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 Android recently introduced the scoped storage defense to better protect application use of shared 
external storage. This article examines the evolution of Android external storage defenses leading 
to scoped storage and assesses the impact of the scoped storage defense for limiting opportunities 
for exploitation.

A ndroid has become the most dominant mobile 
operating system (OS) worldwide, deployed by a 

large number of vendors across a wide variety of form 
factors, including phones, tablets, and wearables.14 As 
Android devices integrate into people’s daily lives, the 
OS needs to provide sufficient and appropriate security 
methods to protect applications, services, and itself from 
compromise. One area of concern for Android is how to 
balance the ease with which applications can download 
and share content while protecting against attacks.

Many applications need to perform file downloads 
to retrieve data (e.g., media files) and perform soft-
ware updates. Android, with a rich application platform 
common for smartphone systems, must support such 
downloads. In the early days, Android relied on exter-
nal storage, such as removable secure digital (SD) cards, 
to store downloaded files to avoid exhausting limited 
on-device storage. With the increase in on-device stor-
age, Android systems, maintaining the same applica-
tion model, now devote a file system partition for such 
downloads, which is called the external storage partition. 
For simplicity, this article will refer to all access to files 
and directories in the external storage partition as access 
to external storage.

However, shared external storage presents problems 
with protecting access to downloaded files. In recent 
Android versions, applications can request that a user 

grant permission to read and write files in external stor-
age. Since sharing is common for processing some types 
of files, such as media, requesting permission to access 
files in external storage has become common for appli-
cations, inuring users against the threat their authori-
zation could pose. By granting a malicious third-party 
application full read or write access, a user allows the 
app to compromise the integrity of, or leak sensitive data 
from, any file in external storage. Multiple common vul-
nerabilities and exposures (CVEs) have been reported 
that exploit such permissions in recent Android sys-
tems (for example, see reports for CVE-2020-11990, 
CVE-2018-6599, CVE-2018-15004, and CVE-2019-
12763). In addition, CheckPoint performed a study of 
this attack vector,9 revealing that several popular appli-
cations were prone to attack, as described in the “Risks 
in Sharing Files” section. For example, an exploit was 
demonstrated that leverages this vulnerability against 
WhatsApp, leading to remote code execution on vic-
tim devices.7 As a result, depending on users to manage 
access to external storage is problematic.

Android recently introduced a new defense to pre-
vent attacks on shared external storage. In Android 11, 
Google fully deployed scoped storage,6 an implemen-
tation of external storage that protects files by greatly 
reducing sharing and limiting the impact of user con-
sents to modifications. (A limited version of scoped 
storage was introduced in Android 10, but this article 
focuses on the complete deployment in Android 11.) 
This article examines the impact that scoped storage 
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has on external storage security. After describing prior 
efforts to protect external storage and their limitations, 
the article describes the semantics of scoped storage 
and estimates its effectiveness.

What Can Go Wrong in External Storage?
Some degree of sharing among applications is expected 
for many media files and documents. However, other 
files, such as software updates, are not typically expected 
to be shared. By downloading all these types of files to 
external storage, Android introduces risks that enable 
adversaries to gain access that may cause two kinds of 
security problems.

Sharing in External Storage
In the early days of Android, nearly every device relied 
on microSD cards for (external) storage, due to the 
fact that the phones shipped with limited internal stor-
age. In newer devices, there is only one unified par-
tition for applications to store data of all kinds: the  
/data partition. However, applications still use external 
storage for many files, as described. External storage 
now refers to a virtual file system (i.e., partition), /data 
/media, which is mounted on the /data partition using 
a bind mount at /storage/emulated. Figure 1 shows 
the structure of the file systems Android provides 
for application storage. The /data partition provides 
app-internal storage under the /data/data directory. 
External storage is provided in the /data/media parti-
tion through a shared directory (/storage/emulated) in 
which any application can download a file and create 
a directory (given permission). Applications can then 
download files into their own directories. In addition, 
Android provides dedicated folders for shared down-
loads, videos, photos, and audio files. Any application 
can download a file into those folders.

The sharing of files among applications is com-
mon in external storage, where a user may produce 
a media file or a document with one application and 
apply another app to view (read) and modify it. Mul-
tiple apps from same developer commonly share data 
files through external storage. In addition, applications 
employ external storage to download other large files, 
such as software updates. Game apps are notable for 
large downloads (e.g., more than 100 MB). Originally, 
external storage was specifically provided to enable the 
downloading and storage of large files (e.g., via external 
SD cards). Although on-device storage is much greater, 
the use of external storage to download updates and 
store large media file continues.

