of sugges-
tions from the perspective of patch authors, maintainers, and the
community at large to improve the patch porting process.

2 BACKGROUND

The Linux Ecosystem. The Linux ecosystem’s patch porting
process is shown in Figure 1. The trunk branch is the Linux main-
line [1], which keeps integrating all the new features and bug fixes
from a great number of kernel developers and maintainers. The
mainline branch is for development only and is not supposed to
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be used by end users directly. Instead, whenever Linux mainline
reaches a milestone, it is forked into either a stable or a long-term
support (LTS) branch [1], e.g., v4.19.y is a LTS branch while v4.20.y
is a stable branch. In between the mainline releases, e.g., between
v4.18 and v4.19, there are also release candidates such as v4.19-rc1
and v4.19-rc2 signifying the stages of the development process (e.g.,
most feature commits occur in rc1). Linux stable and LTS branches
provide stability by integrating only bug fixes from the mainline
without adding any new features (according to some predefined
rules [9]), that could introduce new bugs. The main difference
between Linux stable branches and LTS branches is their lifetime—
stable branches usually are maintained for two to three months,
whereas some Linux LTS branches have been maintained for six
years [1]. Linux stable/LTS branches usually release a minor ver-
sion (e.g., 4.15.3) once a week or once every two weeks [1]. Both
the mainline and stable/LTS branches are maintained by the Linux
community.

Outside of the branches maintained by the Linux community, we
have branches maintained by Linux distributions, such as Ubuntu
and Fedora. They are what the end-users will be using in practice.
These distribution branches are typically a fork from one of the
stable or LTS branches and typically include their own customiza-
tions (e.g., better or additional hardware support). Distributions
can also fork from other distributions. For example, the Linux Mint
distribution uses the same kernel as Ubuntu. As such branches
are separately maintained, the burden of tracking and applying
patches from stable/LTS or even mainline in a timely fashion is on
distributions’ maintainers.

Upstream and downstream: Depending on the forking and patch

porting relationships, we have upstream and downstream branches.
The Linux mainline is often referred to as the upstream. Linux dis-
tributions are usually referred to as downstream. Of course, the
relationship is also relative. As shown in Figure 1, Linux stable/LTS
branches are upstream with respect to distributions and down-
stream with respect to the mainline.
Patch Porting Practices. In the Linux ecosystem, patches should
be applied to the mainline first [22], which are then ported to
downstream kernels. As mentioned, Linux stable/LTS branches
port patches exclusively from Linux mainline. For Linux distribu-
tions, there are four basic patch porting primitives employed by
downstream kernel branches (one or more may be applied in a
given downstream kernel branch).
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Group-port: For branches that are directly forked from stable/LTS
branches, they port patches primarily from the corresponding up-
stream branch it is forked from. Because patches from stable/LTS
branches are usually ported in groups (e.g., via git merge), we call
this patch porting practice group-port.

Individual pick: Distribution maintainers can also choose to by-
pass the immediate LTS/stable branches and directly port patches
from the mainline, when those patches are deemed urgent. Because
such patches are typically incorporated individually (e.g., via the
git cherry-pick command), we refer to this practice as picking.
It is worth noting that distributions may also directly pick feature
commits from Linux mainline (e.g., for supporting new hardware de-
vices). We found that the picking is usually driven by each vendor’s
own bug tracking system, e.g., the launchpad system[4, 11, 18, 24]
in Ubuntu, the OraBug system[41] in Oracle-Uek and the bugzilla
system[49] in SLE.

Minor version rebase: Different from selecting what patches to
port, rebase unconditionally changes the base itself to a given point
in a target branch, e.g., latest mainline, stable or LTS branches,
automatically inheriting all commits that were made to the target.
A minor version rebase indicates that it rebases from one minor
version to another (e.g., from 4.15.1 to 4.15.2). It is similar in effect
to group-port except that it by default ports/inherits all commits
between two minor versions (whereas group-port can and does
omit some).

Major version rebase: Contrary to a minor version rebase, a ma-
jor version rebase represents a rebase that goes from one major
version to another (e.g., from 4.15.y stable to 4.16.y). This implies a
significant change in the branch as there can be a large number of
commits (patches or even feature commits) between the two major
versions, all of which are inherited automatically after the rebase.
Fixes tag and Cc stable tag. Mainline patches can be attached
with two kinds of tags which make the patch porting easier for
maintainers:

o A fixes tag looks like the following: Fixes: a9e38c3e@lad
("KVM: x86: Catch potential overrun in MCE setup").
It gives the commit (hash) that introduced the bug that is now
patched. Such a tag is generated by the author(s) of the commit
typically after manually analyzing the historical Linux versions.
It is helpful for maintainers to determine if a kernel version is
affected by the bug fixed by the patch. In fact, it can also allow
one to compute the bug lifetime, which was interestingly never
used in previous measurement studies [26, 39].

o A Cc stable mailing list tag looks like the following: Cc:stable@
vger.kernel.org. This indicates that the author of the patch
has determined that this commit satisfied the patch rules and
should be considered for inclusion in stable/LTS branches.

