
16 September/October 2021 Copublished by the IEEE Computer and Reliability Societies 1540-7993/21©2021IEEE

XXXXX

16 September/October 2021 Copublished by the IEEE Computer and Reliability Societies 1540-7993/21©2021IEEE

SCOPED STORAGE DEFENSE

Demystifying Android’s Scoped
Storage Defense
Yu-Tsung Lee | Pennsylvania State University
Haining Chen | Google
Trent Jaeger | Pennsylvania State University

 Android recently introduced the scoped storage defense to better protect application use of shared
external storage. This article examines the evolution of Android external storage defenses leading
to scoped storage and assesses the impact of the scoped storage defense for limiting opportunities
for exploitation.

A ndroid has become the most dominant mobile
operating system (OS) worldwide, deployed by a

large number of vendors across a wide variety of form
factors, including phones, tablets, and wearables.14 As
Android devices integrate into people’s daily lives, the
OS needs to provide sufficient and appropriate security
methods to protect applications, services, and itself from
compromise. One area of concern for Android is how to
balance the ease with which applications can download
and share content while protecting against attacks.

Many applications need to perform file downloads
to retrieve data (e.g., media files) and perform soft-
ware updates. Android, with a rich application platform
common for smartphone systems, must support such
downloads. In the early days, Android relied on exter-
nal storage, such as removable secure digital (SD) cards,
to store downloaded files to avoid exhausting limited
on-device storage. With the increase in on-device stor-
age, Android systems, maintaining the same applica-
tion model, now devote a file system partition for such
downloads, which is called the external storage partition.
For simplicity, this article will refer to all access to files
and directories in the external storage partition as access
to external storage.

However, shared external storage presents problems
with protecting access to downloaded files. In recent
Android versions, applications can request that a user

grant permission to read and write files in external stor-
age. Since sharing is common for processing some types
of files, such as media, requesting permission to access
files in external storage has become common for appli-
cations, inuring users against the threat their authori-
zation could pose. By granting a malicious third-party
application full read or write access, a user allows the
app to compromise the integrity of, or leak sensitive data
from, any file in external storage. Multiple common vul-
nerabilities and exposures (CVEs) have been reported
that exploit such permissions in recent Android sys-
tems (for example, see reports for CVE-2020-11990,
CVE-2018-6599, CVE-2018-15004, and CVE-2019-
12763). In addition, CheckPoint performed a study of
this attack vector,9 revealing that several popular appli-
cations were prone to attack, as described in the “Risks
in Sharing Files” section. For example, an exploit was
demonstrated that leverages this vulnerability against
WhatsApp, leading to remote code execution on vic-
tim devices.7 As a result, depending on users to manage
access to external storage is problematic.

Android recently introduced a new defense to pre-
vent attacks on shared external storage. In Android 11,
Google fully deployed scoped storage,6 an implemen-
tation of external storage that protects files by greatly
reducing sharing and limiting the impact of user con-
sents to modifications. (A limited version of scoped
storage was introduced in Android 10, but this article
focuses on the complete deployment in Android 11.)
This article examines the impact that scoped storage

Digital Object Identifier 10.1109/MSEC.2021.3090564
Date of current version: 2 August 2021

Authorized licensed use limited to: Penn State University. Downloaded on September 13,2021 at 18:02:54 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 17

has on external storage security. After describing prior
efforts to protect external storage and their limitations,
the article describes the semantics of scoped storage
and estimates its effectiveness.

What Can Go Wrong in External Storage?
Some degree of sharing among applications is expected
for many media files and documents. However, other
files, such as software updates, are not typically expected
to be shared. By downloading all these types of files to
external storage, Android introduces risks that enable
adversaries to gain access that may cause two kinds of
security problems.

Sharing in External Storage
In the early days of Android, nearly every device relied
on microSD cards for (external) storage, due to the
fact that the phones shipped with limited internal stor-
age. In newer devices, there is only one unified par-
tition for applications to store data of all kinds: the
/data partition. However, applications still use external
storage for many files, as described. External storage
now refers to a virtual file system (i.e., partition), /data
/media, which is mounted on the /data partition using
a bind mount at /storage/emulated. Figure 1 shows
the structure of the file systems Android provides
for application storage. The /data partition provides
app-internal storage under the /data/data directory.
External storage is provided in the /data/media parti-
tion through a shared directory (/storage/emulated) in
which any application can download a file and create
a directory (given permission). Applications can then
download files into their own directories. In addition,
Android provides dedicated folders for shared down-
loads, videos, photos, and audio files. Any application
can download a file into those folders.