Threat Model for External Storage
In general, the threat from shared external storage 
is that an untrusted app, in particular, an app from 

a third-party source, may attack a victim app. Thus, 
adversaries are third-party apps. Victims may be other 
third-party apps but also vendor apps (i.e., from origi-
nal equipment manufacturers) and platform apps 
(i.e., from the Android distribution). Vendor and 
platform apps are often more privileged—Android 
assigns them signature-level permissions4—and they 
perform critical tasks. It is critical for Android to pro-
tect the integrity of privileged applications when they 
use external storage. An adversary may use its access 
to files and directories in external storage to launch 
attacks. First, a malicious party may try to exploit file 
sharing in external storage to leak sensitive data and to 
modify integrity-critical information. Second, it may 
leverage the ability to write to shared directories to 
create files and symbolic links that may lure victims. 
These attack vectors are examined in more detailed in 
the following.

Risks in Sharing Files
Using shared external storage for downloads may enable 
adversaries to maliciously modify another application’s 
files. For example, Checkpoint performed a study9 
of an attack vector in Android external storage that is 
shown in Figure 2. The company tested whether mali-
cious applications could replace another app’s update 
files in external storage by swapping a malware file for 
a library. Researchers found that the attack could com-
promise popular applications, including Google Trans-
late, Google Voice Typing, and Xiaomi Browser.

As shown in Figure 2, a victim app requests an update 
from its cloud server that is downloaded to external stor-
age. (While the Google Play Store downloads updates 
to app-internal storage, it is common for Android appli-
cations to update from third-party sites.)  An adversary 
can monitor external storage to determine when a vic-
tim application downloads an update. If the adversary 

Figure 1. The application storage structure.
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has sufficient permissions (e.g., Android permissions to 
read and write in external storage, as described in the 
“Prior Android Controls for File Sharing” section), it 
can replace that file with a malicious one that may be 
used by the victim app. Although applications could 
perform integrity checks through checksum and signa-
ture verification, leaving this responsibility to develop-
ers is not ideal. Furthermore, adversaries could leverage 
time-of-check-to-time-of-use attacks1 to bypass signa-
ture validation. Finally, bad actors may use this attack 
vector to leak secrets by reading sensitive information 
in media files and documents.

Risks in Sharing Directories
Adversaries may abuse access to shared directories in 
external storage to trick applications into using certain 
files when performing downloads. Should an adver-
sary be authorized to write to a shared directory, it can 
create files and symbolic links to lure victims to files 
it selected. Such attacks have long been recognized by 
researchers11 but have been difficult to prevent because 
of the desire to allow multiple parties to share directo-
ries, as in external storage. In one type of attack, called 
file squatting attacks, an adversary predicts the name of 
a file that a victim will create and makes a file with that 
name in advance. If the victim does not validate that the 
file has already been created, it will use the malicious 
file instead, enabling a third party to read and modify 
data. Note that the victim must have or be granted 

permission to create the file (i.e., write access) to access 
the “squatted” version. Similarly, an adversary may cre-
ate symbolic links in a shared directory to lure a victim 
to a file that enables access to unauthorized data, which 
is known as a link traversal attack. Fortunately, the use 
of symbolic links in external storage is prohibited due 
to a lack of support in the original file system types, as 
described in the “Prior Android Controls for Shared 
Directories” section.

Prior Defenses for Android  
External Storage
Android has adopted multiple access control tech-
niques to protect application and system files, such as 
UNIX discretionary access control (DAC), Security 
Enhanced Android (SE Android) mandatory access 
control (MAC), and the Android permission system. 
These have greatly improved the OS’s integrity protec-
tion.10 However, they provide only limited protection 
to shared folders and files in external storage, as illus-
trated in Figure 3 (and described in detail in the follow-
ing). Prior Android versions configured access control 
to accommodate file sharing, which introduced risks 
leading to the vulnerabilities described previously.

Prior Android Controls for File Sharing
Before scoped storage, Android applied a combination 
of UNIX DAC and permissions to govern access to 
external storage. Although SE Android’s MAC enforce-
ment techniques have become a prominent part of the 
access control enforcement, the dynamic nature of shar-
ing in external storage requires permission changes at 
runtime. As a result, SE Android grants all applications 
full access to external storage. Traditionally, DAC is used 
to control access to files in shared directories in UNIX 
systems. Android, as a UNIX-based OS, employs DAC 
but by leveraging permissions. Traditional UNIX DAC 
marks a file creator as the owner, which can configure 
and modify permissions to govern sharing (e.g., chmod). 
Android’s DAC differs because instead of expecting apps 
to regulate permissions, the OS allows users to man-
age sharing. Android permissions are defined for users 
to grant apps read access or read–write access to all the 
directories and files in external storage.

