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ABSTRACT

The rapid evolution of Internet-of-Things (IoT) technolo-
gies has led to an emerging need to make them smarter. A
variety of applications now run simultaneously on an ARM-
based processor. For example, devices on the edge of the In-
ternet are provided with higher horsepower to be entrusted
with storing, processing and analyzing data collected from
IoT devices. This significantly improves efficiency and re-
duces the amount of data that needs to be transported to
the cloud for data processing, analysis and storage. How-
ever, commodity OSes are prone to compromise. Once they
are exploited, attackers can access the data on these devices.
Since the data stored and processed on the devices can be
sensitive, left untackled, this is particularly disconcerting.

In this paper, we propose a new system, TrustShadow that
shields legacy applications from untrusted OSes. Trust-

Shadow takes advantage of ARM TrustZone technology and
partitions resources into the secure and normal worlds. In
the secure world, TrustShadow constructs a trusted exe-
cution environment for security-critical applications. This
trusted environment is maintained by a lightweight runtime
system that coordinates the communication between appli-
cations and the ordinary OS running in the normal world.
The runtime system does not provide system services it-
self. Rather, it forwards requests for system services to the
ordinary OS, and verifies the correctness of the responses.
To demonstrate the efficiency of this design, we prototyped
TrustShadow on a real chip board with ARM TrustZone sup-
port, and evaluated its performance using both microbench-
marks and real-world applications. We showed TrustShadow

introduces only negligible overhead to real-world applica-
tions.
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1. INTRODUCTION
The emerging Internet of Things (IoT) technologies have

enabled more and more isolated “things” to collect, process,
analyze, and exchange data. To become smart, IoT devices
tend to be built atop ARM-based multi-programming plat-
forms, in which multiple programs run simultaneously on
commodity Operating Systems (OSes). This allows them
to install product-ready applications and saves effort and
budget in application development.

For example, edge computing [9, 8] is a decentralized com-
puting infrastructure that connects IoT devices to process
their data on other, more powerful devices that are on – or
close to – the network edge. Examples of such edge devices
include industrial controllers, smart gateway and routers,
embedded servers, and even automotive in-vehicle infotain-
ment etc. Compared to a central data center in the cloud,
edge devices are geographically closer to the IoT devices.
Thus, they can respond to IoT devices more quickly, making
them more suitable to environments where operations are
time-critical or Internet connectivity is poor. In telemedicine
scenarios, edge devices could run sophisticated analytics and
turn around results in real time [15]. As another example, a
smart 3D-printer [19] can directly download an STL (STere-
oLithography) file from the “MakerBot Digital Store” [19],
convert it into GCODE by running a slicer program, and feed
the GCODE to the actuator.
Unfortunately, the security provided by commodity OSes

in the multi-programming platforms is often inadequate.
Once an OS is compromised, attackers gain complete ac-
cess to the data on a system. Since these devices may often
deal with confidential data, possibly subject to laws and reg-
ulations, this is particularly disconcerting.

To address this problem, a straightforward reaction is to
safeguard applications against the OSes potentially vulner-
able to exploitable bugs or misconfiguration. Prior efforts
on this explore executing applications that handle sensi-
tive data in separate virtual machines (e.g., [13, 26, 43]),
taking advantage of hardware features (e.g., [6, 34, 33])
or retrofitting commodity OSes (e.g. [16]). Unfortunately,



these solutions are not applicable to the aforementioned IoT
multi-programming platforms.

First, these devices do not have the hardware features
typically available on PCs. To be energy efficient, these de-
vices generally incorporate ARM Cortex-A processors, mak-
ing the techniques that rely on unique hardware completely
futile (e.g., Haven [6] based on Intel SGX). Second, these
devices do not have abundant computational resources in
comparison with PCs or a data center in the cloud. Thus,
it is not realistic to adopt to these devices those techniques
specifically designed for PCs or data centers. Last but not
least, some techniques previously proposed require radical
changes to applications and OSes, which poses a substan-
tial barrier to their adoption. This is especially true in the
scenario where device manufacturers would like to retain
compatibility with existing applications.

In this paper, we address the aforementioned issues by
developing TrustShadow. TrustShadow is a system that
shields legacy applications from a compromised OS. By tak-
ing advantage of ARM TrustZone technology [4], our sys-
tem constructs a trusted execution environment for security-
critical applications. Different from some existing tech-
niques, TrustShadow does not radically change existing
OSes. Rather, it utilizes a lightweight runtime system to
coordinate communications between applications and un-
trusted OSes. As such, TrustShadow requires no changes
to existing applications either.

More specifically, we develop TrustShadow with a runtime
system running in the TrustZone of an ARM processor. The
runtime manages the page tables for applications locally in
an isolated secure environment, and ensures their virtual
memory cannot be accessed by an untrusted OS running
outside the environment. To accommodate the execution
of applications in a lightweight manner, the runtime does
not incorporate complicated system services. Rather, it for-
wards application requests for system services to the un-
trusted OS, similar to Proxos [43]. To guarantee security,
the runtime verifies return values from system services to
defeat Iago attacks [11], and interposes context switches be-
tween the applications and the untrusted OS. Considering an
application might interact with file I/O, the runtime system
also encrypts the data before revealing it to the untrusted
OS for storing.

With the design above, TrustShadow protects legacy ap-
plications from the untrusted OSes running them. As a re-
sult, developers no longer need to re-engineer applications
in order to run them on IoT devices. Since TrustShadow

does not implement system services itself, the complexity of
Trusted Computing Base (TCB) is reduced, making Trust-

Shadow less vulnerable to exploits. To the best of our knowl-
edge, TrustShadow is the first solution on ARM-based IoT
devices that allows an unmodified application to run pro-
tected from attacks from untrusted OSes

In summary, this paper makes the following contributions.

• We propose a system – TrustShadow– for ARM-based
multi-programming platforms. It can protect security-
critical applications from untrusted OSes without the
requirement of re-engineering the applications.

• We introduce a runtime system within TrustShadow.
It accommodates the execution of Linux applications
with a lightweight forwarding-and-verifying mecha-
nism.

• We implemented TrustShadow on a real chip (SoC)
board with the ARM TrustZone support with only
about 5.3K lines of code (LOC) in the secure world,
and 300 LOC in the normal world. Using microbench-
marks and real world software, we showed that Trust-
Shadow imposes only negligible performance overhead.

The rest of the paper is organized as follows. Section 2
and 3 present related work and the background of Trust-
Zone, respectively. Section 4 discusses our threat model.
Section 5 describes the overview of TrustShadow. Section 6
and 7 introduce our design and prototype implementation
in detail. We present the evaluation of TrustShadow in Sec-
tion 8, followed by some discussion in Section 9. Finally, we
conclude the paper in Section 10.