The sharing of files among applications is com-
mon in external storage, where a user may produce
a media file or a document with one application and
apply another app to view (read) and modify it. Mul-
tiple apps from same developer commonly share data
files through external storage. In addition, applications
employ external storage to download other large files,
such as software updates. Game apps are notable for
large downloads (e.g., more than 100 MB). Originally,
external storage was specifically provided to enable the
downloading and storage of large files (e.g., via external
SD cards). Although on-device storage is much greater,
the use of external storage to download updates and
store large media file continues.

Threat Model for External Storage
In general, the threat from shared external storage
is that an untrusted app, in particular, an app from

a third-party source, may attack a victim app. Thus,
adversaries are third-party apps. Victims may be other
third-party apps but also vendor apps (i.e., from origi-
nal equipment manufacturers) and platform apps
(i.e., from the Android distribution). Vendor and
platform apps are often more privileged—Android
assigns them signature-level permissions4—and they
perform critical tasks. It is critical for Android to pro-
tect the integrity of privileged applications when they
use external storage. An adversary may use its access
to files and directories in external storage to launch
attacks. First, a malicious party may try to exploit file
sharing in external storage to leak sensitive data and to
modify integrity-critical information. Second, it may
leverage the ability to write to shared directories to
create files and symbolic links that may lure victims.
These attack vectors are examined in more detailed in
the following.

Risks in Sharing Files
Using shared external storage for downloads may enable
adversaries to maliciously modify another application’s
files. For example, Checkpoint performed a study9
of an attack vector in Android external storage that is
shown in Figure 2. The company tested whether mali-
cious applications could replace another app’s update
files in external storage by swapping a malware file for
a library. Researchers found that the attack could com-
promise popular applications, including Google Trans-
late, Google Voice Typing, and Xiaomi Browser.

As shown in Figure 2, a victim app requests an update
from its cloud server that is downloaded to external stor-
age. (While the Google Play Store downloads updates
to app-internal storage, it is common for Android appli-
cations to update from third-party sites.) An adversary
can monitor external storage to determine when a vic-
tim application downloads an update. If the adversary

Figure 1. The application storage structure.

/storage/emulated

/data

data

Package
Name

Package
Name

Music

media

PhotoDownloadAndroid

data

App-Specific
Directory

Shared Directory

Bind
Mount

App External Storage Internal Storage

Authorized licensed use limited to: Penn State University. Downloaded on September 13,2021 at 18:02:54 UTC from IEEE Xplore. Restrictions apply.

18	 IEEE Security & Privacy� September/October 2021

SCOPED STORAGE DEFENSE

has sufficient permissions (e.g., Android permissions to
read and write in external storage, as described in the
“Prior Android Controls for File Sharing” section), it
can replace that file with a malicious one that may be
used by the victim app. Although applications could
perform integrity checks through checksum and signa-
ture verification, leaving this responsibility to develop-
ers is not ideal. Furthermore, adversaries could leverage
time-of-check-to-time-of-use attacks1 to bypass signa-
ture validation. Finally, bad actors may use this attack
vector to leak secrets by reading sensitive information
in media files and documents.

Risks in Sharing Directories
Adversaries may abuse access to shared directories in
external storage to trick applications into using certain
files when performing downloads. Should an adver-
sary be authorized to write to a shared directory, it can
create files and symbolic links to lure victims to files
it selected. Such attacks have long been recognized by
researchers11 but have been difficult to prevent because
of the desire to allow multiple parties to share directo-
ries, as in external storage. In one type of attack, called
file squatting attacks, an adversary predicts the name of
a file that a victim will create and makes a file with that
name in advance. If the victim does not validate that the
file has already been created, it will use the malicious
file instead, enabling a third party to read and modify
data. Note that the victim must have or be granted

permission to create the file (i.e., write access) to access
the “squatted” version. Similarly, an adversary may cre-
ate symbolic links in a shared directory to lure a victim
to a file that enables access to unauthorized data, which
is known as a link traversal attack. Fortunately, the use
of symbolic links in external storage is prohibited due
to a lack of support in the original file system types, as
described in the “Prior Android Controls for Shared
Directories” section.

Prior Defenses for Android
External Storage
Android has adopted multiple access control tech-
niques to protect application and system files, such as
UNIX discretionary access control (DAC), Security
Enhanced Android (SE Android) mandatory access
control (MAC), and the Android permission system.
These have greatly improved the OS’s integrity protec-
tion.10 However, they provide only limited protection
to shared folders and files in external storage, as illus-
trated in Figure 3 (and described in detail in the follow-
ing). Prior Android versions configured access control
to accommodate file sharing, which introduced risks
leading to the vulnerabilities described previously.