Figure 3(a) shows how Android controlled access 
to external storage prior to scoped storage (prescoped 
storage). Without obtaining any permission, applica-
tions could access their app-specific directory and the 
files there, as in Figure 3(a). Two Android permissions, 
read external storage (REX) and write external storage 
(WEX), were defined to grant read and read–write access, 
respectively, to shared directories and all app-specific 
directories of other apps (the official names for these 
permissions are READ_EXTERNAL_STORAGE and 

Figure 2. File swapping in external storage. Assuming that both victim and 
malicious applications are granted access to external storage, 1) a victim app 
requests an app update, 2) the update file is downloaded to external storage, 3) 
a malicious application monitors the external storage and replaces the victim’s 
update file, and 4) the victim fails to verify the integrity of the file, and malicious 
modifications are applied instead of a normal update. 
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WRITE_EXTERNAL_STORAGE). User consent was 
required to obtain them, but they could be requested 
by and granted to any application. Prior to Android 6.0, 
apps had to request these permissions at installation 
time, but since that version, they can ask for them at 
runtime. Many media-related applications (e.g., photo 
and music apps) request permission to access WEX to 
share access to files. As a result, requesting permission 
to use access external storage has become very com-
mon, so most users do not understand how powerful 
their authorization is. Should malicious applications 
obtain write permission to external storage, they could 
replace another app’s files, laying the groundwork for 
the file swapping attack in Figure 2.

Prior Android Controls for Shared Directories
Researchers have found that adversaries can exploit 
shared directories via file squatting and link traversal 

attacks, as described in the “Risks in Sharing Direc-
tories” section, if they have write access.15 However, 
researchers have also found that preventing such attacks, 
in general, is not practical without imposing restrictions 
on application functionality.2 Prior to scoped storage, 
Android depended on applications to protect them-
selves from file squatting attacks and benefited from 
limitations in the physical file systems for external stor-
age to prevent link traversal attacks.

To prevent file squatting attacks, defenses must 
perform some action to block adversaries from cre-
ating files before victims do or keep victims from 
using squatted files. Prior to scoped storage, Android 
depended on applications to provide their own mech-
anisms for this. One approach was for applications to 
generate unpredictable names for the files they cre-
ated. For example, applications could compute ran-
domized names that were impractical for adversaries 

Figure 3. The access pattern authorized by prescoped storage (e.g., Android 9) versus scoped storage (Android 11). 
(a) Prescoped storage enables apps that obtain Android permissions to read and write files in shared and app-specific 
directories. Apps can read and write files in their own directories by default. Scoped storage blocks cross-app access to 
application-specific directories. In addition, scoped storage limits apps to read and write the files they created in shared 
directories, also by default. (b) In scoped storage, read access to shared directories is granted via Android permissions, as in 
prescoped storage, but write access may be obtained only via user consent for every file in shared directories. 

/sdcard/Android/data/A / /sdcard/Download/A.txt

/sdcard/Android/data/B/ /sdcard/Download/B.xml

/sdcard/Android/data/A / /sdcard/Download/A.txt

/sdcard/Android/data/B/ /sdcard/Download/B.xml

App-Specific Directory Shared Directory

App-Specific Directory Shared Directory

(a)

(b)

App A

App B

App A

App B

Read/Write Allowed With Android Permission

Default Read/Write Allowed

Read Allowed With Android Permission

Default Read/Write Allowed

Cross-App Access
Blocked

Authorized licensed use limited to: Penn State University. Downloaded on September 13,2021 at 18:02:54 UTC from IEEE Xplore.  Restrictions apply. 



20	 IEEE Security & Privacy� September/October 2021

SCOPED STORAGE DEFENSE

to guess. However, not all applications would apply 
name randomization. It is nontrivial to request every 
developer to deploy such strategy. Furthermore, in the 
case of media, users prefer readable file names to ease 
searching the file manager.

On the other hand, Android has employed a simple 
defense to prevent link traversal attacks by prohibiting 
the creation of symbolic links in external storage. This 
has been aided by the fact that the types of file systems 
used for external storage do not support symbolic links. 
Originally, external storage was mounted as a virtual 
file allocation system; the File System in User Space 
(FUSE) and SD Card File System used later did not 
support symbolic links either. Fortunately, applications 
have no need for symbolic links for sharing in external 
storage. In general, it is now possible to mount a flag in a 
file system to prevent the use of symbolic links in name 
resolution (since Linux 5.10).