3 DATASET, METRICS, AND METHODOLOGY

Measurement targets and dataset. For Linux distributions,
we choose to measure a few representative popular distributions
according to a list maintained by LWN [23] which has been tracking
Linux distributions since 1999. Specifically, we study the following:
four Ubuntu branches, three SUSE Linux Enterprise (SLE) branches,
four Oracle Unbreakable Enterprise Kernel (UEK) branches, three
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Amazon Linux 2 branches, two Debian branches, three Android
branches, one Fedora branch, and one Arch branch (both Fedora and
Arch maintain a single kernel branch which keeps moving forward).
In the case of Android, we picked three branches from Android-
common [2], which is part of the Android Open Source Project
(AOSP), further forked by downstream Android OEMs such as
Samsung. We exclude OEM kernels due to the fact that OEMs, such
as Samsung, are known to not publicly release their git repositories,
which are required for our study. Note that there are other popular
distributions such as Redhat and CentOS that we do not include.
This is mostly because of the lack of public git repositories or
insufficient data. For example, Redhat Enterprise Linux is not free.
Alternatively, CentOS’s role has been shifting over the past few
years—initially being a downstream of Redhat, but now CentOS is
becoming the upstream of Redhat [7]. In addition, we also measure
six Linux LTS branches that are actively being maintained [1]: 4.4
LTS, 49 LTS, 4.14 LTS, 4.19 LTS, 5.4 LTS, 5.10 LTS and 5.15 LTS.
We omit the Linux stable branches because the lifetime of stable
branches is only two to three months, which is often less than the
patch delays observed in LTS branches. Overall, our measurement
targets include 584K commits.

We list the patch porting strategies for all measured distribution
branches in Table 1. Specifically, Arch and Fedora are the two
distributions that stay on Linux stable/LTS branches only for a short
period of time (usually for two to three months) and frequently
rebase to new major release versions (e.g., from 4.14.y to 4.15). All
other distributions choose to stay on a single base (i.e., a particular
major release version) for an extended period of time (in years).
While the distributions stay on a base, they choose a variety of
patch porting practices such as minor version rebase, group-port,
and picking from mainline. Most distributions stick to a consistent
strategy. Ubuntu-18.04 is an exception where it first group-ports
from Linux 4.15 stable, and then it group-ports from Linux 4.14 LTS
and 4.19 LTS. SLE is also exceptional as it first group-ports from a
stable release (instead of LTS), then it will directly pick commits
from mainline after the stable branch ends (typically in two to three
months).

Measurement metrics. We define the following three metrics to
evaluate the patch porting performance:

e Patch delay: New Linux patches are officially released in Linux
mainline first. So, we compute the patch delay for each patch
applied to a downstream kernel branch as the time difference
between when the patch appears in the mainline and when it
appears in a downstream kernel branch. If the branch is a Linux
distribution (e.g., Ubuntu), the patch delay is the end-to-end delay
where the patch may be initially ported from mainline to an LTS
branch first and then group-ported by the distribution.

e Patch rate: For each downstream kernel branch, we count the
number of ported patches per day to compare the patching effort
among distributions. The intuition is that it is challenging to ob-
tain the ground truth in terms of the total number of patches that
should be applied to a particular downstream kernel branch. How-
ever, approximately speaking, if a downstream kernel branch is
well-maintained, it should periodically port enough patches. This
metric will allow us to loosely compare the diligence of patch
porting for various downstream kernel branches.
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Major version Minor version Minor version | Group-port | Group-port | Picking from
frequently rebase | rebase on stable | rebase on LTS | from LTS from stable | mainline
Arch v v v
Fedora v v 4
Oracle Uek-4 v 4
Oracle Uek-5/6/7 v v
Ubuntu-16.04 / 20.04 / 22.04 v 4
Ubuntu-18.04 v 4 4
SLE12-SP5 / 15- SP3 / 15-SP4 4 4
Amazon-4.14/ 5.4/ 5.10 v v
Debian-10/ 11 4 4
Android-10 /12 /13 v v

Table 1: Patch porting strategies for all measured distribution branches

e Bug inheritance ratio: This metric is the fraction of bugs intro-
duced into the mainline that are inherited by a downstream
kernel branch. The intuition is that the mainline branch is the
development branch that constantly introduces bugs (e.g., be-
cause of features commits or even bugs in patch commits). If a
downstream kernel ports these bug-introducing commits from
mainline, it will naturally inherit these bugs, which include a
subset of mainline bugs (i.e., the ratio is always smaller than or
equals 100%).

Methodology to compute patch delays. Recall that all patches
in the Linux ecosystem will first appear in mainline, so to calculate
the patch porting delay for each patch that appears in a down-
stream branch, we need to first determine which mainline commit
it corresponds to.

Tracking patch origins for Linux stable/LTS branches: we observe
that 99.3% of all the git commits in LTS branches contain refer-
ences to an upstream commit in the forms like “Upstream commit
<hash>”, “upstream <hash> commit” in the git commit messages.
This is supported by the official script [10] used by Linux LTS
maintainers to port patches from mainline.

Tracking patch origins for Linux distributions: As mentioned ear-
lier, distributions have three typical approaches to port patches:
group-porting, picking, and rebasing.

For group-porting, we found two commonly used methods: git
merge and the Ubuntu-specific method.

e git merge ports all commits from a specific stable/LTS branch
up to a certain commit specified in the command. It will gen-
erate one merge commit with the title that usually indicates
the latest point that it caught up with. For instance, Merge tag
’v4.14.107’ indicates group-porting patches reached a specified
point in the source branch, which is the version of v4.14.107. In
our measurement targets, Oracle-UEK and SLE use this method.

e We find that Ubuntu takes a different approach to apply group-
ports of upstream patches in a single commit, without using git
merge [14]. We observe that such commits will contain links to
the corresponding bug tracking pages on launchpad.net (e.g.,
[25]), which contain detailed information about what patches
have been ported and from where.