Prior Android Controls for File Sharing
Before scoped storage, Android applied a combination
of UNIX DAC and permissions to govern access to
external storage. Although SE Android’s MAC enforce-
ment techniques have become a prominent part of the
access control enforcement, the dynamic nature of shar-
ing in external storage requires permission changes at
runtime. As a result, SE Android grants all applications
full access to external storage. Traditionally, DAC is used
to control access to files in shared directories in UNIX
systems. Android, as a UNIX-based OS, employs DAC
but by leveraging permissions. Traditional UNIX DAC
marks a file creator as the owner, which can configure
and modify permissions to govern sharing (e.g., chmod).
Android’s DAC differs because instead of expecting apps
to regulate permissions, the OS allows users to man-
age sharing. Android permissions are defined for users
to grant apps read access or read–write access to all the
directories and files in external storage.

Figure 3(a) shows how Android controlled access
to external storage prior to scoped storage (prescoped
storage). Without obtaining any permission, applica-
tions could access their app-specific directory and the
files there, as in Figure 3(a). Two Android permissions,
read external storage (REX) and write external storage
(WEX), were defined to grant read and read–write access,
respectively, to shared directories and all app-specific
directories of other apps (the official names for these
permissions are READ_EXTERNAL_STORAGE and

Figure 2. File swapping in external storage. Assuming that both victim and
malicious applications are granted access to external storage, 1) a victim app
requests an app update, 2) the update file is downloaded to external storage, 3)
a malicious application monitors the external storage and replaces the victim’s
update file, and 4) the victim fails to verify the integrity of the file, and malicious
modifications are applied instead of a normal update.

1) App Requests Update

2) Download

4) Update Performed

3) Monitor and Replace

Malicious
Application

External Storage

Victim App

Access to External
Storage Granted

Authorized licensed use limited to: Penn State University. Downloaded on September 13,2021 at 18:02:54 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 19

WRITE_EXTERNAL_STORAGE). User consent was
required to obtain them, but they could be requested
by and granted to any application. Prior to Android 6.0,
apps had to request these permissions at installation
time, but since that version, they can ask for them at
runtime. Many media-related applications (e.g., photo
and music apps) request permission to access WEX to
share access to files. As a result, requesting permission
to use access external storage has become very com-
mon, so most users do not understand how powerful
their authorization is. Should malicious applications
obtain write permission to external storage, they could
replace another app’s files, laying the groundwork for
the file swapping attack in Figure 2.

Prior Android Controls for Shared Directories
Researchers have found that adversaries can exploit
shared directories via file squatting and link traversal

attacks, as described in the “Risks in Sharing Direc-
tories” section, if they have write access.15 However,
researchers have also found that preventing such attacks,
in general, is not practical without imposing restrictions
on application functionality.2 Prior to scoped storage,
Android depended on applications to protect them-
selves from file squatting attacks and benefited from
limitations in the physical file systems for external stor-
age to prevent link traversal attacks.

To prevent file squatting attacks, defenses must
perform some action to block adversaries from cre-
ating files before victims do or keep victims from
using squatted files. Prior to scoped storage, Android
depended on applications to provide their own mech-
anisms for this. One approach was for applications to
generate unpredictable names for the files they cre-
ated. For example, applications could compute ran-
domized names that were impractical for adversaries

Figure 3. The access pattern authorized by prescoped storage (e.g., Android 9) versus scoped storage (Android 11).
(a) Prescoped storage enables apps that obtain Android permissions to read and write files in shared and app-specific
directories. Apps can read and write files in their own directories by default. Scoped storage blocks cross-app access to
application-specific directories. In addition, scoped storage limits apps to read and write the files they created in shared
directories, also by default. (b) In scoped storage, read access to shared directories is granted via Android permissions, as in
prescoped storage, but write access may be obtained only via user consent for every file in shared directories.

/sdcard/Android/data/A / /sdcard/Download/A.txt

/sdcard/Android/data/B/ /sdcard/Download/B.xml

/sdcard/Android/data/A / /sdcard/Download/A.txt

/sdcard/Android/data/B/ /sdcard/Download/B.xml

App-Specific Directory Shared Directory

App-Specific Directory Shared Directory

(a)

(b)

App A

App B

App A

App B

Read/Write Allowed With Android Permission

Default Read/Write Allowed

Read Allowed With Android Permission

Default Read/Write Allowed

Cross-App Access
Blocked

Authorized licensed use limited to: Penn State University. Downloaded on September 13,2021 at 18:02:54 UTC from IEEE Xplore. Restrictions apply.

20	 IEEE Security & Privacy� September/October 2021

SCOPED STORAGE DEFENSE

to guess. However, not all applications would apply
name randomization. It is nontrivial to request every
developer to deploy such strategy. Furthermore, in the
case of media, users prefer readable file names to ease
searching the file manager.