Understanding Scoped Storage
In Android 10, an experimental implementation of 
scoped storage6 was introduced with the aim of provid-
ing improved protection to app and user data in external 
storage. Scoped storage involves significant restrictions 
of file sharing, as described in more detail in the follow-
ing. To permit vendors and app developers to migrate 
to the new storage access pattern, it was still possible to 
request the legacy access model (by setting the request-
LegacyExternalStorage attribute to true in the mani-
fest file) described in the “Prior Defenses for Android 
External Storage” section. Scoped storage was fully 
implemented in and mandatory for Android 11. This 
article describes scoped storage in Android 11.

Scoped Storage Policy
The main purpose of scoped storage is to enable appli-
cations to download files that will never be shared 
with other apps, whose ability to modify shared files 
is restricted, as in Figure 3(b). Specifically, scoped 
storage makes two key changes: 1) application files 
downloaded into app-specific directories are treated 
as private files, and 2) application files downloaded 
into shared directories are treated as public files, which 
can be shared for reading via Android permissions and 
for writing with explicit user consent, with the excep-
tions of the system gallery and apps that are eligible for 
all-file access (all-file access requires apps to be vetted 
before they are published to the Google Play Store). 
As detailed in Figure 3(b), applications can access only 
their own files. Thus, app-specific directories are suit-
able for downloading software updates whose integrity 
must be protected and sensitive data files.

However, sharing media and documents is still re
quired. To permit controlled sharing, Android provides 

common directories for public files. The directories are 
the same as those in prescoped storage, as shown in 
Figure  1, although permission management has been 
changed. By default, applications can read and write 
only their own files. However, as demonstrated in Fig-
ure 3(b), users may grant some applications REX per-
mission, but only files in shared directories are readable. 
WEX permission is deprecated in scoped storage, so 
there is no authorization that provides blanket write 
privileges to applications for files in external storage. In 
scoped storage, applications have to request user con-
sent to modify any file, one file at a time, and only for 
public files in shared directories.

To manage these permissions, scoped storage stores 
the relationship between files and their creators. 
Although this is similar to how UNIX DAC associates a 
file with its owner, DAC allows apps to modify permis-
sions for any file they own arbitrarily (i.e., without user 
consent). Scoped storage prevents applications from 
ever accessing other apps’ private files, providing man-
datory protection beyond what UNIX DAC can offer. 
Even for public files, only users can grant permissions to 
other apps to access files in a shared directory, either via 
REX to allow read access or by providing explicit con-
sent per file to permit read–write access [directory-level 
sharing through the storage access framework (SAF) is 
an exception, as discussed in the “SAF” section]. Unlike 
UNIX DAC, apps are not entrusted with managing 
file permissions.

Accessing Files Protected by Scoped Storage
Applications have three ways to access files in scoped 
storage: the file application programming interface 
(API), which invokes the Posix API; the MediaStore 
API; and the SAF API. The impact scoped storage has 
on file and MediaStore API access is described in 
Table 1. Using the SAF API is not directly governed by 
scoped storage, so that interface is separately considered 
in the following.

File and MediaStore APIs. As shown in Table  1, 
these APIs provided similar functionality through Android 
permissions to control access in prescoped storage, but 
scoped storage enforces access to limit sharing differ-
ently, particularly for writes. We include scoped storage 
in Android 10 and 11 in Table 1 to show the transition. 
Since apps do not require permission to access their pri-
vate files, and others cannot access those files via these 
APIs, we consider only public files in Table 1. There 
are several key differences between prescoped and 
scoped storage for accessing public files. Most impor-
tantly, WEX permission is deprecated in scoped stor-
age, as described in the “Scoped Storage Policy” section. 
Thus, typical third-party apps can no longer get users 
to grant them permission to write files owned by other 
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applications in shared directories via the file API. Apps 
with all-file access can use the file API to write public 
files. To write a public file owned by another application 
in external storage, an app must use the new MediaStore 
API and obtain user consent, as illustrated in Figure 4. 
However, the MediaStore API has two restrictions: 1) 
it cannot be used for app-specific directories, and 2) it 
cannot be employed for nonmedia files (e.g., .txt and 
.pdf files).