Rebase is performed using git rebase, which changes the entire
base (i.e., the fork point) of a branch from one upstream commit to

another (there is the major version rebase vs. minor version rebase
as mentioned previously). This also results in the porting of all com-
mits between the old base and the new base. It is worth noting that
git rebase will not introduce a new commit in the log. In fact, the
log will essentially be a replica of the upstream to which it rebases.
This makes it difficult to infer when the rebase occurs and compute
the patch delays accordingly. Nevertheless, distribution maintainers
always will add a followup commit right after the rebase to assign a
unique tag and indicate the rebase has been completed. This commit
(e.g., with a title of kernel-5.10.23-200. fc33) usually indicates
the mainline/stable/LTS version of the distribution from which it
is rebased. This allows us to determine when rebase occurs, from
which we can then compute the patch porting delay.

When Linux distributions pick patches directly from the main-
line, each commit message will contain text referencing the cor-
responding commit’s hash in mainline, such as “cherry picked
from <hash>” and “back-ported from <hash>". Because such
references appear in different areas from those that appear in LTS
commit messages, this allows us to distinguish picked patches from
group-ported ones.

Another issue is that we find some distributions pick features
commits in addition to patches from mainline, which we need to
exclude when computing their patch delay. For Ubuntu, we find
that feature commits picked from mainline are managed by its own
bug tracking system on launchpad.com, and labeled as “[Feature]”
on the web page. For SLE, they have a separate tracking system for
feature requests on jiri.suse.com and attach identifiers that start
with “jscSLE” to denote that it is a feature commit. For Oracle-
Uek, all commits picked directly from Linux mainline are labeled
“OraBug” id in commit messages, indicating they are bug fixes. For
other distributions, such as Fedora, according to our observations
and direct communications with distribution maintainers, they only
pick patches (and no feature commits) from Linux mainline.

Methodology to compute patch rate. For a given downstream
kernel branch, we divide the total number of patches that appear
in the downstream branch (e.g., no matter if they are group-ported,
picked, or inherited due to rebase) by the time duration starting
with the first patch appearance date and ending with the last patch
appearance date. In our measurements, we typically choose the
duration starting with the very first commit since the creation of a
downstream branch, and ending with the last commit we observe
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at the time of writing. If the branch has ended its end of life, we
effective computes the average patch rate over its entire lifetime.

Methodology to compute bug inheritance ratio. We define a
mainline bug as a commit (either a feature or patch commit) that re-
quires a later patch. As mentioned in the previous section, fixes tags
in a patch indicate which previous commit is the buggy commit, so
we use fixes tags to identify mainline bugs. To validate the accuracy
of the fixes tag, we randomly selected 50 buggy commits based on
the fixes tags that have reproducers, obtained from syzbot [21], a
public continuous fuzzer for Linux kernels. We then automatically
executed these reproducers against Ubuntu branches that contained
the buggy commits (but unfixed yet), and found that 45 of them
were able to successfully trigger the bug. This indicates that fixes
tags are generally reliable. We consider a bug inherited by a down-
stream kernel branch if the buggy mainline commit ported to the
downstream branch, through either group-port, picking, or rebase.
Note that we consider bugs inherited only after the downstream
kernel branch is created. In other words, a downstream branch has
zero bugs inherited at the time of its creation. The bug inheritance
ratio is then computed by the total number of bugs inherited by a
downstream branch divided by the total number of bugs in main-
line, in a given time period. Again, in our measurements, we often
choose the time window to be the lifetime of a downstream kernel
branch to understand its average performance. We note that even
though there is an underestimate of mainline bug count as not all
patches have fixes tags, the ratio is a relative metric which makes
it possible to compare the performance of different downstream
kernel branches.

4 STRATEGY OF FREQUENTLY CHANGING
BASES

As mentioned in Table 1, Arch and Fedora frequently change their
bases from one major version to another (every two to three months).
This is intuitively a very different strategy compared to staying on
a single base for an extended period of time (i.e., years). In this sec-
tion, we focus on the pros and cons of the frequent base changing
strategy with respect to the metrics we defined.

In terms of patch delay, frequently changing the base is a good
strategy because it automatically inherits all commits from the up-
stream, allowing the downstream kernel branch to keep up with
the latest patches. Indeed, we can see in Figure 2 that Arch and
Fedora have the lowest patch delay overall compared to other dis-
tributions. More specifically, almost all patches in Arch and Fedora
are ported within 100 days. This is because all mainline patches are
guaranteed to end up in an Arch or Fedora branch every time they
rebase, which happens every two to three months. Of course, while
they stay on the same base, they can port patches earlier as well,
e.g., Arch would perform minor version rebases and Fedora would
perform group-ports from stable/LTS.

Unfortunately, when switching bases from one major version to
another (i.e., major version rebase), branches also inherit new bugs
as well as patches from the mainline. For example, when a rebase
occurs from v4.14.y to the beginning of v4.15, there are a large
number of commits between v4.14 and v4.15 on mainline that are
inherited (e.g., due to the development of v4.15-rc1, v4.15-rc2). All
of these commits will be inherited automatically, which means the
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bug inheritance ratio is always 1. This can be a significant downside
leading to stability and security risks. It is worth noting that minor
version rebase is less of a concern because all commits in stable
and LTS are patches by design. In contrast, for distributions that
choose to stay on a single base, their bug inheritance ratio is much
lower, as shown in Table 2. We will go into more detail in the next
section regarding these measurements.