2. RELATED WORK
As is described in Section 1, prior research primarily fo-

cuses on taking advantage of virtual machines, hardware
features and radical code re-engineering to protect applica-
tions from compromised OSes. In this section, we summarize
these works and describe why they are not suitable for IoT
devices with more details.

Hypervisors and Virtual Machines. To protect an ap-
plication from a compromised OS, one research effort fo-
cuses on utilizing hypervisor to construct trusted execution
environment for applications. Systems following this design
principle include Overshadow [13], CHAOS [12], SP3 [46], Ink-
tag [26], etc. They encrypt address space for an application
under protection through a hypervisor, so that a compro-
mised OS can only view the address space of the application
in ciphertext. Using the hypervisor, they also verify the in-
tegrity of memory contents, and thus ensure a compromised
OS cannot jeopardize the execution of the application. Sim-
ilar to these techniques, another research effort focuses on
escalating protection with virtual machines. For example,
Terra [21] and Proxos [43] allocate a dedicated VM for an
application, making it resistant to a malicious OS.

While these systems have been shown to be effective in
shielding applications, they are an overkill for resource-
constrained IoT devices, and sometimes cannot be adopted
by IoT devices. First, deploying a hypervisor-based sys-
tem cannot provide the best (native) performance for the
already performance-hungry IoT devices [20]. Second, vir-
tualization extension used in InkTag etc., is a new hardware
feature for the ARM platform, and is missing for many ex-
isting ARM devices1. Third, ARM has recently released the
new IoT-oriented Cortex-M processor series which incorpo-
rate TrustZone extension, not virtualization extension [3].
This meets our speculation that virtualization is not suit-
able for resource-constrained IoT devices.

From the security perspective, hypervisor or virtual ma-
chine based solutions relies on hypervisor, which is already
struggling with its own security problems due to increas-
ing TCB size [18, 17]. In this work, TrustShadow harnesses
TrustZone technology to mediate communication between
OS and applications, which eliminates complex, error-prone
resource allocation in a hypervisor.

Hardware Features. Research in the past also explores us-
ing various hardware features to protect applications from

1ARM released virtualization extension in the year 2010 [2].



untrusted OSes. For example, Haven [6] takes advantage
of Intel Software Guard eXtension (SGX) [35] to safeguard
applications. More specifically, it harnesses SGX to instan-
tiate a secure region of address space, and then protects
execution of applications within that region from malicious
privilege code. In addition to Intel SGX, Trusted Platform
Module (TPM) is also used for shielding applications from
a potentially malicious OS. For example, both Flicker [34]
and TrustVisor [33] utilize TPM to isolate the execution
of sensitive code. As is described in Section 1, IoT devices
generally incorporate ARM Cortex-A processors which do
not have the aforementioned hardware features. As a result,
previous techniques based on those cannot be applicable.

Trusted Language Runtime (TLR) [39], VeriUI [32] and
TrustOTP [42] utilize ARM TrustZone technology for shield-
ing applications. TLR implement a small runtime capable
of interpreting .NET managed code inside the secure world.
By splitting mobile application into secure part and non-
secure part, the secure part of the app is never exposed to
the untrusted OSes. VeriUI utilizes TrustZone to provide a
trustworthy setting for handling passwords. TrustOTP har-
nesses TrustZone to protect the confidentiality of the One-
Time-Password against a malicious mobile OS. While these
works take advantage of TrustZone, they require modifica-
tions to applications in order to be under protected. This
poses a substantial barrier to their adoptions.

Code Instrumentation. Virtual Ghost [16] is another
research endeavor on protecting applications from a hos-
tile OS. Different from those techniques discussed above,
it uses compiler techniques and run-time checking to imple-
ment a mechanism similar to InkTag within the OS kernel.
Since the compiler instrumentation and run-time checking
introduce more privilege code to kernel, not only does it in-
crease TCB of a computer system but also imposes perfor-
mance overhead, making it not suitable to energy-efficient,
computation-lightweight IoT devices.

3. TRUSTZONE
In this section, we present the background of ARM Trust-

Zone technology. To be more specific, we briefly describe its
architecture, address space controller and memory manage-
ment unit (MMU).

3.1 Architecture
ARM TrustZone partitions all of the System-on-Chip

(SoC) hardware and software resources in one of two worlds
- the secure world for the security subsystem, and the nor-
mal world for everything else. With this partition, a sin-
gle physical processor core can safely and efficiently execute
code from both the normal world and the secure world in
a time-sliced fashion. When the processor executes code
in the normal world, it enters a non-secure state in which
the processor can only access resources in the normal world.
Otherwise, it is in a secure state in which the processor can
access resources resided in both worlds.

To determine whether program execution is in the secure
or normal world, ARM TrustZone extends a Non-Secure bit
(NS-bit) on the AMBA Advanced eXtensble Interface (AXI)
bus. With this NS-bit, the processor can check permissions
on the access. To manage switches to and from the secure
world, TrustZone provides monitor mode software which en-
sures the state of the world that the processor is leaving

is safely saved, and the state of the world the processor is
switching to is correctly restored. The secure world entry to
the monitor mode can be achieved by an explicit call via an
smc instruction.

3.2 Address Space Controller
TrustZone Address Space Controller (TZASC) is an Ad-

vanced Microcontroller Bus Architecture (AMBA) compli-
ant SoC peripheral. It allows a TrustZone system to config-
ure security access permissions for each address region. In
TrustZone, the access permissions are managed by a group of
registers, the access to which must be from the secure world.
In addition, TZASC controls data transfer between an ARM
processor and Dynamic Memory Controller (DMC). To per-
mit data transfer, it examines whether NS-bit matches the
security settings of the memory region. Given a memory
region set to secure access only, for example, an attempt to
read returns all zeros and that to write has no change to the
contents in that region.

3.3 Memory Management Unit
An ARM processor also provides MMU to perform the

translation of virtual memory addresses to physical ad-
dresses. Since TrustZone partitions memory space into se-
cure and normal worlds, a processor with TrustZone en-
abled provides two separated virtual MMUs which allow
each world to map virtual addresses to physical addresses
independently.

In the normal world, a process can only access physical
memory in the non-secure state. In the secure world, it how-
ever can specify how to access physical memory by tuning
NS-bit. For example, it could adjust the NS field in the first-
level page table, and access the memory in either the secure
or non-secure state. This flexibility augments a TrustZone
system with an ability to efficiently share memory across the
worlds.

4. THREAT MODEL
TrustShadow shields a trustworthy application from a hos-

tile OS. We consider a completely compromised OS, which
means the attacker can execute arbitrary hostile code with
system privilege to interfere with the memory and registers
of a process. For example, it may read/write any memory in
victim process’s address space, through either load/store in-
structions or Direct Memory Access [7, 27], causing memory
disclosure and code injection attacks. As another example,
OS could modify interrupted process state (e.g., the PC reg-
ister) during exception handling and resume the execution
from an arbitrary instruction to change the program execu-
tion’s control flow.