SAF. Since Android 4.4, the SAF has provided access 
to files and directories that are explicitly selected by a 
user.5 Apps can choose to share local and cloud files 
by implementing the DocumentsProvider, which han-
dles requests from other apps. Users must choose the 
files to be shared. In prescoped storage, the SAF allows 
file- and directory-level sharing from external stor-
age, which is not governed by Android permissions. 
To comply with the intent of scoped storage, limita-
tions were placed external storage sharing through the 
SAF in Android 11. For example, apps can no longer 
request access to the download directory in external 
storage. In addition, app-specific directories in exter-
nal storage are no longer visible through the SAF by 
default.6 However, apps can still actively share files 
from app-specific directories by implementing their 
own custom DocumentsProvider. In addition, apps 
can share their own files in app-specific directories by 
using the FileProvider, through which they can define 
their own access control logic. The FileProvider has 
the ability to limit sharing to prevent some attacks.3

How Is Scoped Storage Implemented?
To support scoped storage, there are multiple imple-
mentation changes to external storage. The most sig-
nificant is the adoption of a FUSE system for external 
storage to enforce the scoped storage policy semantics. 

As illustrated in Figure 5, FUSE has two main com-
ponents: the in-kernel driver and the user space dae-
mon. When an app tries to access external storage, 
the Linux kernel invokes the driver, which passes the 
file request to the daemon. The daemon retrieves the 
file owner from the MediaProvider service to per-
form a permission check. If access is allowed, the 
daemon performs the operation on the ext4 file sys-
tem (e.g, /data/media) and returns the result to the 
requesting application.

The process for permission enforcement differs based 
on whether a resource is in an app-specific directory or a 
shared directory and whether the resource is in primary 

Table 1. The scoped storage access policy for public files.

File API read File API write
MediaStore  

API read MediaStore API write

Prescoped  
storage

Own file REX 1 Own file WEX Own file REX Own file WEX

Other file REX Other file WEX Other file REX Other file WEX

Android 10 Own file Yes* Own file Yes Own file Yes Own file Yes

Other file REX, RLS Other file WEX, RLS Other file REX Other file User†

Android 11 Own file Yes Own file Yes Own file Yes Own file Yes

Other file REX Other file AFA Other file REX Other file User, AFA

*Authorized without Android permission.
†Denied with the exception of explicit user consent.
RLS: request legacy storage, AFA: all-file access (privileged).

Figure 4. A request for user consent to allow another app 
(ScopedStorageDemo) to modify a photo. 
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or secondary external storage. To facilitate more effi-
cient access to files in app-specific directories in primary 
external volumes, a bind mount is provided for individ-
ual services and apps, rather than a mount on the FUSE 
file system. The bind mount is protected by UNIX DAC 
permissions that strictly block access by other apps. For 
app-specific directories in secondary external storage, 
the FUSE daemon invokes a Java method in the Medi-
aProvider to check by the package name whether the 
file operation request comes from the directory’s owner. 
Authorization is granted only if the directory owner 
matches the requesting app’s package name.

Permission enforcement for shared directories is 
more complicated and requires additional information 
to be stored. Whenever an app creates a new file in a 
shared directory in external storage, the MediaProvider 
inserts an entry in its database to store the owner and 
Multipurpose Internet Mail Extension (MIME) type. 
If the MIME type does not match the intended one 
for the directory (e.g., an audio file for a music folder), 
the create operation will be denied. Later, when an 
app wants to access its file, the MediaProvider simply 
checks whether the app created the file. However, if 
another application requests access to a file in a shared 
directory, it must have REX permission (for read only) 
or gain user consent (for read and write).

How Effective Is Scoped Storage?
To examine scoped storage’s effectiveness, we wrote a 
“test app” that creates an image file in its app-specific 
directory and in a shared directory. (The image file 

is used to enable testing on the MediaStore API. The 
same results would apply to any other files created in 
an app-specific or shared directory.) We examined con-
ditions under which a malicious app could access (read 
or write) the files in prescoped and scoped storage. We 
ran the test app on two systems on one Google Pixel 3a: 
1) Android 9 (prescoped storage) and 2) Android 11 
(scoped storage). The Pixel 3a implements scoped stor-
age as described in this article. For each Android version, 
the device was flashed with stock firmware images to 
ensure a clean file system prior to running the test app. 
Then, we wrote a simple “attack app,” which was assumed 
to be a third-party application that did not have all-file 
access. The test app could be a third-party app or a privi-
leged app that used external storage. Privileged apps are 
deployed by Google and Android vendors to provide 
critical system functionality. There are many of them on 
modern Android devices, including 173 on our Pixel 3a. 
Therefore, protecting them is critical to system integrity.

Protecting Apps From File Attacks
The first question is whether external storage files 
created by the test app are prone to attacks from a 
third-party app that may leak contents (i.e., secrecy 
attacks) or modify information (i.e., integrity attacks). 
Table 2 lists the operations the attack app was au
thorized to perform on any file in the test app’s 
application-specific directory and on any file created by 
the test app in any shared directory for the two Android 
systems. For prescoped storage (Android 9), the attack 
app can read the files in both directories once it obtains 
REX permission and write (as well as read) files in both 
directories after it receives WEX permission. There is 
no further user consent required to gain permissions in 
prescoped storage systems.