We suspect that the decision of frequently changing the base is
driven by economics. Specifically, Arch and Fedora are community-
backed distributions [6, 12] which have limited resources invested
to maintain a stable branch on their own. In contrast, the other
distributions are considered commercial distributions [6, 13]. For
example, Amazon Linux 2 distributions are critical for AWS users
where stability and security are critical[48]. As a result, these dis-
tributions prefer to stay on a single major version (e.g., v.4.14.y) for
an extended period of time.

5 STRATEGY OF STAYING ON A SINGLE BASE

Given that frequently changing bases inherits too many bugs from
the mainline, we now set that strategy aside and focus on the
strategy of staying on a single base. Ideally, for this strategy, we
would like to see that patches are ported as fast as possible, and none
of the necessary patches are missed. We aim to analyze how far the
downstream branches that follow this strategy, namely Linux LTS,
Oracle-UeK, Ubuntu, SLE, Debain, Android and Amazon, are away
from the ideal.

In particular, we will provide objective results with regard to
individual metrics first and discuss unique behaviors in the patch
porting practices for Linux distributions. In addition, we will ana-
lyze the factors that influence the results which will help set the
stage for future improvements.

5.1 Patch delay

According to the methods described in the previous section, we can
measure the patch porting delays from Linux mainline to various
downstream kernel branches, including Linux LTS branches and
Linux distributions. Figure 3 plots the patch delay between Linux
mainline and Linux LTS branches and Figure 4 plots their delay for
only the first year since the creation of Linux LTS branches, which
shows that the three latest Linux LTS branches (i.e., Linux v5.4,
v5.10 and v5.15) have noticeably smaller delays overall compared
to older Linux LTS branches, indicating improvements over time.
We do note that there are still about 5% of the patches are delayed
for more than 100 days even in the latest kernel branches. For older
LTS branches, the performance is significantly worse, with 15% to
25% of patches are delayed more than 100 days.

Next, we plot the delay for Linux distributions, as shown in
the Figure 2. Interestingly, unlike the similar performance between
Arch and Fedora, Oracle-Uek, SLE, Ubuntu, Android, Debian and
Amazon exhibit substantially different delay profiles. Amazon and
Android have the lower delay compared with the four distributions,
with about 20% of patches delayed for 100 days or more. The worst
delay goes to SLE, with about 20% of patches ported after 300+ days.
Note that it is expected that the patch delays for distributions are
generally larger than those of LTS branches, because there is always
an extra delay for a patch to be ported from LTS to distribution.
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base | Linux LTS | Oracle-Uek | Ubuntu Amazon SLE Debian Android Oracle-Uek | Ubuntu | Amazon | SLE Debian Android
4.1 1.7%/3.3 1.6%/2.8
4.4 2.7%/8.4 3.5%/10.1 1.0%/1.5
4.9 3.4%/10.4
4.12 17.6%/35.1 17.4%/34.7
4.14 4.5%/13.3 6.7%/15.9 5.1%/14.0 3.1%/4.2 0.3%/0.4
4.15 5.1%/14.7 1.3%/1.8
4.19 5.1%/16.1 3.2%/10.1 | 5.2%/16.05 0.7%/0.2 0.1%/0.1
53 14.3%/35.0 13.3%/33.0
54 | 63%/19.9 | 11.4%/24.7 | 6.6%/18.9 | 6.9%/19.0 5.8%/18.5 5.4%/6.3 1%/1.3 | 0.3%/0.3 1.1%/1.2
5.10 8.8%/24.8 10.5%/24.7 6.7%/17.3 | 9.1%/23.0 0.5%/0.6 0.2%/0.21 | 1.4%/2.1
5.14 15.4%/49.0 9.7%/39.8
5.15 | 13.1%/30.8 13.3%/30.3 | 12.3%/31.0 1.4%/1.5 | 2.7%/2.8

Table 2: Bug inheritance ratio / patch rate for Linux LTS branches and six distributions that stay on a single base

Finally, we breakdown the patch delay for Linux distributions.
There are two patch porting routes for distributions: (1) Linux
mainline to Linux LTS branches, and then to Linux distributions;
(2) Linux mainline to Linux distributions directly (through pick-
ing). Figure 3 already shows the patch delay between Linux mainline
and Linux LTS branches. The patch delay between Linux LTS and
Linux distributions is shown in Figure 5. It clearly shows Android
is much better than other distributions on the delay for group-
porting. About 78% of patches in Android are ported within one
day. However, there is a long tail with much longer delays com-
pared to Amazon and SLE. One possible reason is that the main
maintainer of Android is also the main maintainer of Linux LTS
branches [5, 16]. Second to Android, all of the patches in Amazon
and SLE are group-ported from LTS within 25 days. However, about
20% of patches in Oracle-Uek are ported 100+ days after they appear
in Linux LTS. Figure 6 plots the patch delay for picked patches with
Linux mainline. Except Debian, all of the picked patches are de-
layed much longer than group-ported patches: 40% - 70% of picked
patches are delayed 100+ days.

5.2 Patch rate

Patch rate is another critical facet of the patching porting perfor-
mance. It is possible that some branch has small patch delays but
it ports only a small number of patches. In other words, there may
be many patches missing (or can be viewed as having an infinite
delay).

We show the results in Table 2. Note that we compute the patch
rate for “all patches” as well as “patches picked from mainline”.

This is because the picked patches from mainline can be viewed
as extra work performed by distribution maintainers and worth
highlighting separately.