In addition, the OS could change victim process’s behav-
ior by hijacking system services (e.g., forging system call
responses), leading to Iago attacks [11]. Recent study shows
that an adversary can infer data by observing a program’s
page fault patterns [45]. This kind of controlled channel
attack is also covered in this work.

Availability is out of scope in this paper. In fact, a com-
promised OS could simply refuse to boot, or decline the time
slices of an HAP to launch Denial-of-Service (DoS) attacks.
Side channel attacks such as timing and power analysis are
out of scope in this paper. We assume the runtime system
running in the TrustZone is trusted. Throughout our design
of TrustShadow, we keep its functionality simple and its code



Figure 1: The architecture of TrustShadow.

base minimal. This makes it easier to ensure its correctness
through formal verification [41] or manual review.

5. OVERVIEW
Figure 1 illustrates the architecture of TrustShadow,

where the runtime system and Linux kernel run in the secure
and normal world, respectively. Within the secure world, the
runtime system shields the execution of a High-Assurance
Process (HAP), and all the trusted modules shown in the
figure cannot be accessed by the ordinary Linux running in
the normal world.

To be resistant to a hostile OS, an application needs to be
initialized through a customized system call, which creates
a “zombie” HAP and its “shadow” counterpart. In our de-
sign, the zombie HAP represents the application running in
the normal world. However, it never gets scheduled to run.
Rather, TrustShadow runs its “shadow” counterpart residing
in the secure world. To support the execution of the shadow
HAP, TrustShadow introduces a lightweight runtime system
to the secure world.

The runtime system does not provide system services for
shadow HAPs. Instead, it intercepts exceptions and for-
wards them to the Linux OS running in the normal world.
In this way, the runtime system can maintain a trusted exe-
cution environment for HAPs without introducing a large
amount of code to the secure world. To enable cross-
world communications, TrustShadow introduces data struc-
ture task_shared to share data between the runtime system
and the OS. In addition, TrustShadow sets aside data struc-
ture task_private to store sensitive metadata for shadow
HAPs. In our design, this data structure can only be ac-
cessed by the runtime system.

To accommodate the execution of HAPs and coordinate
communications across two worlds, the runtime system is
designed with various modules (see Figure 1). Serving as
the gateway for all exceptions and their returns, the con-
text switch module maintains the CPU hardware context
for each HAP, and restores/clears general-purpose registers
accordingly. It allows the runtime system to coordinate the
execution of an HAP and avoid leaking sensitive data to the
OS running in the normal world.

As is shown in Figure 1, the runtime system also im-

Figure 2: Physical memory partition vs. virtual memory
layout.

plements an internal exception handler module – indicated
by FVP and RNG. They are designed to handle floating
point computation and random number requests locally, for
the reasons that cryptographic operation must rely upon
trustworthy random number generation, and floating point
computation necessarily exposes floating registers if Trust-
Shadow relies upon the Linux OS for handling this exception.
In Section 6.5, we describe this internal exception handler
in detail.

In our design, the runtime system handles exceptions us-
ing three modules, including exception dispatcher, external
exception handler, and forwarder. The exception dispatcher
is responsible for dispatching exceptions to corresponding
handlers. Except for floating point exception and random
number requests, this module dispatches all the exceptions
to the external exception handler which further redirects the
exceptions to the forwarder module. To accommodate ex-
ception forwarding in a transparent manner, the forwarder
module emulates an exception context for the normal world,
pretending that exception is trigger by the zombie HAP. Af-
ter receiving exceptions, the Linux OS handles them and
returns results through task_shared. The external excep-
tion handler verifies the return results before reflecting them
to the execution environment of the corresponding HAP. In
Section 6.2, 6.3 and 6.4, we describe how the three modules
coordinate and perform external exception handling.

Since the normal OS does not have the privilege to ac-
cess a shadow HAP, TrustShadow also introduces a world-
shared buffer, indicated as the marshaling buffer in Figure 1.
Through this buffer, not only does TrustShadow share the
parameters of system calls with the ordinary OS but also
retrieves the returns of the system calls. To retrieve the re-
turn value of a system call, TrustShadow copies the data in
the buffer to the memory region corresponding to the system
call, provided that the verifier module marks it valid.

6. RUNTIME SYSTEM
In this section, we detail the runtime system illustrated in

Figure 1. We begin with memory management for security.
Then, we discuss how the aforementioned modules coordi-
nate HAP execution. More specific, we describe how they
forward exceptions, handle page faults and intervene system
calls. Last, we present internal exception handling.

6.1 Memory Management
Here, we describe how we partition physical memory re-

gions, and specify the design of virtual memory system.



Physical Memory Partition. Using TZASC, Trust-

Shadow creates three distinct physical memory regions. They
are non-secure region ZONE_TZ_APP as well as secure regions
ZONE_TZ_RT and ZONE_TZ_APP. The non-secure region can be
accessed by both the normal and secure worlds, whereas the
secure regions have to be accessed through the secure world.
In our design, we designate secure region ZONE_TZ_APP for
shadow HAPs, ZONE_TZ_RT for the runtime system and non-
secure region ZONE_NORMAL for holding the Linux OS and
other ordinary processes. We illustrate these three regions
in Figure 2. With the partition above, the runtime, HAPs
and Linux OS are all physically isolated, which provides the
essential support for safeguarding the HAPs.

Virtual Memory Layout. TrustShadow supports execut-
ing legacy Linux code in the secure world. As a result, we
design the virtual address of the secure world to follow the
same user/kernel memory split as that in the Linux OS.
With this design, legacy code can be offloaded to execute in
the secure world without any code relocation. In our current
design, both Linux OS and the runtime system maintain a
2G/2G virtual address split, as shown in Figure 2.

In the kernel space of secure world, in addition to mapping
itself to ZONE_TZ_RT, the runtime system maps the physical
memory holding the Linux OS (ZONE_NORMAL) in the vir-
tual address space. With this mapping, the runtime sys-
tem can efficiently locate shared data from the OS (such as
task_shared) by adding a corresponding offset.

6.2 Forwarding Exceptions
In general, a program is not self-contained. During exe-

cution, it might be trapped into the OS (e.g., calling a sys-
tem service, encountering a page fault or interrupt). In the
ARM architecture, system calls are requested by issuing the
svc instruction which traps the processor into privileged SVC

mode to accomplish the system services. Likewise, other ex-
ceptions during execution would trap the processor into the
corresponding privileged modes.

As is described in Section 5, except for float point com-
putation and random number generation, the runtime sys-
tem intercepts exceptions and redirects them to the Linux
running in the normal world. Here, we describe how Trust-

Shadow performs exception forwarding.
ARM processors utilize current program status register

(cpsr) to hold the current working mode of a processor
(e.g., USR or SVC). When an exception is taken, a processor
enters the target mode by performing the following opera-
tions. First, register pc points to the corresponding offset
in the exception vector table. Then, the processor stores
the value of previous cpsr to saved program status register
(spsr) before setting cpsr to indicate the current working
mode (i.e., the target mode). In the ARM architecture, spsr
is a banked register and thus each processor mode has its
own copy. Based on the value of spsr, an exception han-
dler could get information about the pre-exception processor
mode.