On the other hand, Android has employed a simple
defense to prevent link traversal attacks by prohibiting
the creation of symbolic links in external storage. This
has been aided by the fact that the types of file systems
used for external storage do not support symbolic links.
Originally, external storage was mounted as a virtual
file allocation system; the File System in User Space
(FUSE) and SD Card File System used later did not
support symbolic links either. Fortunately, applications
have no need for symbolic links for sharing in external
storage. In general, it is now possible to mount a flag in a
file system to prevent the use of symbolic links in name
resolution (since Linux 5.10).

Understanding Scoped Storage
In Android 10, an experimental implementation of
scoped storage6 was introduced with the aim of provid-
ing improved protection to app and user data in external
storage. Scoped storage involves significant restrictions
of file sharing, as described in more detail in the follow-
ing. To permit vendors and app developers to migrate
to the new storage access pattern, it was still possible to
request the legacy access model (by setting the request-
LegacyExternalStorage attribute to true in the mani-
fest file) described in the “Prior Defenses for Android
External Storage” section. Scoped storage was fully
implemented in and mandatory for Android 11. This
article describes scoped storage in Android 11.

Scoped Storage Policy
The main purpose of scoped storage is to enable appli-
cations to download files that will never be shared
with other apps, whose ability to modify shared files
is restricted, as in Figure 3(b). Specifically, scoped
storage makes two key changes: 1) application files
downloaded into app-specific directories are treated
as private files, and 2) application files downloaded
into shared directories are treated as public files, which
can be shared for reading via Android permissions and
for writing with explicit user consent, with the excep-
tions of the system gallery and apps that are eligible for
all-file access (all-file access requires apps to be vetted
before they are published to the Google Play Store).
As detailed in Figure 3(b), applications can access only
their own files. Thus, app-specific directories are suit-
able for downloading software updates whose integrity
must be protected and sensitive data files.

However, sharing media and documents is still re
quired. To permit controlled sharing, Android provides

common directories for public files. The directories are
the same as those in prescoped storage, as shown in
Figure 1, although permission management has been
changed. By default, applications can read and write
only their own files. However, as demonstrated in Fig-
ure 3(b), users may grant some applications REX per-
mission, but only files in shared directories are readable.
WEX permission is deprecated in scoped storage, so
there is no authorization that provides blanket write
privileges to applications for files in external storage. In
scoped storage, applications have to request user con-
sent to modify any file, one file at a time, and only for
public files in shared directories.

To manage these permissions, scoped storage stores
the relationship between files and their creators.
Although this is similar to how UNIX DAC associates a
file with its owner, DAC allows apps to modify permis-
sions for any file they own arbitrarily (i.e., without user
consent). Scoped storage prevents applications from
ever accessing other apps’ private files, providing man-
datory protection beyond what UNIX DAC can offer.
Even for public files, only users can grant permissions to
other apps to access files in a shared directory, either via
REX to allow read access or by providing explicit con-
sent per file to permit read–write access [directory-level
sharing through the storage access framework (SAF) is
an exception, as discussed in the “SAF” section]. Unlike
UNIX DAC, apps are not entrusted with managing
file permissions.

Accessing Files Protected by Scoped Storage
Applications have three ways to access files in scoped
storage: the file application programming interface
(API), which invokes the Posix API; the MediaStore
API; and the SAF API. The impact scoped storage has
on file and MediaStore API access is described in
Table 1. Using the SAF API is not directly governed by
scoped storage, so that interface is separately considered
in the following.

File and MediaStore APIs. As shown in Table 1,
these APIs provided similar functionality through Android
permissions to control access in prescoped storage, but
scoped storage enforces access to limit sharing differ-
ently, particularly for writes. We include scoped storage
in Android 10 and 11 in Table 1 to show the transition.
Since apps do not require permission to access their pri-
vate files, and others cannot access those files via these
APIs, we consider only public files in Table 1. There
are several key differences between prescoped and
scoped storage for accessing public files. Most impor-
tantly, WEX permission is deprecated in scoped stor-
age, as described in the “Scoped Storage Policy” section.
Thus, typical third-party apps can no longer get users
to grant them permission to write files owned by other

Authorized licensed use limited to: Penn State University. Downloaded on September 13,2021 at 18:02:54 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 21

applications in shared directories via the file API. Apps
with all-file access can use the file API to write public
files. To write a public file owned by another application
in external storage, an app must use the new MediaStore
API and obtain user consent, as illustrated in Figure 4.
However, the MediaStore API has two restrictions: 1)
it cannot be used for app-specific directories, and 2) it
cannot be employed for nonmedia files (e.g., .txt and
.pdf files).