There are several notable points from the table:

1) There is a general trend that newer branches (i.e., on newer
major versions) have higher patch rate. This is expected as older
branches (e.g., v4.4) diverge more and more from mainline as time
goes by, and thus fewer patches are applicable. This is true for LTS
branches and as well as most distributions (except for Oracle-Uek
which is an outlier).

2) SLE has the highest patch rate among the six distributions —
much higher than distributions that are based on a similar kernel
major version. For example, SLE (v4.12) has 35.1 patches ported per
day compared to Oracle-Uek (v4.14)’s 15.9 and Amazon’s 14.

3) Regarding the patch rate for picked patches only, we can see
that SLE is also the highest. In fact, it picks more patches per day
compared to LTS. For example, for SLE (v5.3), its patch rate is 35 per
day whereas LTS (v5.4) has a patch rate of 19.9 per day. Note that
SLE’s patch porting strategy is that it does group-porting initially
from a stable branch and switches to exclusively picking from
mainline after the stable branch reaches end-of-life. Effectively, SLE
can be viewed as maintaining its own LTS branch.

4) Debian has the lowest patch rate among all distributions. For
example, Debian (v5.10) has an overall patch rate of 17.3 compared
to LTS (v5.10)’s 24.8 and Amazon (v5.10)’s 24.7. We will explain the
reason behind this in §5.4.
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5.3 Bug inheritance ratio

The ideal patch porting does not only require that distributions
port patches, but also that there should be no new bugs introduced
during the process. We list the bug inheritance ratio in Table 2 as
well.

We summarize a few notable points:

1) There is a general trend that newer branches have higher bug
inheritance ratio. This is expected as we can see generally high bug
inheritance ratios correlate with higher patch rate. Assuming there
are always buggy patches that introduce bugs themselves, the more
patches we pick, the more likely we will inherit those bugs.

2) The bug inheritance ratio is much higher in SLE branches than
others, mainly contributed by the extensive picking from Linux
mainline. This is likely again because of the substantially higher
patch rate.

5.4 Unique patch porting behaviors of
Distributions

As demonstrated above, six distributions exhibit varying results
in three metrics, even though all of them choose to stay on the
single base for a long time. This is due to various other unique (and
sometimes subtle) behaviors in the patch porting practices.

SLE effectively maintains its own LTS branches, as previously men-
tioned, by following short-lived Linux stable branches and picking
patches from the mainline directly. SLE appears determined to main-
tain high quality branches by aggressively selecting patches from
the mainline. In fact, it selects significantly more patches compared
to traditional LTS branches, showcasing a strong commitment in
maintaining a reliable kernel. As a result, its patch rate is high
(in fact, the highest), it the bug inheritance ratio is also high (an
expected tradeoff). However, even though it ports many patches,
its patch delays are larger than most other distributions, especially
for patch delays of 100+ days, likely due to the cost of picking more
patches.

Oracle-Uek and Ubuntu overall employ a very similar strategy
that involves grouping-porting from Linux LTS and picking from
the mainline, and has comparable patch rate and bug inheritance
ratio. However, we have noticed significant periods of inactivity
(i.e., idle periods), during which no group-porting takes place. This
is the key reason behind the noticeably worse group-port delay and

end-to-end delay compared to other distributions. We will discuss
this phenomenon more later in §5.5.

Android and Linux kernels are generally considered to have a
significant “gap” because Android kernels are known to have its
custom features designed for mobile devices (by heavily modifying
the Linux kernel). Intuitively, this should result in larger patch de-
lays as Android kernel maintainers may need to maintain diverging
copies of the same functionalities. However, we see that approx-
imately 78% of group-ported patches in Android are delayed for
only one day. The result may be counter-intuitive. However, we
note that a key maintainer of Android also serves as the main main-
tainer of the Linux LTS branches [5, 16], which may help explain
the timeliness of the majority of patches. We do note that the rest
22% of patches incur significantly larger delays compared to most
other distributions, likely due to the gap. Finally, perhaps due to
the same maintainer being involved in porting patches to both LTS
and Android common, we observe fewer picked patches. In other
words, the lack of maintainer diversity might have hurt Android
common because there may be important mainline patches missed
by LTS and also Android common.

Amazon uses minor version rebase to obtain patches from LTS.
As mentioned before, group-porting and minor version rebases
achieve the same goal of getting patches from LTS. This minor
version rebase strategy is more feasible because Amazon has few
picked patches from mainline. This makes it much easier because
it just needs to port a small number of picked patches that are
accumulated over time to the new base every time. The advantage
of this strategy is that it enjoys a fairly small patch delays. The
weakness of this strategy is that Amazon will naturally have a lower
patch rate, potentially missing some important mainline patches
that should have been picked.

Debian chooses to port a much smaller number of patches, i.e., very
low patch rate, as mentioned before. Upon a closer inspection, we
find that only when patches belonging to enabled kernel modules
according to kernel configuration files are ported. As a result, its
patch rate is the lowest. However, we argue this is generally a
risky patch porting practice. This is because configuration options
can change over time and it can lead to a spike of workload to
port patches pertaining to newly enabled modules, leading to sub-
optimal results. In addition, if others were to customize Debian
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In order commits | Out-of order commits
Linux LTS | L2 OF | Bio gize | FXESOF | pio e

Cc tag Cc tag

44 LTS 76% 6.36% 39% 11.18%

49LTS 75% 6.28% 34% 11.13%

4.14 LTS 73% 6.75% 37% 11.43%

419 LTS 73% 6.29% 40% 13.06%

54 LTS 76% 6.74% 36% 17.68%

5.10 LTS 78% 7.55% 28% 24.72%

5.15 LTS 81% 8.54% 26% 29.05%

Table 3: The comparison of in-order and out-of-order commits
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Figure 8: The delay changes for Ubuntu-18.04 over the time

by enabling additional modules, they will effectively end up with
out-dated (and potentially more buggy) versions of those modules.