Since the monitor mode software can access resources in
both worlds, the runtime system can re-produce an excep-
tion as follows. Here, we take forwarding a SVC exception as
an example. (i) The runtime system sets spsr in monitor
mode to represent the target mode (SVC). (ii) It sets the tar-
get mode’s spsr to represent user mode (USR). (iii) It issues
movs instruction to jump to the target exception handler

(0xFFFF0008). Here, movs is an exception return instruc-
tion. In addition to jumping to the target address, it copies
spsr in the current mode (SVC, which is set in Step i) to
cpsr in the target mode. As a result, the OS kernel catches
the exception at the correct address (0xFFFF0008) in the
right mode (SVC), with spsr indicating that the exception
comes from user mode (set in Step ii). We provide a code
snippet to demonstrate this implementation in Appendix A.
Forwarding other types of exception can be implemented in
a similar way.

6.3 Handling Page Fault
A page fault is one type of exception resulting from the

failure of fetching an instruction or accessing data. In the
ARM architecture, a page fault is also called an abort excep-
tion, raised by MMU, indicating that the memory accessed
does not have a page table entry set properly. After such
an exception is taken, an OS invokes its page fault handler
which assigns an appropriate physical page and updates the
page table entry accordingly. Typically, a page table entry
includes the virtual-to-physical address mapping and the ac-
cess permissions of the virtual memory.

In general, an OS maintains page tables for applications.
However, considering that an OS might be hostile and can
tamper with the page tables for applications, we isolate these
page tables from the OS by placing them in the secure world.
The runtime system updates their entries by taking advan-
tage of the page fault handler provided by Linux OS.

To harness the page fault handler, we modify the existing
on-demand page fault handing mechanism in Linux. In par-
ticular, we hook the page fault handler so that it can store
the context of page fault handling in the aforementioned
shared memory, task_shared2. After retrieving the updat-
ing information and before installing a page table entry, the
runtime system validated the returned information. In the
following, we provide more details on this procedure.

6.3.1 Basic Page Table Update
A page fault occurs in various situations, and TrustShadow

handles page faults differently. The most simple situation is
accessing anonymous memory, in which case the page table
entries in the Linux OS and the runtime system point to
the same secure page S. Besides duplicating the page table
entry retrieved from task_shared, the run time system must
first make sure that the mapped page is within the memory
region defined in ZONE_TZ_APP. We illustrate this basic page
fault handling in Figure 3a.

6.3.2 Page Table Update with Integrity Check
Different from anonymous memory, accessing memory

backed by a file needs assistance from the OS to load the
file contents to memory. As the OS may be hostile, besides
ensuring that the translated pages are within the range of
ZONE_TZ_APP, the runtime system also verifies the integrity
of loaded contents. This section describes page fault han-
dling on the memory regions backed by executable images.

We take loading a code page as an example in Fig-
ure 3b. When a prefetch abort happens, the Linux page
fault handler will eventually call do_read_fault, which lo-

2In our design, task_shared carries the updated page table
entry value (which contains the address of the translated
physical memory page), the influenced virtual address, and
additional contextual information.



(a) Basic Page Table Update. (b) Page Table Update with Integrity
Checking.

(c) Page Table Update for Protected Files.

Figure 3: Page Table Update.

cates the physical page N caching the corresponding code
page (Step 1). In this context, a new secure world page S

from ZONE_TZ_APP is allocated, and the physical addresses
of both N and S pages are saved in task_shared. With this
shared information, the runtime system first ensures that S
page is actually a fresh page from ZONE_TZ_APP. Then, the
runtime system installs a new page table entry in the trusted
page table (Step 2), copies the N page to the S page (Step 3)
and verifies the integrity of the copied page (Step 4). Note
that verification is performed on S pages, therefore, Trust-
Shadow is resilient to TOCTTOU (Time Of Check To Time Of
Use) attacks.

The described page table update with integrity check is
the low level primitive for ensuring load time program in-
tegrity. TrustShadow enforces such checking on all the mem-
ory segments of type PT_LOAD in the ELF program images,
including executable and dynamic libraries. In the follow-
ing, we provide details on verifying the integrity of program
images.

Verifying Executable Integrity. The Runtime system
maintains a list of hash values in the format of (vaddr,

hash), which is initialized according to the bundled mani-
fest (see Section 6.6). Once a page fault occurs in the cov-
ered range, the runtime system installs a secure page table
entry as mentioned above. If validation is failed, the run-
time system immediately terminates the process by sending
an _exit system call to the OS. We note that such valida-
tion is a one-time effort, so it does not influence execution
performance at run time when the program is warmed up.

Verifying Shared Library Integrity. Different from ex-
ecutables, shared libraries are position independent. To ver-
ify pages loaded for shared libraries, the runtime system
maintains a system wide (offset, hash) list for all shared
libraries frequently used. When a shared library image is
mapped in the address space, the runtime system obtains
the loaded base address baseAddr by monitoring the return
value of the mmap system call. Then, the integrity of the
loaded page is verified at address (baseAddr + offset).

6.3.3 Page Table Update for Protected Files
This section describes page fault handling of data files.

Different from executable image, the purpose of protecting
data file is to prevent OS from accessing clear-text contents.
Therefore, the runtime system further employs encryption
technique in handling this type of page fault. TrustShadow

allows developers to differentiate data files based on their

the sensitivity levels. Only sensitive files that are specified
in a manifest bundled with the application (see Section 6.6
for details) are protected.

Before elaborating page fault handling when accessing
protected files, we first describe how TrustShadow manages
them at high level. All the operations accessing these files
are transparently transformed into memory mapped I/O.
To correctly map file descriptor offsets to virtual addresses,
preceding pages of a file are reserved for meta-data. This
includes the real file length, time stamp of the last access,
along with hash values of the real data pages. These pre-
ceding meta pages are protected by a per-application AES
key that is provided by the manifest.

As shown in Figure 3c, when accessing a non-present page
of a protected file, the runtime system decrypts the cipher-
text N page loaded by the OS, and writes it into a secure S

page (Step 3), which is also allocated by the OS and verified
by the runtime system. After that, the hash value of the
page is calculated and validated (Step 4). When unmapping
this page, the runtime system recalculates and stores the
hash value of the updated S page (Step 6), and then encrypts
it into the original N page (Step 7), which is finally written
to the permanent storage by the OS. The encryption key,
again, is the per-application AES key that comes with the
manifest.