On the other hand, under scoped storage, the 
app-specific folder is private, regardless of the permis-
sions the attack app can obtain. (There is the excep-
tion of active sharing by an app for user-selected files 
through the SAF, which is not governed by scoped stor-
age; see the “Accessing Files Protected by Scoped Stor-
age” section.) Thus, the attack app cannot access files in 
the test app’s application-specific directory, as shown in 
Table 2. With scoped storage, developers can safely store 
sensitive and integrity-critical data in app-specific fold-
ers. Scoped storage still permits read access to all files 
in shared directories once the attack app obtains REX 
permission, so this situation is unchanged for shared 
directories. However, WEX permission is deprecated, 
so the attack app cannot modify any files in shared stor-
age when it has just one permission. Instead, it needs 
to obtain explicit user consent for each file created by 
another app to perform a write operation through the 
MediaStore API (for media files only) or the SAF.

Figure 5. The FUSE implementation of scoped storage: 1) an app issues an operation 
on a file in the external storage partition, 2) FUSE performs access control using 
the MediaProvider, 3) the FUSE daemon performs the authorized operation on 
the ext4 file system, and 4) the operation result is returned to the app.
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Protecting Against File Squatting
The second question concerns the extent to which 
scoped storage protects the test app from file squatting 
attacks (see the “Risks in Sharing Directories” section). 
Recall that to complete a file squatting attack, 1) an 
adversary (e.g., the attack app) must be able to create 
a file of the same name as the one to be created by 
the victim (e.g., the test app), and 2) the victim must 
have the permission to create (i.e., modify) the file 
created by the adversary. (Recall from the “Risks in 
Sharing Directories” section that although a victim 
may open a squatted file that has only read permis-
sions, it expects to be able to create the file, which 
requires write privileges.) Table  3 presents the per-
missions required for the attack app to create files 
that may be used in file squatting attacks and those 
required for the test app to write the squatted file 
created by the attack. Thus, the conditions under 
which a file squatting attack is possible are indicated 
in Table 3. App specific in Table 3 refers to any files 
in the test app’s application-specific directory. The 
attack app is assumed to be able to predict the names 
of the files created by the test app in this experiment.

For prescoped storage, the attack app needs  
WEX permission to write to shared directories and 
app-specific directories to conduct file squatting 
attacks. Once the attack app has that permission, it can 
launch file squatting attacks in the app-specific and 
shared directories, as shown in Table 3. For an attack to 
succeed, the test app needs to be authorized to access 
the squatted file. The test app can access any file in 
its app-specific directory without permissions, but it 
needs to be granted WEX permission to access squat-
ted files in shared directories. Thus, apps with greater 
privilege are more prone to file squatting attacks in 
prescoped storage, as demonstrated in results from 
Android policy studies.8

For scoped storage, the attack app is denied the abil-
ity to write to other app’s application-specific directories 
under any circumstances, but it is granted permission 
to write to shared directories by default (i.e., without 
requiring the deprecated WEX permission). However, 
as Table 3 shows, it is more difficult for the test app to 
obtain write permissions to squatted files, as the app 
must request and be granted user consent. Since the test 
app would be unlikely to request user consent to write 
a file that it expects to create (i.e., the test app would 
obtain write permission by virtue of creating the file), it 
is unlikely to request user consent.

Are There Issues to Consider  
for Scoped Storage?
Although scoped storage improves app security, it does 
present some concerns that require consideration.

User Consent May Allow Exploits
Under scoped storage, an app may modify a file in a 
shared external storage folder that is owned by another 
application, but a user must explicitly consent. In 
Android 10, users need to issue consent for every file. 
This could create a large number of requests when an 
app requests write access to multiple files (i.e., modi-
fying the brightness for multiple photos requires 
numerous consents). In Android 11, the MediaStore 
API allows users to consent to write access for mul-
tiple media files at once. However, a potential prob-
lem is that users may not carefully check each file in 
bulk operation requests, which could result in autho-
rizing malicious writes. Ideally, scoped storage will 
balance clarity in user consent requests with func-
tional needs. Researchers have explored this problem 
for runtime authorization of Android permissions in 
general.12,13 Another problem is that a user may grant 
all-file access to a malicious app. Although most users 

Table 2. Attack app permissions to target test app files.