5.5 Factors Influencing the Results

After the comparative study, we now dive deeper into the results and
attempt to identify factors that influence the results. We summarize
them into a few points.

Lack of hints and large patches contribute to the long patch
delays from mainline to LTS. We know that the patch porting
from Linux mainline to Linux LTS is an important step, as most
distributions would have to wait for the patches to appear in LTS
before they can port them. In general, we know it is a challenging
task for LTS maintainers to identify and pick patches from mainline,
as there are so many mainline commits that maintainers need to
scan (a few hundred daily). Therefore, it is possible that a mainline
commit is mistakenly skipped and then picked up at a later point
after the community realizes its importance. We call such commits,
out-of-order commits. To be more precise, commit A is "out-of-
order" if there exists a later commit B in Linux mainline, whereas
A is ported later to Linux LTS than B. If A is ported to Linux LTS
before all later Linux mainline patches, B, we consider A to be
“in-order”.

According to our measurement of all LTS branches, we observe
that surprisingly 30% of patches are ported out-of-order. Figure 7
compares the delays for patches ported in-order vs. out-of-order.
We can see clear differences between in-order and out-of-order
commits. All in-order commits are ported relatively quickly (under
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80 days), whereas 50% of out-of-order commits have delays longer
than 100 days. In addition, about 78% of out-of-order commits incur
delays of 50+ days.

We explore the factors that could have led to the out-of-order
commits. As mentioned in §2, there are two types of tags pro-
vided in the commits themselves that are designed to make the
job of maintainers easier. Fixes tags can help maintainers make
patch porting decisions. For instance, if a commit given in the
fixes tag goes back to somewhere before Linux v4.4 LTS is forked,
then we can infer that the v4.4 LTS branch would have inher-
ited the bug, therefore requiring the the patch. Cc stable tags in-
dicate that downstream maintainers should pay more attention
to the patch. Some CC stable tags also have additional kernel ver-
sion indicators, such as Cc:<stable@vger.kernel.org>#4.14.x
and Cc:stable@vger.kernel.org#v4. 4+, to suggest which LTS
branch (e.g., v4.14 and branches that after v4.4) may need the patch.
The version tags can save time for maintainers.

According to various sources from maintainers [15, 17, 38] and
our personal outreach to the Linux community, fixes tags and Cc sta-
ble tags are indeed consulted in practice when determining whether
a mainline patch will be ported. We then measured the correlation
between the presence of tags and the patching behaviors, as shown
in Table 3. Indeed, there is a strong correlation. For those patches
ported in-order, they are much more likely to contain either fixes
or Cc stable tags; on the other hand, for out-of-order commits, the
fractions with such tags are much lower.

But there are still about 40% of LTS commits that do not have
any tags. According to maintainers [15, 17, 38], commits without
tags will go through the AUTOSEL bot, which is a neural network
model introduced in Linux in 2017 to identify if a commit is a bug fix
or feature commit; and then maintainers manually check whether
the patch is necessary for specific Linux LTS branches. Since the
AUTOSEL and the manual analysis by maintainers are blackboxes
to us, we can only hypothesize what factors might influence the
decision of whether to port a patch. In particular, we consider the
patch size as a candidate factor. From the official document [9],
Linux LTS/stable branches do not accept patches larger than 100
lines. We therefore pick 75 lines as the threshold in determining
“big patches”. We hypothesize that larger patches are generally
more complexity and more difficult to port, especially when the
LTS/stable has diverged from the mainline. Indeed, Table 3 shows
that the percent of big patches in out-of-order commits are twice or
three time as that in in-order commits(we also choose 50,60,70,80,90
lines as “big patches”, but the result is the same).

Periods of inactivity of group-porting affects distribution’s
patch delays significantly. Now, we explore the patch porting
behavior of distributions. As mentioned earlier, a primary source
of patches is through group-porting from Linux LTS. It is natural
to take advantage of the efforts by LTS maintainers who already
determined which mainline patches are necessary to port for the
base. In other words, by following an LTS branch, downstream
kernel can shield themselves from the large stream of mainline
commits.

As mentioned earlier and shown in Figure 5, Ubuntu and Oracle-
Uek perform group-porting and they both have fairly poor delay
profiles. Interestingly, after we investigate the delay patterns, we
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S # of LTS | # of picked Picked & in upstream LTS Picked & not in. upstream LTS .

distributions . . T, o # of commits | # of commits
commits | commits First in Distro | First in LTS | Total num .
with fix tags | necessary for LTS

Oracle-Uek5 (v4.14 LTS) 25,663 7,070 570 315 6,185 798 | 192(24.1%)
Oracle-Uek6 (v5.4 LTS) 22,069 7,153 220 302 6,631 934 | 200(21.4%)
Oracle-Uek?7 (v5.15 LTS) 13,790 581 78 98 405 42 | 14(33.3%)
Ubuntu-16.04 (v4.4 LTS) 18,974 2,830 226 525 2,079 147 | 39(26.5%)
Ubuntu-18.04 (v4.14&4.19 LTS) 50,771 2,939 569 516 1,854 297 | 104(35.0%)
Ubuntu-20.04 (v5.4 LTS) 22,069 12,67 94 149 1,024 122 | 39(32.0%)
Ubuntu-22.04 (v5.15 LTS) 13,790 859 84 183 592 51 | 11(21.6%)