SAF. Since Android 4.4, the SAF has provided access
to files and directories that are explicitly selected by a
user.5 Apps can choose to share local and cloud files
by implementing the DocumentsProvider, which han-
dles requests from other apps. Users must choose the
files to be shared. In prescoped storage, the SAF allows
file- and directory-level sharing from external stor-
age, which is not governed by Android permissions.
To comply with the intent of scoped storage, limita-
tions were placed external storage sharing through the
SAF in Android 11. For example, apps can no longer
request access to the download directory in external
storage. In addition, app-specific directories in exter-
nal storage are no longer visible through the SAF by
default.6 However, apps can still actively share files
from app-specific directories by implementing their
own custom DocumentsProvider. In addition, apps
can share their own files in app-specific directories by
using the FileProvider, through which they can define
their own access control logic. The FileProvider has
the ability to limit sharing to prevent some attacks.3

How Is Scoped Storage Implemented?
To support scoped storage, there are multiple imple-
mentation changes to external storage. The most sig-
nificant is the adoption of a FUSE system for external
storage to enforce the scoped storage policy semantics.

As illustrated in Figure 5, FUSE has two main com-
ponents: the in-kernel driver and the user space dae-
mon. When an app tries to access external storage,
the Linux kernel invokes the driver, which passes the
file request to the daemon. The daemon retrieves the
file owner from the MediaProvider service to per-
form a permission check. If access is allowed, the
daemon performs the operation on the ext4 file sys-
tem (e.g, /data/media) and returns the result to the
requesting application.

The process for permission enforcement differs based
on whether a resource is in an app-specific directory or a
shared directory and whether the resource is in primary

Table 1. The scoped storage access policy for public files.

File API read File API write
MediaStore

API read MediaStore API write

Prescoped
storage

Own file REX 1 Own file WEX Own file REX Own file WEX

Other file REX Other file WEX Other file REX Other file WEX

Android 10 Own file Yes* Own file Yes Own file Yes Own file Yes

Other file REX, RLS Other file WEX, RLS Other file REX Other file User†

Android 11 Own file Yes Own file Yes Own file Yes Own file Yes

Other file REX Other file AFA Other file REX Other file User, AFA

*Authorized without Android permission.
†Denied with the exception of explicit user consent.
RLS: request legacy storage, AFA: all-file access (privileged).

Figure 4. A request for user consent to allow another app
(ScopedStorageDemo) to modify a photo.

Authorized licensed use limited to: Penn State University. Downloaded on September 13,2021 at 18:02:54 UTC from IEEE Xplore. Restrictions apply.

22	 IEEE Security & Privacy� September/October 2021

SCOPED STORAGE DEFENSE

or secondary external storage. To facilitate more effi-
cient access to files in app-specific directories in primary
external volumes, a bind mount is provided for individ-
ual services and apps, rather than a mount on the FUSE
file system. The bind mount is protected by UNIX DAC
permissions that strictly block access by other apps. For
app-specific directories in secondary external storage,
the FUSE daemon invokes a Java method in the Medi-
aProvider to check by the package name whether the
file operation request comes from the directory’s owner.
Authorization is granted only if the directory owner
matches the requesting app’s package name.

Permission enforcement for shared directories is
more complicated and requires additional information
to be stored. Whenever an app creates a new file in a
shared directory in external storage, the MediaProvider
inserts an entry in its database to store the owner and
Multipurpose Internet Mail Extension (MIME) type.
If the MIME type does not match the intended one
for the directory (e.g., an audio file for a music folder),
the create operation will be denied. Later, when an
app wants to access its file, the MediaProvider simply
checks whether the app created the file. However, if
another application requests access to a file in a shared
directory, it must have REX permission (for read only)
or gain user consent (for read and write).

How Effective Is Scoped Storage?
To examine scoped storage’s effectiveness, we wrote a
“test app” that creates an image file in its app-specific
directory and in a shared directory. (The image file

is used to enable testing on the MediaStore API. The
same results would apply to any other files created in
an app-specific or shared directory.) We examined con-
ditions under which a malicious app could access (read
or write) the files in prescoped and scoped storage. We
ran the test app on two systems on one Google Pixel 3a:
1) Android 9 (prescoped storage) and 2) Android 11
(scoped storage). The Pixel 3a implements scoped stor-
age as described in this article. For each Android version,
the device was flashed with stock firmware images to
ensure a clean file system prior to running the test app.
Then, we wrote a simple “attack app,” which was assumed
to be a third-party application that did not have all-file
access. The test app could be a third-party app or a privi-
leged app that used external storage. Privileged apps are
deployed by Google and Android vendors to provide
critical system functionality. There are many of them on
modern Android devices, including 173 on our Pixel 3a.
Therefore, protecting them is critical to system integrity.