Prescoped storage Scoped storage

App specific Shared App specific Shared

No Android 
permissions

— — — —

REX (secrecy) R R — R

WEX (integrity) RW RW N/A† N/A†

User consent 
(integrity)

N/A* N/A* — RW

R: read only; RW: read–write.
*User consent is not used in prescoped storage.
†WEX permission is deprecated in scoped storage.

Table 3. The necessary permissions for file squatting.

Prescoped storage Scoped storage

App specific Shared App specific Shared

No Android 
permissions

— — — C

REX — — — C

WEX CW CW N/A† N/A†

User consent N/A* N/A* — CW

C: an attack app can create a file; CW: a victim app can write a squatted file (i.e., a file 
squatting attack is possible).
*User consent is not used in prescoped storage.
†WEX permission is deprecated in scoped storage.

Authorized licensed use limited to: Penn State University. Downloaded on September 13,2021 at 18:02:54 UTC from IEEE Xplore.  Restrictions apply. 



24	 IEEE Security & Privacy� September/October 2021

SCOPED STORAGE DEFENSE

obtain applications through the Google Play Store, 
which carefully vets apps before allowing all-file 
access, some people install apps from third-party 
sites. Therefore, there is still a concern that malicious 
apps may obtain all-file access. We do not know how 
this situation will be resolved.

Threats to Secrecy Remain
Although broad write access to external storage has 
been removed, significant read access to shared direc-
tories in external storage still exists. Although Google 
recommends that developers store private data in 
app-specific directories, developers might make mis-
takes. For example, performance logs that might 
include sensitive hardware information could be 
stored in shared directories. In this case, another app 
may leverage the coarse-grained REX permission to 
leak sensitive data. In the future, scoped storage may 
need to be extended to reduce the threats presented 
by programmer mistakes in reading data produced by 
other apps.

Will Apps Operate Correctly  
Under Scoped Storage?
Application developers are used to having complete 
access to external storage, as this has been allowed 
since the beginning of Android. Therefore, request-
ing that developers adapt to the new access model may 
introduce problems. In fact, the original plan to require 
fully enforced scoped storage in Android 11 has already 
been relaxed, and the legacy external storage model has 
been restored for apps targeting API levels below 29.6 
In addition, compatibility issues for apps that require 
all-file access to function (e.g., file management apps)6 
have yet to be fully resolved. Currently, these apps can-
not obtain this permission because Google has paused 
app vetting.

A ndroid has introduced the scoped storage defense 
to improve file system integrity in external stor-

age. In prior systems, Android applications were prone 
to attacks on files in shared directories in external stor-
age, causing several vulnerabilities. Scoped storage pro-
vides applications with true app-specific directories that 
are inaccessible to other applications and removes per-
missions that grant broad write access to shared files to 
limit the ability of applications to write objects owned 
by others. An evaluation of the file protections offered 
by prescoped and scoped storage shows that scoped 
storage reduces the opportunities adversaries have 
to attack files in external storage. Thus, scoped stor-
age appears to improve file system integrity, but issues 
remain, such as the potential for excessive user consent 

and the need for existing applications to be modified to 
operate effectively. 

Acknowledgments
This research was sponsored by the Combat Capa-
bilities Development Command Army Research Lab- 
oratory (ARL) under cooperative agreement W911 
NF-13-2-0045 (ARL Cyber Security Collaborative 
Research Alliance), National Science Foundation grant 
CNS-1801534, and Google’s 2020 Android Security 
and Privacy Research Award. The views and conclu-
sions in this article are those of the authors and should 
not be interpreted as representing the official policies, 
either expressed or implied, of the Combat Capabilities 
Development Command Army Research Laboratory, 
the U.S. government, or Google. The U.S. government 
is authorized to reproduce and distribute reprints for 
government purposes, not withstanding any copyright 
notation here on.

References
	 1.	 M. Bishop and M. Digler, “Checking for race conditions 

in file accesses,” Comput. Syst., vol. 9, no. 2, pp. 131–152, 
Spring 1996. 

	 2.	 X. Cai, Y. Gui, and R . Johnson, “Exploiting Unix 
file-system races via algorithmic complexity attacks,” in 
Proc. 30th IEEE Symp. Security Privacy, 2009, pp. 27–41. 