Table 4: Comparison between picked commits and commits in corresponding LTS branches

observe some fairly anomalous data points. Taking Ubuntu 18.04 as
an example, 20% of group-ported commits have a delay longer than
150 days. Furthermore, the long-delay commits are not uniformly
distributed. Instead, there is a strong temporal pattern as shown
in Figure 8. The X-axis shows the n-th group-porting events (each
event corresponds to a group of commits) since the creation of the
Ubuntu-18.04 branch. The Y-axis shows the patch porting delay
(for the line of “LTS to distributions”) and the number of days
between two group-porting events (a.k.a., idle periods). Upon a
closer look, there are two clusters of “idle periods”. The first cluster
contains three small idle periods (around 25 days each). The second
contains a huge 144-day idle period where no group porting activity
occurred. These contribute to the massive delays in porting patches
to Ubuntu, especially for the patches that have delays between 150
and 300 days.

To understand what happened behind the scene, we reached out
to Ubuntu maintainers directly. Interestingly enough, we were told
that those “idle periods” actually corresponded to a period of time
where the company was busy with other important (but unspecified)
tasks. According to our observation, during such periods, there
seems to an increased focus on picking patches for CVEs (one
possible task) — 1.7 CVE patches per day were picked during the
idle period vs. 0.58 per day during the non-idle periods.

Surprisingly, we find that the idle periods are much longer in
Oracle-Uek than Ubuntu: the longest idle periods in Oracle Uek-5,
6, and 7 are 233, 126, 112 days, respectively. In contrast, the longest
idle periods in Ubuntu-16.04, Ubuntu-18.04, 20.04, and 22.04 are 116,
144, 53, and 58 days, respectively. This explains why the group-port
delays (and the end-to-end patch delays) for Oracle-Uek are even
worse than Ubuntu.

Note that SLE does not have the same problem because it group-
ports patches only from a short-lived stable branch (for two to three
months), so it is much less likely to incur such long idle periods.

Many patches in distributions should have been ported to
LTS. Since we know that distributions often pick patches directly
from mainline and can have higher patch rate than LTS overall, does
it mean that distributions actually offer better-quality kernels than
LTS? Intuitively, that should be the case because it is the distribution
kernels that are user-facing (not the LTS ones). However, it would
imply that there are patches missed or delayed by LTS (and they
are necessary and should have been ported).

Indeed, as mentioned in §2, distributions have their own bug
tracking systems where they have external signals (e.g., from users)

that trigger the patch picking. In addition, we find that CVE is also
a focus for distributions (as they are responsible for the security of
their customers). In particular, maintainers usually attach a CVE
ID to indicate that the patch fixes a known security vulnerability.
Interestingly, we note that the picked CVE patches appear in distri-
butions 74.2 days earlier than LTS on average; even if the picked
CVE patches are later than LTS, it is only 16.7 days later on average.

To get a more comprehensive picture, Table 4 shows the picked
commits by distributions and their relationship with LTS commits.
We summarize three main points here. First, the number of picked
commits in distributions is generally much smaller than the number
of Linux LTS commits. Second, we note that, in the cases where
the picked commits appear in both the LTS and distribution, many
of the picked commits appear first in distributions and then in LTS,
which is a strong evidence that distributions do pick useful patches
earlier than LTS. Finally, we note that a large fraction of picked
commits are not even ported into LTS. We note that only a small
fraction of them have tags, which is another evidence that that such
pickings are driven by other external signals. More importantly,
for patches with fixes tags, we find that roughly 20% to 30% of
the patches should have been ported to LTS, because the buggy
commits (given in fixes tags) do appear in LTS, which shows that
corresponding bugs are introduced in LTS, and LTS is required
patches to fix those bugs. Interestingly, the remaining 70% to 80%
are cases where the buggy commits themselves are not in LTS.
Upon a closer inspection, this is because the buggy commits were
inherited by distributions exclusively through their picked patches.
This is the same phenomenon we reported earlier about higher bug
inheritance ratio as a result of higher patch rate.

Overall, we conclude that many patches picked by distributions
should have been ported to LTS as well. In addition, if the patch
delays between mainline and LTS improve, that will benefit the
entire ecosystem.

6 IMPROVEMENT OF THE PROCESS

In this section, we summarize a few suggestions based on the in-
sights gained from our measurement study. To improve the patch
porting process, we believe the responsibility is not only on Linux
LTS maintainers but also the whole Linux community. Specifically,
we propose the following suggestions.

Patch authors: increase the awareness and willingness to at-
tach tags. According to the above analysis, tags associated with
patch commits play a critical role in the patch porting process. The
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Cc stable tags and fixes tags directly inform LTS maintainers on
whether a commit is a patch and a patch is necessary for stable
or LTS branches. As we have shown, the lack of tags correlates
directly with longer patch porting delays. Interestingly, the patch
submission in Linux is heavily decentralized. Anybody can submit
patches and there is an official document outlining the desired patch
submission process [20], including the suggestion of including var-
ious tags. However, according to [19], about 300 authors submit
their first change into Linux mainline in every kernel release. They
don’t all know the rules. This requires efforts to educate the devel-
opers and maintainers. For example, we note that sometimes patch
reviewers will remind patch authors to add these tags but they are
quite inconsistent.

Of course, generating these tags will requires some more effort
on the patch authors, e.g., figuring out which commit introduced
the bug. Therefore, it calls for automated reasoning tools that can
generate these tags.