Protecting Apps From File Attacks
The first question is whether external storage files
created by the test app are prone to attacks from a
third-party app that may leak contents (i.e., secrecy
attacks) or modify information (i.e., integrity attacks).
Table 2 lists the operations the attack app was au
thorized to perform on any file in the test app’s
application-specific directory and on any file created by
the test app in any shared directory for the two Android
systems. For prescoped storage (Android 9), the attack
app can read the files in both directories once it obtains
REX permission and write (as well as read) files in both
directories after it receives WEX permission. There is
no further user consent required to gain permissions in
prescoped storage systems.

On the other hand, under scoped storage, the
app-specific folder is private, regardless of the permis-
sions the attack app can obtain. (There is the excep-
tion of active sharing by an app for user-selected files
through the SAF, which is not governed by scoped stor-
age; see the “Accessing Files Protected by Scoped Stor-
age” section.) Thus, the attack app cannot access files in
the test app’s application-specific directory, as shown in
Table 2. With scoped storage, developers can safely store
sensitive and integrity-critical data in app-specific fold-
ers. Scoped storage still permits read access to all files
in shared directories once the attack app obtains REX
permission, so this situation is unchanged for shared
directories. However, WEX permission is deprecated,
so the attack app cannot modify any files in shared stor-
age when it has just one permission. Instead, it needs
to obtain explicit user consent for each file created by
another app to perform a write operation through the
MediaStore API (for media files only) or the SAF.

Figure 5. The FUSE implementation of scoped storage: 1) an app issues an operation
on a file in the external storage partition, 2) FUSE performs access control using
the MediaProvider, 3) the FUSE daemon performs the authorized operation on
the ext4 file system, and 4) the operation result is returned to the app.

User Space

Kernel Space

Application

Media Provider

FUSE Daemon

FUSE Driver

Ext4
(/data/media)

System Call

Virtual Filesystem

1

4

3

2

Authorized licensed use limited to: Penn State University. Downloaded on September 13,2021 at 18:02:54 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 23

Protecting Against File Squatting
The second question concerns the extent to which
scoped storage protects the test app from file squatting
attacks (see the “Risks in Sharing Directories” section).
Recall that to complete a file squatting attack, 1) an
adversary (e.g., the attack app) must be able to create
a file of the same name as the one to be created by
the victim (e.g., the test app), and 2) the victim must
have the permission to create (i.e., modify) the file
created by the adversary. (Recall from the “Risks in
Sharing Directories” section that although a victim
may open a squatted file that has only read permis-
sions, it expects to be able to create the file, which
requires write privileges.) Table 3 presents the per-
missions required for the attack app to create files
that may be used in file squatting attacks and those
required for the test app to write the squatted file
created by the attack. Thus, the conditions under
which a file squatting attack is possible are indicated
in Table 3. App specific in Table 3 refers to any files
in the test app’s application-specific directory. The
attack app is assumed to be able to predict the names
of the files created by the test app in this experiment.

For prescoped storage, the attack app needs
WEX permission to write to shared directories and
app-specific directories to conduct file squatting
attacks. Once the attack app has that permission, it can
launch file squatting attacks in the app-specific and
shared directories, as shown in Table 3. For an attack to
succeed, the test app needs to be authorized to access
the squatted file. The test app can access any file in
its app-specific directory without permissions, but it
needs to be granted WEX permission to access squat-
ted files in shared directories. Thus, apps with greater
privilege are more prone to file squatting attacks in
prescoped storage, as demonstrated in results from
Android policy studies.8

For scoped storage, the attack app is denied the abil-
ity to write to other app’s application-specific directories
under any circumstances, but it is granted permission
to write to shared directories by default (i.e., without
requiring the deprecated WEX permission). However,
as Table 3 shows, it is more difficult for the test app to
obtain write permissions to squatted files, as the app
must request and be granted user consent. Since the test
app would be unlikely to request user consent to write
a file that it expects to create (i.e., the test app would
obtain write permission by virtue of creating the file), it
is unlikely to request user consent.

Are There Issues to Consider
for Scoped Storage?
Although scoped storage improves app security, it does
present some concerns that require consideration.

User Consent May Allow Exploits
Under scoped storage, an app may modify a file in a
shared external storage folder that is owned by another
application, but a user must explicitly consent. In
Android 10, users need to issue consent for every file.
This could create a large number of requests when an
app requests write access to multiple files (i.e., modi-
fying the brightness for multiple photos requires
numerous consents). In Android 11, the MediaStore
API allows users to consent to write access for mul-
tiple media files at once. However, a potential prob-
lem is that users may not carefully check each file in
bulk operation requests, which could result in autho-
rizing malicious writes. Ideally, scoped storage will
balance clarity in user consent requests with func-
tional needs. Researchers have explored this problem
for runtime authorization of Android permissions in
general.12,13 Another problem is that a user may grant
all-file access to a malicious app. Although most users

Table 2. Attack app permissions to target test app files.