6.4 Intervening System Calls
Two problems are raised when a system call is forwarded

to the OS. First, due to isolation, the OS kernel cannot ac-
cess the address space of a shadow HAP, while some system
call services rely on input data from user space. Second,
the results returned by the OS are not trusted, which may
lead to potential attacks. The runtime system coordinates
the intervention between an HAP and the OS, provides the
OS with essential service request data, and verifies the re-
sponses from an untrusted OS. For critical system services
that cannot be served by the OS (e.g., random number gen-
erator), the runtime system implements them inside the se-
cure world, which is discussed in Section 6.5.

6.4.1 Adapting System Calls
Memory isolation changes the way that the OS manages

and accesses the memory of an HAP. Without the runtime
system acting as an intermediator, it is impossible for the OS
to access application data containing system call requests.
We follow existing marshaling techniques available on x86
platform, in which system call parameters are adapted in a
world-shared buffer. This allows the OS to have temporary



access to system call parameters. Besides this, there still
remains challenges that are specific to our design. This sec-
tion briefly reviews existing marshaling technique, and then
describes our specifics.

Parameter Marshaling. Most system call parameters are
scalar in that they contain values instead of pointers to mem-
ory, for instance, close, getpid, and _exit. The runtime
system forwards them directly without any modification.

However, complex system calls allow a process to pass in a
pointer so the kernel can read data from or write result to a
user space buffer. For example, the open system call passes
in a buffer containing the file path as a pointer. As the OS
cannot access user space data, the runtime system marshals
them into a world-shared buffer, and adjusts the parameters
accordingly. The system call service works on the marshal-
ing buffer. After it completes, the runtime system copies
back the results into the original user buffer if necessary.
More complex system calls, such as ioctl and fcntl, have
different behaviors according to subcommands. A marshal-
ing code for each request/cmd must be prepared separately
according to the specifications of the subcommands.

Signal. In signal handling, a signal delivery allows an un-
trusted OS to resume user space code at arbitrary location,
thus compromising control flow integrity of a shadow HAP.
In addition, setup_frame needs to manipulate the process’s
stack to craft signal information and return code, while the
OS has no privilege to do so.
TrustShadow addresses these problems by both hacking

the OS code and supporting in the runtime system. Specifi-
cally, when a signal is registered, the runtime system inserts
the handler address into the task_private structure of the
shadow HAP. When a signal is caught by the OS, a reserved
page in the marshaling buffer is used by setup_frame to set
up a separate user mode stack specifically for signal han-
dling. At the same time, the intended return address for
signal handler is placed in task_shared. When the run-
time system resumes, it first verifies that the address has
been registered and that the pretcode on the signal stack is
correct3. If so, the signal stack is copied to an unused vir-
tual address backed by a secure page4. Then the hardware
context of the normal control flow is saved in a temporary
structure in task_private, and is replaced with the signal’s
hardware context. When the signal handler returns by issu-
ing the rt_sigreturn system call, the hardware context of
the normal control flow is restored.

Futex. Fast userspace mutex (futex) is another interesting
kernel service that conflicts with process isolation. In Linux,
a futex is identified by a four-bytes memory shared among
processes or threads. It acts as a building block for many
higher-level locking abstractions such as semaphores, POSIX
mutexes, and barriers. If a thread fails to acquire a lock,
it passes the lock’s address along with its current value to
a futex wait operation. This futex operation will block
the thread if and only if the value in lock’s address still
matches the value it received. The blocked thread resumes

3pretcode points to a piece of code calling the rt_sigreturn
system call on sigpage. This piece of code is common to all
the processes.
4TrustShadow reserves configurable number of secure pages
specifically for this purpose.

when another thread releases the lock by issuing a futex

wake operation, which unblocks all the threads waiting on a
specific lock. Obviously, the futex system call needs to read
the value of the lock which is in the user space of an HAP.

We observe that a thread never waits for more than one
futex at a time5. Therefore, we hack the futex system call
to always read from a fixed memory location in the marshal-
ing buffer. Each time a futex wait operation is issued, the
runtime system synchronizes the current futex value to that
fixed address. In TrustShadow, we further handle a futex
shared across processes by maintaining a system wide map
that keeps physical addresses of involved memories. The
runtime system queries this map to synchronize futex up-
dates to different processes.

6.4.2 Defeating Iago Attack
As disclosed in [11], a compromised OS could subvert an

HAP by manipulating the return values of system calls, thus
leading to Iago attacks. For example, when an HAP re-
quests a new memory region through the mmap system call,
it expects that the returned region is disjoint with any ex-
isting mapping in the process’s address space. However, a
compromised OS could return an address that overlaps with
the process’s stack. Without proper checking on the return
values, the following write on the new region would smash
the stack and the process can be coerced into executing a
return-oriented program [10].

With the runtime system sitting in-between the shadow
HAP and the untrusted OS, it is straightforward to address
known Iago attacks by interposing the system call interface
and checking their results. For a known Iago attack, we
need a specification for that particular system service. Here,
we take the mmap system call as an example. Every return
address of the mmap or brk system system call is compared
with the current memory mapping. If an overlap is found,
the HAP is immediately killed. The runtime system collects
current memory mapping in three ways. First, the range of
stack is obtained from current sp, because the stack spans
from sp to the top of user space virtual memory. Second,
heap limit can be monitored by examining return values
of the brk system calls. Finally, the return value of each
successful mmap/munmap system call is recorded.

6.5 Internal Exception Handling
In this section, we list security-critical exceptions that

are handled directly inside the runtime system. Forward-
ing them to the OS would leak user data or lead to security
breach.

Floating Point Computation. ARM architecture
supports hardware floating point calculation by Vector
Floating-Point (VFP) architecture extension. VFP intro-
duces a set of registers and instructions specific for floating
point calculations. The access to them is controlled by a
privileged register FPEXC. In Linux, when a program accesses
VFP for the first time, an UNDEFINED exception is raised and
the kernel is responsible for enabling VFP support for this
program. To support multiple processes accessing VFP con-
currently, the kernel maintains a VFP context for each pro-
cess in its kernel stack. This design obviously leaks user data
contained in VFP registers to kernel. In TrustShadow, the

5A blocked thread can never issue another futex wait oper-
ation.



Figure 4: A sample manifest. Note that protectedFile

specifies the file names that TrustShadow needs to protect;
digest indicates the signature of this manifest.

runtime system duplicates the code handling VFP from the
Linux OS. More specifically, the runtime system maintains
a VFP context in the secure memory for each HAP that re-
quires VFP calculation, and clears VFP registers whenever
switching to the ordinary OS.

Random Number Generator. The Linux pseudo-
Random Number Generator (LRNG) is the main source
of randomness for many cryptographic applications, such
as OpenSSL. Linux provides LRNG service by exposing
/dev/(u)random devices to applications. Since using weak
random values is a catastrophe for cryptographic systems,
and an untrusted OS should not know the key materials used
in the application, TrustShadow provides a trusted RNG
service in the secure world. Specifically, the runtime sys-
tem maintains a list of file descriptors that correspond to
opened /dev/(u)random devices. Read operations on these
descriptors are intercepted such that trusted random values
are directly provided. The runtime system readily utilizes
the on-board hardware random number generator RNG4 to
generate strong random numbers.