	 3.	 “FileProvider URL.” Google. https://developer.android 
.com/reference/android/support/v4/content/FileProvider 
(accessed May 2021)

	 4.	 “Permissions overview URL.” Google. https://developer 
.android.com/guide/topics/permissions/overview 
(accessed May 2021)

	 5.	 “Storage access framework URL.” Google. https://
developer.android.com/guide/topics/providers/
document-provider (accessed May 2021)

	 6.	 “Storage updates in Android 11 URL.” Google. https://
developer.android.com/preview/privacy/storage 
(accessed May 2021)

	 7.	 C. Karamitas, “Remote exploitation of a man-in-the-disk 
vulnerability in W hatsApp (CVE-2021-24027),” 
Census Lab, Athens, Apr. 2021. [Online]. Available: 
https://census-labs.com/news/2021/04/14/whatsapp 
-mitd-remote-exploitation-CVE-2021-24027/ 

	 8.	 Y.-T. Lee et al., “PolyScope: Multi-policy access control analy-
sis to triage android systems,” in Proc. 30th USENIX Security 
Symp., to be published. 

	 9.	 S. Makkaveev, “Man-in-the-disk: Android apps exposed 
via external storage,” Check Point Research, Aug. 2018. 
https://research.checkpoint.com/2018/androids-man 
-in-thedisk/ (accessed Apr. 2021).

	10.	 R. Mayrhofer, J. Vander Stoep, C. Brubaker, and N. Kra-
levich, “The Android platform security model,” 2019. 
[Online]. Available: https://arxiv.org/abs/1904.05572

Authorized licensed use limited to: Penn State University. Downloaded on September 13,2021 at 18:02:54 UTC from IEEE Xplore.  Restrictions apply. 



www.computer.org/security 25

 11. W. S. McPhee, “Operating system integrity in OS/VS2,” 
IBM System J., vol. 13, pp. 230–252, no. 3, Sept. 1974. 
doi: 10.1147/sj.133.0230.

 12. G. Petracca, A.-A. Reineh, Y. Sun, J. Grossklags, and T. Jae-
ger. “Aware: Reventing abuse of privacy-sensitive sensors 
via operation bindings,” in Proc. 26th USENIX Security 
Symp., Aug. 2017.

 13. T. Ringer, D. Grossman, and F. Roesner, “Audacious: 
User-driven access control with unmodified operating sys-
tems,” in Proc. ACM Conf. Comput. Commun. Security (ACM 
CCS), 2016, pp. 204–216.

 14. “OS Market Share,” StatCounter. Mar. 2020. https://
gs.statcounter.com/os-market-share (accessed Apr. 2021).

 15. H. Vijayakumar, J. Schiffman, and T. Jaeger, “STING: 
Finding name resolution vulnerabilities in programs,” in 
Proc. 21st USENIX Security Symp., 2012, pp. 585–599. 

Yu-Tsung Lee is a Ph.D. student at Pennsylvania State 
University, State College, Pennsylvania, 16801, USA. 
His research interests include system and software 
security, particularly mobile platform security and 
access control. Lee received a B.E. from the Uni-
versity of Michigan, Ann Arbor. Contact him at 
yxl74@psu.edu.

Haining Chen is a software engineer in Android security 
at Google, Mountain View, California, 94043, USA. 
Her research interests include mobile security, in gen-
eral, and particularly device authentication, biomet-
rics security, and access control. Chen received a Ph.D. 
from the Department of Computer Science, Purdue 
University, West Lafayette, Indiana. Contact her at 
hainingc@google.com.

Trent Jaeger is a professor in the Department of Com-
puter Science and Engineering, Pennsylvania State 
University, State College, Pennsylvania, 16801, 
USA. His research interests include systems and 
software security, particularly for operating sys-
tems. Jaeger received a Ph.D. from the University 
of Michigan, Ann Arbor. He has served as chair of 
the Association for Computing Machinery (ACM) 
Special Interest Group on Security, Audit, and 
Control and as the Steering Committee chair for 
the Internet Society Network and Distributed Sys-
tems Symposium. He is an associate editor in chief 
of IEEE Security & Privacy and an editorial board 
member of Communications of the ACM. Contact 
him at trj1@pu.edu.

Computing in Science  
& Engineering
The computational and data-centric problems faced 
by scientists and engineers transcend disciplines. 
There is a need to share knowledge of algorithms, 
software, and architectures, and to transmit lessons-
learned to a broad scientific audience. Computing in 
Science & Engineering (CiSE) is a cross-disciplinary, 
international publication that meets this need 
by presenting contributions of high interest and 
educational value from a variety of fields, including 
physics, biology, chemistry, and astronomy. CiSE
emphasizes innovative applications in cutting-edge 
techniques. CiSE publishes peer-reviewed research 
articles, as well as departments spanning news and 
analyses, topical reviews, tutorials, case studies, and 
more.

Read CiSE today! www.computer.org/cise

Digital Object Identifier 10.1109/MSEC.2021.3103619

Authorized licensed use limited to: Penn State University. Downloaded on September 13,2021 at 18:02:54 UTC from IEEE Xplore.  Restrictions apply. 