Prescoped storage Scoped storage

App specific Shared App specific Shared

No Android
permissions

— — — —

REX (secrecy) R R — R

WEX (integrity) RW RW N/A† N/A†

User consent
(integrity)

N/A* N/A* — RW

R: read only; RW: read–write.
*User consent is not used in prescoped storage.
†WEX permission is deprecated in scoped storage.

Table 3. The necessary permissions for file squatting.

Prescoped storage Scoped storage

App specific Shared App specific Shared

No Android
permissions

— — — C

REX — — — C

WEX CW CW N/A† N/A†

User consent N/A* N/A* — CW

C: an attack app can create a file; CW: a victim app can write a squatted file (i.e., a file
squatting attack is possible).
*User consent is not used in prescoped storage.
†WEX permission is deprecated in scoped storage.

Authorized licensed use limited to: Penn State University. Downloaded on September 13,2021 at 18:02:54 UTC from IEEE Xplore. Restrictions apply.

24	 IEEE Security & Privacy� September/October 2021

SCOPED STORAGE DEFENSE

obtain applications through the Google Play Store,
which carefully vets apps before allowing all-file
access, some people install apps from third-party
sites. Therefore, there is still a concern that malicious
apps may obtain all-file access. We do not know how
this situation will be resolved.

Threats to Secrecy Remain
Although broad write access to external storage has
been removed, significant read access to shared direc-
tories in external storage still exists. Although Google
recommends that developers store private data in
app-specific directories, developers might make mis-
takes. For example, performance logs that might
include sensitive hardware information could be
stored in shared directories. In this case, another app
may leverage the coarse-grained REX permission to
leak sensitive data. In the future, scoped storage may
need to be extended to reduce the threats presented
by programmer mistakes in reading data produced by
other apps.

Will Apps Operate Correctly
Under Scoped Storage?
Application developers are used to having complete
access to external storage, as this has been allowed
since the beginning of Android. Therefore, request-
ing that developers adapt to the new access model may
introduce problems. In fact, the original plan to require
fully enforced scoped storage in Android 11 has already
been relaxed, and the legacy external storage model has
been restored for apps targeting API levels below 29.6
In addition, compatibility issues for apps that require
all-file access to function (e.g., file management apps)6
have yet to be fully resolved. Currently, these apps can-
not obtain this permission because Google has paused
app vetting.

A ndroid has introduced the scoped storage defense
to improve file system integrity in external stor-

age. In prior systems, Android applications were prone
to attacks on files in shared directories in external stor-
age, causing several vulnerabilities. Scoped storage pro-
vides applications with true app-specific directories that
are inaccessible to other applications and removes per-
missions that grant broad write access to shared files to
limit the ability of applications to write objects owned
by others. An evaluation of the file protections offered
by prescoped and scoped storage shows that scoped
storage reduces the opportunities adversaries have
to attack files in external storage. Thus, scoped stor-
age appears to improve file system integrity, but issues
remain, such as the potential for excessive user consent

and the need for existing applications to be modified to
operate effectively.

Acknowledgments
This research was sponsored by the Combat Capa-
bilities Development Command Army Research Lab-
oratory (ARL) under cooperative agreement W911
NF-13-2-0045 (ARL Cyber Security Collaborative
Research Alliance), National Science Foundation grant
CNS-1801534, and Google’s 2020 Android Security
and Privacy Research Award. The views and conclu-
sions in this article are those of the authors and should
not be interpreted as representing the official policies,
either expressed or implied, of the Combat Capabilities
Development Command Army Research Laboratory,
the U.S. government, or Google. The U.S. government
is authorized to reproduce and distribute reprints for
government purposes, not withstanding any copyright
notation here on.

References
	 1.	 M. Bishop and M. Digler, “Checking for race conditions

in file accesses,” Comput. Syst., vol. 9, no. 2, pp. 131–152,
Spring 1996.

	 2.	 X. Cai, Y. Gui, and R . Johnson, “Exploiting Unix
file-system races via algorithmic complexity attacks,” in
Proc. 30th IEEE Symp. Security Privacy, 2009, pp. 27–41.