6.6 Manifest Design
As mentioned in prior sections, each HAP is bundled with

a manifest that provides metadata for the security features.
We design a manifest to contain the following – a per-
application secret key, the integrity metadata of the appli-
cation (i.e., the (vaddr, hash) list), and a list of file names
that should be cryptographically protected.

Since the manifest is stored on a local persistent storage
which can be accessed by the OS, we design two mechanisms
to ensure its security. First, we encrypt the per-application
secret key using a per-device public key. Therefore, only the
runtime system which has access to the per-device private
key is able to decrypt it. Second, to ensure the integrity of
the manifest, we append a digital signature calculated on the
content of the manifest using a per-device private key. In a
real deployment, we note that per-device public/private key
pairs used for encryption and signature should be separated.
In the presentation of this paper, we refer to them as a single
key pair for simplicity. Figure 4 shows a C-data-structure-
equivalent of a sample manifest we used to safeguard the
Nginx web server.

7. IMPLEMENTATION
We have implemented TrustShadow on a Freescale

Figure 5: The boot sequence of TrustShadow. The compo-
nents on the left and right indicate the operations in the
secure and normal world, respectively.

i.MX6q ARM development board that integrates an ARM
Cortex-A9 MPCore processor, 1GB DDR3 DRAM and
256KB iRAM. As is discussed in the section above, Trust-
Shadow involves operations on both the normal and secure
worlds. In this section, we therefore describe our implemen-
tation details in turn.

7.1 Normal World
In the normal world, we made the following changes to

a Linux OS distribution with kernel version 3.18.24. (i)
We added kernel parameter tz_mem=size@start which indi-
cates the memory region used for HAPs, i.e., ZONE_TZ_APP.
(ii) We changed zone-based allocator to ensure that the
pages designated to shadow HAPs must be from the mem-
ory region indicated by tz_mem=size@start. (iii) We added
a tz flag to task_struct in order to make the OS ca-
pable of distinguishing HAPs. (iv) We implemented a
new system call tz_execve in order to start an HAP in
Linux. (v) We changed the control flow of ret_to_user

and ret_fast_syscall, so that the Linux OS can pass the
execution back to a corresponding shadow HAP instead of a
zombie HAP. (vi) We hooked the page fault handler so that
it can prepare page table update information for the run-
time system. (vii) We modified the code handling signals in
order to set up a signal stack in the marshaling buffer and
make it ready for an HAP. In total, these changes introduce
about 300 LOC to the Linux kernel.

7.2 Secure World
In the secure world, we implemented the aforementioned

runtime system with about 4.5K LOC of ANSI C and 0.8K
LOC of assembly. In addition, we implemented a secure
boot mechanism to guarantee the integrity of TrustShadow.
Figure 5 describes how we implemented a secure boot for
TrustShadow.

Using High Assurance Boot (HAB), a proprietary boot
ROM first loads the image of the runtime system. Then, it
performs a verification and examines the integrity of the im-
age. After passing the integrity check, the runtime system
starts, using TZASC to configure the access policy of mem-



Latency (μs) Overhead

Test case Linux
Trust

Shadow

Trust

Shadow
InkTag

Virtual

Ghost

null syscall 0.7989 1.6048 2.01x 55.80x 3.90x
open/close 29.2168 40.7886 1.40x 4.83x 7.95x
mmap (64m) 559.0000 784.0000 1.40x 4.70x 9.94x
pagefault 4.7989 7.9764 1.66x 1.15x 7.50x
signal handler

install

1.6257 3.8294 2.36x 3.24x -

signal handler

delivery

51.6111 57.0349 1.11x 1.61x -

fork+exit 987.0000 2328.6000 2.36x 4.40x 5.74x
fork+exec 1060.3333 2509.0000 2.37x 4.20x 3.04x
select (200fd) 15.0707 18.8649 1.25x 3.40x -
ctxsw 2p/0k 30.3700 32.7100 1.08x - 1.41x

Table 1: LMbench micro-benchmark results.

ory regions ZONE_TZ_RT, ZONE_NORMAL, and ZONE_TZ_APP. To
guarantee the policy cannot be maliciously altered, the run-
time locks the configuration. As a result, further modifica-
tions to the policy requires system reboot.

After the success of initialization, the runtime system
loads uboot binary [44] which further boots the Linux sys-
tem implemented above. The Linux system runs in the nor-
mal world where it retrieves the manifest as well as the pub-
lic/private key pair stored on the persistent storage. Note
that, our implementation encrypts the public/private key
pair in advance using the 256-bit Zeroizable Master Key
(ZMK) stored on Freescale i.MX6q board. This ensures
the key pair is not disclosed to the Linux in plaintext. We
believe this implementation is a common practice for many
device manufacturers [38].

To facilitate the secure boot, the Linux system passes the
manifest and public/private key pair to the runtime system
which further decrypts the key pair and installs the mani-
fest. With this process completion, the runtime passes the
execution back to the Linux system.

8. EVALUATION
In this section, we evaluate TrustShadow by conducting

extensive experiments. Using microbenchmarks, we first ex-
plore the impact of TrustShadow upon primitive OS opera-
tions. Second, we quantify the overhead of I/O operations
imposed by TrustShadow. Last, we run real world applica-
tions and study the overall performance overhead introduced
by our system. We conducted the aforementioned experi-
ments on a Freescale i.MX6q board running both native
Linux and our TrustShadow. We treated the performance
observed from native Linux as our baseline and compared it
with that observed from TrustShadow.

8.1 Microbenchmarks
Using LMBench [36], we study the overhead imposed to

basic OS operations. More specifically, we ran various sys-
tem services present in Table 1 against both native Linux
and TrustShadow. To minimize the noise involved during our
experiment, we ran each benchmark with 1,000 iterations
and took the average as our measures. We also compared
the overhead imposed by TrustShadow with that introduced
by InkTag [26] and VirtualGhost [16]. This is because both
share the same goal with our system although they are de-
signed specifically for x86 architecture and not applicable to
IoT devices typically embedded with ARM processors.

Table 1 shows the results indicating the overhead that
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Figure 6: File I/O performance as measured by sequential
and random write.

TrustShadow imposes to various system services. In addi-
tion, it presents the overhead introduced by InkTag and Vir-

tualGhost. Note that we did not run experiments on these
two systems. Rather, we obtained their overhead measures
from the articles previously published in [26, 16].