Maintainers: automated patch relevance analysis tools. For
each Linux mainline commit, there are two indispensable steps for
Linux LTS maintainers: (1) identify whether it is significant enough,
e.g., an important bug fix, and conform to rules in [9]; (2) check
whether the commit should be ported into one or more specific
stable/LTS branches.

Currently, there are already several machine learning tools [3,
32, 33] for the first step, the best accuracy is as high as 90%. LTS
maintainers also have already been using such tool, such as AU-
TOSEL [3].

Nevertheless, there are no automatic tools for the second step.
The second step is required as not all stable/LTS branches may be
affected by a bug. It is also more difficult. Linux LTS maintainer
usually have to manually understand the patch and see if the patch
is applicable to a specific stable/LTS branch. We believe the automa-
tion of this step can continue to help maintainers further.

Distribution maintainers: mitigating regression. As we see, a
good fraction of patches ported by distributions (whether through
LTS or picked directly from mainline) end up being buggy patches
introducing new bugs. In other words, there are significant regres-
sion issues in patches for Linux mainline. In particular, the bug
inheritance ratio shows that a decent fraction came from picked
patches. Interestingly, we note that there is a chance to mitigate
such issues. The observation is that it is possible that the buggy
patches already have fixes in Linux mainline when distributions
picked the buggy patches themselves. Given that picking in gener-
ally is already substantially delayed, the likelihood of a patch for
the initial picked patches being fixed on mainline is therefore quite
high. As a concrete example, in Oracle-Uek, we find that about 60%
- 70% of buggy patches introduced by picking are fixed within one
day. This is likely because Oracle-Uek looked ahead to see if these
picked patches on mainline have corresponding fixes already. If so,
they ported those fixes as well. However, other distros do not seem
to have adopted this method. Using SLE as an example, only 3.2% -
6.4% of picked buggy patches are fixed within a day. We suggest
this simple trick of look ahead on mainline to help mitigate the risk
of regression caused by extensive picking (i.e., reducing the bug
lifetime).
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Community: cross validation metadata tracking system for
all LTS and distributions. As shown in Table 4, there are about
3.1% - 19.4% of picked commits that are ported into distributions
before LTS. And about 30% of LTS-missed picked patches could
possibly also be necessary for Linux LTS branches. Also, the picking
behaviors are drastically different even for same-based distributions.
Therefore, it is useful for distribution and LTS maintainers to review
each other’s patches to minimize missing patches. Furthermore, we
suggest that the Linux community to collectively build a unified
bug tracking system so that they can all benefit and quickly port
important patches.

7 RELATED WORK

Linux patches measurement. Zheng et al. [61] have recently
conducted a measurement on the Android kernel patch ecosystem,
which is the most relevant work. They focus on the patch porting
relationships in the Android branches, including measuring the
patch porting delay, with an emphasis on analyzing binary-only
OEM Android kernel images (e.g., Samsung). In our study, we focus
on a very different target: downstream Linux distributions with
public git repositories, without which it is difficult to infer the exact
patch porting strategies. Finally, the measurement is limited to only
CVE patches publicized on Android security bulletin, and focus on
a single dimension of patch delay, whereas we additional derive
insights from other metrics such as patch rate and bug inheritance
ratio. Furthermore, their analysis for the patch delay lacks the
knowledge of key data such as fixes tags and Cc tags, which we
showed to be critical in assisting patch porting.

There are also other related research measuring patches and
vulnerability life cycles. For example, Li et al. [39] performed a
large-scale measurement on CVE dataset across different various
open-source projects, including Linux kernel. However, the study
does not look at the Linux kernel as an ecosystem. Rather, the
measurement focuses on Linux mainline only, e.g., when a bug was
introduced in mainline and when it is fixed in mainline. Ozment et
al. [42] measured whether security improves when software ages
(using OpenBSD as a case study). Farhang et al. [29] measured
the life cycle and timeline of patches in Android. Shahzadet et
al. [47] studied various dimensions of vulnerabilities such as risk
level. Finally, Jones et al. [8] conducted an extensive study on the
impact manufacturers, carriers, and end-users have on the rollout
of Android security updates and OS upgrades.

Automated patch analysis. There exist several studies [33, 50, 55]
that use machine learning to determine whether a Linux mainline
commit is a patch and should be ported to stable/LTS branches,
with varying degrees of success.

Alternatively, one can recognize whether a commit is a security
patch and therefore should be considered for back-porting. For ex-
ample, there have been studies using machine learning consuming
commit messages and bug reports to achieve the goal [27, 28, 31,
40, 44, 45, 51, 56, 63]. Another recent work by Wu et al. [57] takes
a different route to analyze the bug semantics in a patch.

In addition, bug localization techniques[34, 36, 37, 43, 46, 52, 53,
59, 62] can can automatically locate a potential bug in a software,
which can help port more necessary patches. But they require bug
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reports which are unfortunately not available for the majority of the
Linux mainline patches. Wen et al. [54] explored the relationships
between bug introducing commits and bug fixing commits.

Finally, there are also recent work on determining whether a
given patch has been applied to a specific target, for both source [58]
and binary targets [35, 60]. However, they cannot determine whether
a patch really needs to be ported to the target.

8 CONCLUSION

In this work, we have performed a deep investigation into Linux
kernel ecosystem to understand the patch porting strategies in
three metrics. We uncover many interesting findings on the current
practices of patch porting, including the causes of sub-optimal
results. Finally, we also provide suggestions on how to improve the
patch porting process.
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