	 3.	 “FileProvider URL.” Google. https://developer.android
.com/reference/android/support/v4/content/FileProvider
(accessed May 2021)

	 4.	 “Permissions overview URL.” Google. https://developer
.android.com/guide/topics/permissions/overview
(accessed May 2021)

	 5.	 “Storage access framework URL.” Google. https://
developer.android.com/guide/topics/providers/
document-provider (accessed May 2021)

	 6.	 “Storage updates in Android 11 URL.” Google. https://
developer.android.com/preview/privacy/storage
(accessed May 2021)

	 7.	 C. Karamitas, “Remote exploitation of a man-in-the-disk
vulnerability in W hatsApp (CVE-2021-24027),”
Census Lab, Athens, Apr. 2021. [Online]. Available:
https://census-labs.com/news/2021/04/14/whatsapp
-mitd-remote-exploitation-CVE-2021-24027/

	 8.	 Y.-T. Lee et al., “PolyScope: Multi-policy access control analy-
sis to triage android systems,” in Proc. 30th USENIX Security
Symp., to be published.

	 9.	 S. Makkaveev, “Man-in-the-disk: Android apps exposed
via external storage,” Check Point Research, Aug. 2018.
https://research.checkpoint.com/2018/androids-man
-in-thedisk/ (accessed Apr. 2021).

	10.	 R. Mayrhofer, J. Vander Stoep, C. Brubaker, and N. Kra-
levich, “The Android platform security model,” 2019.
[Online]. Available: https://arxiv.org/abs/1904.05572

Authorized licensed use limited to: Penn State University. Downloaded on September 13,2021 at 18:02:54 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security 25

 11. W. S. McPhee, “Operating system integrity in OS/VS2,”
IBM System J., vol. 13, pp. 230–252, no. 3, Sept. 1974.
doi: 10.1147/sj.133.0230.

 12. G. Petracca, A.-A. Reineh, Y. Sun, J. Grossklags, and T. Jae-
ger. “Aware: Reventing abuse of privacy-sensitive sensors
via operation bindings,” in Proc. 26th USENIX Security
Symp., Aug. 2017.

 13. T. Ringer, D. Grossman, and F. Roesner, “Audacious:
User-driven access control with unmodified operating sys-
tems,” in Proc. ACM Conf. Comput. Commun. Security (ACM
CCS), 2016, pp. 204–216.

 14. “OS Market Share,” StatCounter. Mar. 2020. https://
gs.statcounter.com/os-market-share (accessed Apr. 2021).

 15. H. Vijayakumar, J. Schiffman, and T. Jaeger, “STING:
Finding name resolution vulnerabilities in programs,” in
Proc. 21st USENIX Security Symp., 2012, pp. 585–599.

Yu-Tsung Lee is a Ph.D. student at Pennsylvania State
University, State College, Pennsylvania, 16801, USA.
His research interests include system and software
security, particularly mobile platform security and
access control. Lee received a B.E. from the Uni-
versity of Michigan, Ann Arbor. Contact him at
yxl74@psu.edu.

Haining Chen is a software engineer in Android security
at Google, Mountain View, California, 94043, USA.
Her research interests include mobile security, in gen-
eral, and particularly device authentication, biomet-
rics security, and access control. Chen received a Ph.D.
from the Department of Computer Science, Purdue
University, West Lafayette, Indiana. Contact her at
hainingc@google.com.

Trent Jaeger is a professor in the Department of Com-
puter Science and Engineering, Pennsylvania State
University, State College, Pennsylvania, 16801,
USA. His research interests include systems and
software security, particularly for operating sys-
tems. Jaeger received a Ph.D. from the University
of Michigan, Ann Arbor. He has served as chair of
the Association for Computing Machinery (ACM)
Special Interest Group on Security, Audit, and
Control and as the Steering Committee chair for
the Internet Society Network and Distributed Sys-
tems Symposium. He is an associate editor in chief
of IEEE Security & Privacy and an editorial board
member of Communications of the ACM. Contact
him at trj1@pu.edu.

Computing in Science
& Engineering
The computational and data-centric problems faced
by scientists and engineers transcend disciplines.
There is a need to share knowledge of algorithms,
software, and architectures, and to transmit lessons-
learned to a broad scientific audience. Computing in
Science & Engineering (CiSE) is a cross-disciplinary,
international publication that meets this need
by presenting contributions of high interest and
educational value from a variety of fields, including
physics, biology, chemistry, and astronomy. CiSE
emphasizes innovative applications in cutting-edge
techniques. CiSE publishes peer-reviewed research
articles, as well as departments spanning news and
analyses, topical reviews, tutorials, case studies, and
more.

Read CiSE today! www.computer.org/cise

Digital Object Identifier 10.1109/MSEC.2021.3103619

Authorized licensed use limited to: Penn State University. Downloaded on September 13,2021 at 18:02:54 UTC from IEEE Xplore. Restrictions apply.