First, we observe that TrustShadow introduces consider-
able overheads to individual operations. Most notably are
fork+exit, fork+exec and signal handler install, all of
which increase overhead by about 2.36x. The high overhead
introduced by the first two services is mainly due to the fact
that TrustShadow optimizes the OS to populate all the mar-
shaling buffer in one go when creating a new thread. And,
the high overhead imposed by signal handler install re-
sults from copying a signal stack from the page in the normal
world to one in the secure world.

Second, across most test cases shown in Table 1, we ob-
serve that the overhead imposed by TrustShadow are rel-
atively lower than that introduced by InkTag and Virtu-

alGhost. The reason is, InkTag and VirtualGhost require
additional CPU cycles to communicate with Virtual Ma-
chine (VM) or execute the code instrumented to kernel,
whereas TrustShadow does not rely on VM nor instrument
large amount of code to kernel. Compared with InkTag, we
also observe that TrustShadow imposes high overhead to sys-
tem service pagefault. This is because TrustShadow needs
to perform additional page copy or zeroization, which is not
required for InkTag.
While the overhead shown in the table appears large, it

should be noted that, this does not imply that TrustShadow
jeopardizes the performance of applications under protec-
tion. In fact, applications are significantly less sensitive to
system services. As we will show later in the section, Trust-
Shadow imposes only negligible performance overhead to ap-
plication execution.

8.2 File Operations
To quantify the overhead imposed to I/O throughput, we

conducted an experiment by using Sysbench [29] in different
modes. As is discussed earlier, TrustShadow allows develop-
ers to designate whether or not to protect a particular file.
Thus, we did this experiment with and without file protec-
tion enabled.

We prepared 128 files, each of which has 8Mb, and tested
both sequential write and random write. To minimize cache
effects and best reflect the actual I/O performance, we con-
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Figure 7: Throughput overhead imposed by TrustShadow

across HTML responses in different sizes.

ducted experiments with write-through mode, and forced a
call to fsync() after each write operation.

Figure 6 shows the results. Because caching is disabled,
sequential write did not exhibit significant advantage over
random write. In both cases, the slowdown introduced by
TrustShadow without file protection is about 1.09x, while
the slowdown by TrustShadow with file protection is about
2.71x. This is due to the fact that TrustShadow with file
protection enabled involves heavy encryption and hashing
computations when it synchronizes pages to persistent stor-
age. Note that the difference between TrustShadow with
and without file protection solely results from cryptographic
operations. As a result, employing a more efficient crypto-
graphic engine is a straightforward way of improving file I/O
performance.

8.3 Embedded Web Server
To study the impact of TrustShadow upon real-world ap-

plications, we mimic an embedded web server running on
an IoT device. More specifically, we ran the Nginx web
server with version 1.9.15 on our testbed against both native
Linux and TrustShadow. We configured Nginx to respond
with HTML file in different sizes through both HTTP and
HTTPs. To quantify the server throughput, we utilized the
Apache benchmark [1] on another machine to connect to the
server. We configured the benchmark program to create 10
connections simultaneously sending 10,000 HTTP requests.
This experiment setting allows us to overwhelm the server
and thus compare the throughput variation from the view-
point of an end user.

Figure 7 shows the throughput overhead of Nginx. Re-
garding to the requests through HTTP, we observe that,
TrustShadow downgrades the server throughput by about
6% ∼ 10% when a client requests a file in a relatively
small size. However, this throughput downgrade is alle-
viated when the requested file increases. As is shown in
Figure 7, the server throughput drops only by 2% when a
client requests a file with a size more than 256 KB. Re-
garding latency, we measured the 95% percentile in each
experiment, and found almost no latency overhead. The
raw HTTP performance measurements can be found in Ap-
pendix B. In addition, we discover TrustShadow introduces
nearly no overhead regardless of whether the size of the file
requested varies when HTTP traffic is carried through TLS.
The reason behind these observations is that the overhead
imposed by TrustShadow is overwhelmed by intensive I/O

and computationally intensive cryptographic operations, re-
spectively.

8.4 Data Analytics
We also evaluate the performance overhead when perform-

ing data analysis using machine learning techniques. This
kind of applications is popular for many edge computing
platforms. To evaluate the impact of TrustShadow upon
such applications, we chose two data analytic applications
to emulate face recognition and image classification. To
be more specific, we ran an DLIB image classification pro-
gram [28] powered by deep neural networks against 60,000
images from the MNIST database [30], as well as a face
recognition program against 10 images with human faces
from the DLIB toolkits.

In the first experiment, we observed that TrustShadow

classifies 60,000 images in 998 seconds, which is only 4 sec-
onds higher than performing the same classification on na-
tive Linux. In the second experiment, we observed that
TrustShadow recognizes faces in 163.271 seconds, whereas
native Linux finishes the same task in 162.591 seconds. The
observations from both experiments again indicate Trust-

Shadow introduces only negligible overhead to IoT devices.

9. DISCUSSION AND FUTURE WORK
In this section, we first summarize how TrustShadow de-

feats OS level attacks to an HAP. Then, we analyze the
security of TrustShadow, quantify its TCB, and discuss the
remaining attack surface. Finally, we discuss future work.

HAP Security. TrustShadow protects an application from
three aspects. (1) With a mechanism to verify the integrity
of a program image, an attacker cannot manipulate appli-
cation code/data at load time. (2) With the isolation of
resources and introspection mechanism, an attacker cannot
interfere with HAP execution at run time. The only user
memory that the OS can access is the marshaling buffer.
(3) With a cryptographic mechanism encrypting files and
signing meta data, attackers can no longer read a file under
protection or make any modification to it.

Runtime System Security. The protection above is es-
tablished on the basis of the correctness and robustness of
the runtime system. Our design guarantees the security of
the runtime system from three aspects. First, our design
ensures the integrity of the runtime system at load time be-
cause the hash of the verification public key is burned in
the chip’s fuses and HAB uses this key to verify the signa-
ture of the runtime system image before loading it. Second,
our design reduces the attack surface of the runtime system
because the runtime system itself is loaded into a secure
physical region which the ordinary OS cannot manipulate.
Third, our design raises the bar for exploiting the runtime
system. This is due to three reasons. (1) An application
must undergo critical security reviews before being autho-
rized to run as an HAP (i.e., providing it with a manifest
with manufacture signature). (2) Even if an HAP has vul-
nerabilities that may be exploited to execute arbitrary code,
it only runs with user privilege. (3) The interface exposed
by the runtime system is narrow, because it simply forwards
most exceptions to the OS. Also, the small code base of
runtime system makes it possible for formal verification.



TCB Size. To demonstrate the security of TrustShadow
quantitatively, we identify the TCB of our system, and com-
pare its size with x86 alternatives.

Ultimately, all the code in the user’s TCB must be trusted.
Therefore, like all the other works in this line, user applica-
tion is included in the TCB. The size of user application is
highly dependent on its functionality and complexity. We
rely on code review to achieve trust for this part of TCB.

The runtime system maintains the execution environment
for an HAP, and thus must be included in the TCB. As
mentioned earlier, our runtime system has only about 5.3K
LOC, which we believe is small enough for manual review or
formal verification. In comparison, previous x86 works have
their own privileged code that must be trusted. Hypervisor-
based solutions [13, 12, 46, 26] include the whole hypervi-
sor in its TCB, bloating their TCBs by several hundreds of
thousands of lines of code. Although thinner hypervisors
exist [33], we are not aware of any similar system built on
top of them. Haven [6] includes LibOS, a large subset of
Windows in its TCB, resulting a TCB of millions LOC. Vir-
tualGhost [16] includes about 5.3K LOC for their run-time
system and LLVM passes. This is the only solution that has
comparable TCB with TrustShadow.

Remaining Attack Surface. To minimizes TCB, the run-
time system does not implement system services itself, but
relies on the OS. With full control of process scheduling,
the OS can easily launch DoS attacks to an HAP. Similarly,
to start an HAP, the OS may choose to invoke the normal
execve system call instead of tz_execve. However, the pro-
cess is executed in the normal world, so it cannot access
cryptographically protected files.

Another concern is the manipulation of manifest files. If
a manifest file can be forged, integrity checking of the cor-
responding executable image is bypassed. As a result, arbi-
trary code can be loaded in the secure world. We address
this problem by signing the manifests using a per-device pri-
vate key. When a vulnerable program is updated, the cor-
responding manifest should be updated as well. A roll-back
attack happens when an attacker executes the vulnerable
version of the program with an older manifest. To prevent
this from happening, one of our future work is to add a ver-
sion number field in the manifest, and periodically commu-
nicate a list showing the updated version numbers of trusted
programs between the runtime system and a remote server.

Last but not least, side channel attacks have been devel-
oped to extract information across processes in an OS, or
even virtual machines [47, 49, 24, 31]. For example, in [24],
the authors introduced a cache storage channel that ex-
ploits the inconsistence of cache and physical memory data,
and infers victim’s behaviors in TrustZone by checking if
the constructed inconsistence has been destroyed. Trust-

Shadow’s current design may be subject to this line of side
channel attacks. However, we can adopt existing techniques
to mitigate such attacks. For example, contemporary cryp-
tographic libraries such as OpenSSL have already been de-
signed to resist some side channel attacks [40].

Future Work. Many IoT devices, such as cyber-physical
systems, are sometimes deployed in an unmonitored envi-
ronment. As a result, secret data stored in the DRAM chip
is subject to inexpensive physical attacks, such as cold-boot
attack [25, 37], bus monitoring [23], and DMA attacks [7,
27]. In [14, 48], the authors proposed to process confiden-

tial data within SoC components such as cache and iRAM,
because it is considered much harder to compromise a SoC
component. In TrustShadow, we can simply configure the re-
gion ZONE_TZ_APP to be within the range of iRAM to make
HAPs immune to physical attacks.

We have tested this idea on our experiment board, which
integrates a 256KB iRAM. We successfully ran a small pro-
gram that generates a 2048-bit RSA key-pair with OpenSSL.
As the capacity of iRAM is usually limited, this enhanced
security feature could only be activated for low footprint
programs. One of our future work is to “extend” iRAM
by introducing another level of virtual memory – utilizing
DRAM as a backup storage for encrypted iRAM pages.

Although hypervisor-based solutions are not applicable to
shield trusted applications in ARM platform as discussed
in Section 2, the idea of cloaking memory with a privileged
layer has long been studied. With a hypervisor, trusted ap-
plications can run in the normal world, which could greatly
reduce the risk in the presence of a vulnerable runtime
system. While TrustZone is not designed to provide fea-
tures such as shadow page table that a standard hypervisor
could provide, some existing work, such as TZ-RKP [5] and
Sprobes [22], has the potential to emulate these features in
the secure world. Integrating the technique of across worlds
hypervision with existing shielding mechanisms remains an-
other topic for our future work.

10. CONCLUSION
In this paper, we have presented TrustShadow that uti-

lizes a carefully designed runtime system to shield appli-
cations running on multi-programming IoT devices. With
TrustShadow, security-critical applications on these devices
can be comprehensively protected even in the face of total
OS compromise. Unlike techniques previously proposed, the
design of TrustShadow does not require modification to ap-
plications. As a result, security can be guaranteed without
the requirement of re-engineering applications. Since Trust-
Shadow imposes only negligible – and occasionally moderate
– overhead to IoT devices, the protection of an application
can be achieved in a lightweight manner. With an increasing
number of IoT devices developed, we expect the design of
TrustShadow could inspire more research in the area of IoT
computing.
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APPENDIX

A. CODE SNIPPET OF EXCEPTION FOR-

WARDING

1 forward_syscall:
2 @ we start at monitor mode
3 @ spsr is set to SVC , which is the target

mode
4 mov r0, #( MODE_SVC | I_BIT | F_BIT)
5 msr spsr_cxsf , r0
6

7 @ load r0 with the address of user space
CPU_context

8 ldr r0, =uregs
9 ldr r0, [r0]

10

11 @ switch to SVC mode to set target mode ’s
registers

12 cpsid if, #MODE_SVC
13 ldr r1, [r0, #CPSR]
14 msr spsr_cxsf , r1
15

16 @ restore critical registers required by
normal OS in SVC , ATB and IRQ modes

17 ldr r1, =svc_sp
18 ldr sp, [r1]
19 cpsid if, #MODE_ABT
20 ldr r1, =abt_sp
21 ldr sp, [r1]
22 cpsid if, #MODE_IRQ
23 ldr r1, =irq_sp
24 ldr sp, [r1]
25

26 @ back to monitor mode
27 cpsid if, #MODE_MON
28

29 @ restore syscall arguments. r0-r6 for
arguments , r7 for syscall number

30 ...
31 @ before switching to normal OS, change

securiry state to non -secure
32 pop {r4}
33 eor r4, r4, #NS_BIT @ Toggle NS bit
34 mcr p15 , 0, r4, c1, c1, 0
35 isb
36

37 @ branch to 0xFFFF0008 , which is the
offset for the SVC exception handler

38 mov r8, #0x8
39 movt r8, #0xFFFF
40 movs pc, r8

Listing 1: Code snippet that forwards SVC exception to the
normal OS.



B. RAW HTTP PERFORMANCE MEA-

SUREMENTS

File size
Throughput (Requests/second) 95% Percentile (ms)
Linux TrustShadow Linux TrustShadow

1KB 652.50 600.46 17 17
2KB 622.83 567.96 18 18
4KB 621.72 569.37 16 18
8KB 603.75 548.74 17 19
16KB 531.15 488.64 19 21
32KB 433.68 408.25 24 25
64KB 316.64 299.57 33 36
128KB 220.73 213.25 48 49
256KB 133.26 130.58 84 85
512KB 75.85 75.69 158 158
1024KB 42.68 42.64 307 309


